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Abstract
Wedemonstrate the capability for the identification of single particles, via a neural network, directly
from the backscattered light collected by a 30-core opticalfibre, when particles are illuminated using a
singlemode fibre-coupled laser light source. The neural networkwas shown to be able to determine
the specific species of pollenwith∼97%accuracy, alongwith the distance between the end of the 30-
core sensing fibre and the particles, with an associated error of±6 μm.The ability to be able to classify
particles directly frombackscattered light using an optical fibre has potential in environments in
which transmission imaging is neither possible nor suitable, such as sensing over opaquemedia, in the
deep sea or outer space.

Introduction

Fibre-optic based sensors are ideal for worldwide deployment and sensing in a range of in situ environments
owing to their low-cost, light-weight, small and flexible nature. Suchfibre sensors can operate in strong
electromagnetic fields [1], at high pressures [2], at high temperatures [3] and down to cryogenic temperatures
[4], without reduction in sensing performance. In addition, they can operate via single-ended interrogation,
such that one end of thefibre can be free to interact like a probe, thus allowing for in situ sensing in a variety of
environments [5]. Sensing examples include areas within stress and strainmonitoring inmarine and aircraft
structures [6, 7], landslide detection [8], real-time humiditymonitoring [9], hydrogen leak detection from
rocket engines [10] and use in the oceans for sea temperaturemeasurements [11].

Particlemonitoring in a range of environments is particularly desirable, for example,monitoring the
presence and characteristics of plasticmicrobeads in the sea [12] from cosmetics [13, 14] and from the
breakdownof larger plastics [15], which can have a demonstrably negative impact onmarine life [16–19].
Monitoring of this type can give an indication of the origin and levels of plastic pollution in themarine
environment. In air,monitoring of particles, such as those generated by diesel engines, wood burning and
pollen, is invaluable for understanding spatiotemporal variation in particulate concentrations, and thus human
exposure, which is universally recognised as a currentmajor global health problem. Air pollution (including the
effect of gases such as nitrogen oxides) has been associatedwith increased risk of respiratory and cardiovascular
diseases, several cancers, type 2 diabetesmellitus, and dementia [20].

When a particle is illuminated by light, the scattered light encodes information regarding the properties of
the particle (such as its refractive index, structure and size) as well as the properties of the surroundingmedia in
which the particle is immersed [21, 22]. It has previously been demonstrated that it is possible to count particles
of size<10 μm, by imaging their scattered light [23]. However, such particle detection systems generally use
forward scatter, limiting their use in hard-to-reach environments. Combining particle sensingwith fibre optics
allows the unique opportunity for backscatter light detection, thereby allowing sensing in environments in
which transmission imaging is not possible or suitable.
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Deep learning convolutional neural networks [24, 25], inspired by the primate visual cortex [26], have
gainedmuch interest in the past few years, owing to their ability to classify a vast number of objects, with a
certain probability (confidence percentage), that outperforms the capability of humans [27, 28]. These types of
networks have been implemented in real-time [23] and have been used in areas such as speech recognition [29],
facial recognition [30], smile detection [31], video classification [32] and for identifying the songs of different
birds [33, 34]. The ability to remotely update neural networkswithout requiring hardwaremodifications (and
withminimal local processing power) is potentially cost effective and advantageous for global distribution [35].

In thefield of optics, deep learning has led to classification and predictive capability in laser ablation [36–38],
advances inmicroscopy [39, 40], label-free cell classification [41], object classification through scatteringmedia
[42–45] and through scattering pattern imaging of plasticmicroparticles, cells, spores and colloidal particles
[46–51]. In the field offibre-optics, deep learning is gaining interest [52], withwork having been reported for
perimetermonitoring [53], self-tuningmode-locked fibre lasers [54], and forfibre-optics being used to classify
and reconstruct the input handwritten digits and photographs from the speckle patterns transmitted through
multimode fibre [55–57]. In addition, deep learning has been used in optical communications [58, 59], and
more specifically, for real-time fibremode demodulation [60], end-to-end fibre communications [61], and
improvement infibre transmission [62]. Imaging has also been demonstrated usingmicrostructured fibre [63]
andmultimode fibre array [64]with deep learning.

Here, we extend on our previous workwhere deep learning pollution particle detectionwas carried out using
free-space optics [23], and otherwork showing the capture and analysis of particles in the field using free-space
optics [65], by demonstrating the ability to successfully classify real-world bio-aerosol particles (pollen grains) in
real-time, via collection of their backscattered light using opticalfibres.We show that the neural network can
also determine the distance between the pollen particles and the end of the fibres (potentially allowing for 3D
mapping), andwe examine the robustness of the network by varying the ambient light levels using an additional
white light source.

Experimentalmethods

Sample fabrication
Iva xanthiifolia andPopulus deltoides pollen grains fromSigmaAldrich, andNarcissus pollen grains collected
from theUniversity of Southampton grounds, were deposited onto a substrate (a 25 mmby 75 mm, 1 mm thick
soda-lime glass slide). The pollen grains ranged from∼10 to∼50 μmin size, and scanning electronmicroscope
images of a selection of the particles are shown in the inset offigure 1. Each pollen typewas deposited onto
separate region of the glass slide to ensure that the correct labels could be applied during training. The sample
was placed on a three-axis stage (25 mm travel, 10 μmresolution) for positional control.

Figure 1. (a) Schematic of setup for backscattered imaging of particles using a SMF for illumination of the particles and a 30-core
sensing fibre for collecting the backscattered light. (b)–(d)Example images showing the light collected by the sensing fibre and
captured by the camera forNarcissus, Iva xanthiifolia andPopulus deltoides pollen grains, respectively, eachwith an SEM image inset
showing a grain of the corresponding pollen type. (e)Microscope image of the 30-core sensing fibre.
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Imaging setup
As shown infigure 1, light from a diode laser operating at 650 nmwas launched into a singlemode opticalfibre
(SMF), while the other end of this illuminating fibrewas placed<100 μmfrom the pollen coated glass slide,
producing a spot sizewith a diameter of approximately 100 μm.The backscattered light from the particles was
collected by a second fibre (referred to here as the sensingfibre). The sensing fibre is a passivemulticore fibre
(MCF) [66]with 30 coreswith 4 different types of core to supress the coupling between cores in long lengths of
fibre. TheMCF lengthwas<1 mand, owing to theMCF core structure, intra-core couplingwas negligible,
potentially allowing higher accuracy for training and testing of the neural networks. However, otherfibre bundle
designs could have be used for this sensor. The residual light in theMCF cladding (i.e. not in the cores)was low
due to the stripping effect of high index fibre coating applied to theMCFduringmanufacture. TheMCFwas
placed adjacent and parallel to the fibre light source (the SMF). Light transmitted from the end of the sensing
fibrewas imaged onto aCMOS colour camera (Thorlabs, DCC3260C, 1936×1216 pixels, 10 ms integration
time), using a 4 mm focal length lens. The camerawas connected to a computer to allow real-time processing via
a neural network of the experimentally recorded camera images.

For particle species prediction, the light scattered from a particle varies depending on parameters such as the
particle size and type and so the backscattered light from the laser-illuminated pollen, collected by the sensing
fibre, also varies accordingly. Examples of these images are shown infigures 1(b)–(d). For the real-time
demonstration of particle identification, experimental imageswere recorded froman area of the sample thatwas
not used for training, but also had separate regions for each type of pollen, so that it was possible to determine if
the identificationwas correct or not. Secondly, for distance prediction, thePopulus deltoides pollenwas used; the
glass slide was translated along the z-axis (laser axis)with 200 images recorded at 0 μm, then 200 images
recorded 50 μmand so on, at every 50 μmstep, for a total distance of 1 mm.Here, half of the recorded images
were used for training and validation, and the other half for testing. In order to demonstrate the robustness of
this approach, the ambient light level was changed using an additional white light source (a halogen lamp,
I.+W.MUSTERGdb, 150W) that was directed towards the end of the sensingfibre from the rear of the glass
slide, as shown infigure 1.Neutral density filters were placed in front of the source to vary the output level of the
additional white light between 0.1% and 100%of the lamp’smaximumoutput. Images of the scattered light
transmitted through the sensing fibrewere recorded for a total of 10 images per light level, for 11 different light
levels and 3 pollen types. These images were trialled on the neural network thatwas trainedwith zero additional
white light, i.e. only room light, in order to test the robustness of the network to environmental changes, such as
light level changes.

Neural network
A convolutional neural network [27, 67]was used and trained on anNVIDIARTX5000 graphics processing
unit, with the input as the camera image, and the outputwas either the particle type (a confidence percentage
level for each of the 3 species of pollen) or the distance between the end of the sensingfibre and the particle (a
single regression output [68]). Figure 2 shows a simplified schematic of the training procedure of the neural
network for the case of identification of the pollen type. Images of the collected backscattered lightwere passed
into a neural network until the prediction error—comparing the predicted output pollen typewith the actual
pollen type—wasminimised.

More specifically, the images recorded on the camerawere cropped to 501×501 pixels, resized to
256×256 pixels, and then normalised and centred linearly to have amean of 0 and variance of 1 jointly across
all colour channels. The neural network used in this work originated from the second version of ResNet-18 [69]
proposed byHe et al [70] (the batch normalisation [71]was used for all networks as a regularisation technique
withmomentumof 0.95 andmini-batch size of 32). For the classification task (identification of the type of
particle), the neural network usedwas structurally identical to the second version of ResNet-18. In the regression
task (predicting the distance between the sensing fibre and the particle), there was only one 1-by-1filter at the
last convolutional layer of the second version of ResNet-18, and hence the output of the regression networkwas
a single number. Deep residual learning (i.e. ResNet) addresses the degradation problem,which appears inmany
neural network algorithms and can be described as a decrease in proportionality between the depth and the
performance of a networkwhen the depth of the network is increased, in deep learning using skip connectivity
[70]. This types of structures work reportedly well inmany use cases; thus it is chosen for this work. The ResNet-
18, as the name stated, used 18 convolutional layers. Apart from thefirst and the last layer, therewere four
groups of two connected residualmodules, each of which contained two convolutional layers that possessed
numbers of 3-by-3 filters. Similar to the idea of stabilising the time complexity between each layer inVGGnet
[72], at the first layer on each group, except for thefirst group, the stride offilters was set to two in order to halve
the size of featuremaps, whereas the number offilters at all convolutional layers from that groupwas doubled in
comparisonwith the previous group, which increased the total number of featuremaps by a factor of two. The
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variable initialisation policy followed [73], and the parametric rectifier (PReLU) from the same paper was also
adopted to replace the ReLU activation functions [74] used in [69]. TheADAMoptimiser [75]was used, with a
learning rate of 0.0001. The cost functions usedwere cross-entropy andmean square error for the classification
and regression task respectively. Neither dropout nor L1/L2 regularisationwere used in this work. The training
timewas 5 min, and ran for 1 epoch.

The data collection and trainingwere split into two cases;firstly particle identification, and secondly distance
prediction. In thefirst case, across the 3 different types of pollen, a total of 1500 imageswere collected, 90%of
whichwere used for training and 10%were used for validation of the neural network. For training a neural
network for distance prediction, out of the 2200 images collected, 90%were used for training and 10%were used
for validation.

Results and discussion

The results for real-time identification of pollen grain type are shown infigure 3. The inset tofigure 3 displays a
10xmagnificationmicroscope image indicating the distribution of particles over the surface of the glass slide,
showing the variation in size, shape and orientation of the particles. Here, the stagewasmoved randomly across
a region of the sample that was not usedwhen obtaining images for the training data set.When the laser light is
incident on a particle, the backscattered light is collected by the camera, inserted into the neural network and a
prediction of the pollen type ismade. (The pollen type prediction is compared to ground truth via a priori
knowledge of the pollen location on the slide.)Out of 30measurements, 29 predictionswere correct (∼97%
accurate, comparedwith 99.3% accuracy for the training dataset and 99.9% for the validation dataset), with a
mean confidence percentage for correct prediction of 85.8%. The incorrectmeasurement was a prediction of
Narcissus, when the actual pollen typewas Populus deltoides. This is perhaps due to the variability in the shape of
Populus deltoides pollen grains, whichmay havemeant that for certain orientation and size, its scattering features
appear similar to that ofNarcissus. Increasing the amount of training data will likely lead to an increase in
prediction accuracy of the neural network [76], while increasing the number of light sensing fibres could also
increase the amount of the scattered light that is collected (thereby providing a larger effective numerical
aperture) and therefore also improve the spatial resolutionwithwhich the particles are sampled.

Figure 2. Schematic of neural network training, for the case of identification of the pollen type.
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As demonstrated in previous work [23], when a neural network is applied to an image of a scattering pattern
froma particle that was not observed during training, the neural networkwill produce a confidence percentage
for each of the knownparticles, based on how closely the scattering pattern from the unknown particlematches
features from the scattering patterns from the knownparticles. In the previous work [23], the neural network,
whichwas trained on forward scattered light from a range of pollen particles, was providedwith an image of a
scattering pattern from a 5 μmdiameter polystyrenemicrosphere. The neural network produced similar
confidence percentages for all knownparticles (the highest being 46% for the particle type of wood ash), hence
implying that scattering pattern from the 5 μmdiameter polystyrenemicrospheremost closelymatched the
scattering pattern expected fromwood ash. As the neural networkwas not trained on scattering data from
polystyrenemicrospheres, it was incapable of correctly identifying that type of particle.

To extend this discussion, here, we tested the neural network on the collected backscatter from a blank glass
slide. Once again, as the neural networkwas not providedwith labelled training data corresponding to the blank
glass slide, it was unable to identify this type. Interestingly, in this case, the confidence percentage for a blank
glass slide was 99.98% forPopulus deltoides, hence implying that the features in the scattering pattern from the
blank glass slidematched features in the scattering patterns from Populus deltoides. This similarity can be
observed infigure 4, which shows the light collected by the sensing fibre and captured by the camera for
Narcissus, Iva xanthiifolia, Populus deltoides pollen grains and the blank slide, respectively. Some specific regions
in the images that are different for the blank slide and Populus deltoides, comparedwith the images forNarcissus
and Iva xanthiifolia, are highlighted.

Tominimise the chances of such false identification, a broader range of particles could be used for training,
the confidence percentage cut-off for positive identification set high enough, and an unknown category (null
category) could be created for the neural network.

The capability for detecting the distance between the end of the sensing fibre and a particle, in combination
with the previously demonstrated capability for identification of particle type, offers the potential for
simultaneous 3D spatialmapping and identification of particles. Figure 5(a) shows the capability of the trained
neural network in determining the distance of the Populus deltoides pollen, from the end of the sensingfibre, and
(b) shows examples of the collected light imaged on to the camera for 3 different distances. The neural network is
shown to be capable of accurately determining the distance, with a standard deviation in the error of±6 μm.
Themethod could be extended to further distances, provided that datawas collected at those distances and that
therewas significant signal recorded by the camera. Although the signal-to-noise of the light scattered from the
particles would inevitably decrease as the distance is further increased, this could be counteracted by using a
more powerful laser beamor adding additional imaging optics onto the end of thefibre.

Figure 3.Capability of the trained neural network for predicting the type of pollen, in real-time, for 30 separate predictions, showing
the associated confidence percentages. A pink outline indicates an incorrect prediction. Eachmeasurement took 10milliseconds.
Inset:microscope images indicating the variation of pollen grain size, shape and orientation.
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To test the robustness of the neural network under different environmental conditions, and to demonstrate
its capability in real-world sensing, awhite light sourcewas introduced behind the sample (see figure 1) in order
to vary the ambient light levels and thus change the collected backscatter signal; similar in effect to the variation
in sunlight throughout the day. The neural network used in this case was the same as that used forfigure 3, and
hencewas trainedwith zero additional white light, i.e. only room light. Figure 6(a) shows the accuracy of the
prediction for the three different types of pollen grain at a fixed position as a function of levels of additional white
light. Figure 6(b) shows example images of the backscattered light fromNarcissus pollen, illuminated at three
different levels of additional white light. The results show that even in illuminance equivalent to that of full
daylight, the neural networkwas still able to identifyNarcissus and Iva xanthiifolia. Interestingly, forPopulus
deltoides, although the confidence percentage decreases atfirst as the illuminance is increased from low levels of
additional white light, it increases againwhen the level of additional white light is increased fromdaylight to
direct sunlight levels of illuminance and above. This is perhaps due to thewide range of features and signal
intensity in the backscattered light images that the neural network associates with each type of pollen. Indeed,
when the additional white light atmaximum illuminance was directed at the end of the sensingfibre, without
laser illumination and in the absence of pollen, the neural network predicted Populus deltoideswith 100%
confidence from the captured image.Whilst the power levels of thewhite light source used in figure 6were
similar to those in the real-world, the spectrum, and hence colour-balance, of the real-world light sources would

Figure 4.The light collected by the sensingfibre and captured by the camera forNarcissus, Iva xanthiifolia,Populus deltoides pollen
grains and the blank slide, showing the similarity between the latter two. The brightness and contrast levels of the images have been
adjusted equally, comparedwith the otherfigures, for ease of analysing.

Figure 5. (a)Demonstration of the capability of the trained neural network to predict the distance between the end of the sensing fibre
and the Populus deltoides pollen, with a standard deviation in the error of±6 μmandR-value 0.9976. (b)Examples of camera images
showing the collected backscattered light with distances of 50, 450 and 850 μmbetween the end of the sensing fibre and the pollen.
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depend on themechanismwithwhich the light was generated. Thus, the neural network accuracy and associated
confidence percentages,may be different when using the real-world light sources. To increase the prediction
accuracy, the neural network could be trained on varying light levels for each pollen type. For potential sensor
applications, environmental conditions are expected to vary, i.e. light levels and colour at dawnmay differ
considerably from those atmidday and ambient temperaturemay also have an effect. The humidity and the
temperaturewill affect the refractive index of the particles, and hence the scattered light pattern recorded on the
camera.With appropriate training data, the neural network could also be applied in order to determine these
additional parameters. Additional training data corresponding to different environmental conditions could be
created via augmentation of the existing data [77–79], in order to improve accuracy for real-world
measurements without the need to collect very large datasets. In addition, to reduce the effects of sunlight, a
wavelengthfilter could be installed in front of the sensor to block out any light that is of a different wavelength to
the laser.

Conclusion

In conclusion, we have demonstrated a remote, fibre-coupledmethod for classification of particles, via analysis
of their backscattered light. The illumination source is afibre-coupled laser diode and backscattered light is
collected via a 30-coreMCF. The trained neural networkwas able to identify pollen grain type in real-time, with
an accuracy of∼97%. The capability for determining the particle distance from the end of the sensing fibrewas
also demonstratedwith an accuracy of±6 μm. In addition, the neural networkwas shown to be robust in the
presence of varying ambient white light levels. The combination of these two techniques could allow the
simultaneous identification and 3D spatialmapping of particles in challenging and hostile environments.
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