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Abstract
Localized structures in nano- and sub-nano-scales strongly affectmaterial properties. Thus, some
spectroscopic techniques have been used to characterize local atomic and electronic structures. If
material properties can be directly ‘measured’ via spectral observations, the atomic-scale under-
standing of thematerial properties would be dramatically facilitated. In this paper, we have attempted
to unveil the hidden information about thematerial properties directly and quantitatively based on
core-loss spectra.We predicted six properties, including three geometrical and three chemical
bonding properties, by a simple feedforward neural network, and achieved considerably sufficient
accuracy.Moreover, we applied the constructedmodel to the noisy experimental spectrum and could
predict the six properties precisely. This successful prediction implies that thismethod can pave the
way for localmeasurement of thematerial properties.

1. Introduction

Local atomic structures and electronic states have crucial effects onmaterial properties.With increasing demand
for nanoscale devices, inwhich peculiar atomic arrangements influencematerial propertiesmore than those in
bulk, the importance of understanding the local atomic structure is rapidly increasing. Therefore, characterizing
atomic and electronic structures on local scale, i.e. determining atomic structures and revealing their elements
and chemical bonding, is indispensable inmodern nanomaterials research.

For nanostructure analysis, core-loss spectroscopy, namely, electron energy loss near-edge structure
(ELNES) and x-ray absorption near-edge structure (XANES), has been extensively observed and utilized because
the spectral features reflect the atomic and electronic structures [1–6], and nano- or sub-nano-scale resolutions
have been achieved owing to the development of experimental equipment. It is nowpossible to investigate light
elements [7, 8] and distribution of valence states in real space [9, 10].Moreover, the use goes beyond only
elemental identification to include analysis of local hybridization of atomic orbitals [11, 12], local distortions
[13], charge transfer [14, 15], and quantification [15, 16]. Time-resolved core-loss spectroscopy has also been
observed to trace chemical reactions and in situ responses of electronic structures [2, 17, 18].

Although core-loss spectroscopy is powerful for investigating local atomic and electronic structures, a
‘direct’ determination ofmaterial properties using core-loss spectroscopywould bemore attractive to achieve
atomic-resolution propertymeasurements. However, the relationship between core-loss features and the
properties is hidden and ambiguous, thus extracting it requires expertise and theoretical calculations [3, 19].
Therefore, only a few reports have achieved quantification of properties using core-loss spectroscopy [15, 16]. If
the direct connections between core-loss features andmaterial properties could be revealed, the atomic-scale
understanding ofmaterial properties at the nano-scale would be dramatically facilitated.

In recent years,machine learning approaches havewidely spread inmaterials science to predictmaterial
properties quantitively and overcome various obstacles with extensive computations [20–23]. They have also
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been applied to spectroscopic data, such as infrared spectroscopy [24], nuclearmagnetic resonance (NMR) [25],
ELNES/XANES [26, 27], and extended x-ray absorption fine structure (EXAFS) [28] to extract hidden
information.

In this study, we developed a new approach to extract local hidden information ‘directly and quantitatively’
from core-loss spectrumdata.We constructed a neural networkmodel to estimate this information as input of
core-loss spectra. Furthermore, we applied our constructedmodel to an experimental spectrum and predicted
the localmaterial properties.

2.Methodology

2.1. Feedforward neural network
A large variety of regression tools, viz. Lasso, support vectormachine, random forest, etc, are known inmachine
learning. Selection of the tool is considerably important because eachmethod has its own advantages and
disadvantages. A feedforward neural network, which is the simplest type in a group of neural networks, was
selected in this study because it can accommodate large dimensional input data, such as spectra, and incorporate
interactions between them in a non-linearmanner. The schematic of the constructed neural network for
predicting properties from the spectrum is shown infigure 1. Input data consisted of intensities of the core-loss
spectrum,whichwere referred from−1 to 15 eV in increments of 0.1 eV, i.e. 160 dimensional inputs, and
output data were the objective properties. The focuswas on the properties of individual atomic sites, because the
core-loss spectrum can be obtained (calculated) from each site.We used backpropagation, based on the Adam
scheme [29], to optimize all the learning parameters in the network, therebyminimizing themean absolute
errors between themodel outputs and the training targets. ReLUwas used as an activation function, and the

Figure 1. Schematic of a feedforward neural networkmodel. Input layer (located in the lowest position in thisfigure) accepts
intensities of core-loss spectra at each energy and transfers that information towards the output layer (located in the highest position
in thisfigure).
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dropout ratewas fixed at 0.5 in hidden layers not linkedwith the output layer. Hyperparameters, the number of
hidden layers, the number of nodes in the hidden layers, and the regularization parameters, were tuned byfive-
fold cross validation, using the validation datasets described in section 2.2.

2.2. Construction of datasets
In this study, to avoid accidental noise and errors, the spectrumdatasets were constructed by simulation.We
selected oxygen-K (O-K) edges of silicon oxide polymorphs. This selection is suitable for the present study
because of the following three reasons: (1)O-K edge containsmuch information (sometimesmore information
than cation edges). (2)O-K edge can be correctly calculated based on a simple density functional theory-
generalized gradient approximation (DFT-GGA) [30]. (3)Many polytypes and compositions are available for Si-
O basedmaterials in the database.

We selected 188 different silicon oxides from theMaterials Project database [31], some of themhaving
multiple oxygen sites; a total of 1171O-K edge spectrawere calculated. In addition to the spectrumdatasets, the
dataset of local properties was also prepared. Since the core-loss spectrumwas obtained from an atomic site,
local geometrical and bonding properties were selected for prediction. Except the geometrical properties, the
bonding properties and core-loss spectrawere calculated by afirst principles plane-wave basis pseudopotential
methodwithCASTEP code [32]. GGA-PBEwas selected as the exchange-correlation functional, and the cut off
energywas set at 500 eV. To introduce core hole effects when calculating core-loss, on the fly pseudopotential
based onCASTEPdatabasewas applied to the excited oxygen atom in the supercell. Tominimize interactions
among excited atoms under periodic boundary conditions, sufficiently large supercells larger than 8 Åwere used
in all the cases.

All the calculated spectra were alignedwith their thresholds, whichwere set at 0 eV. After that, the spectra
were broadened by aGaussianwith the deviation of 0.5 eV. The dataset was randomly shuffled and divided into
two subsets, one subset and test data, in the ratio of 9:1, and the subset datawas randomly divided into two
subsets again, training and validation data, such that the size of validation datawas equal to that of test data.

3. Results and discussion

Six kinds of local properties were selected - average bond length, average bond angle, Voronoi volume, bond
overlap population,Mulliken charge and excitation energy. Average bond length, average bond angle and
Voronoi volume are geometrical features, the former two provide short range information and the other
provides short andmiddle range information. The bonding properties, bond overlap population,Mulliken
charge, and excitation energy are related to the valence states and the core states. Although prediction of
excitation energy is not necessary because it is observed accompanyingwith the experimental spectrum,
prediction of the excitation energy solely based on the spectral features was attempted to demonstrate the ability
of the presentmethod to predict a core-electron related property.

Using these six properties as the objective valuables, regression analysis was conducted via neural network.
The best hyperparameters were determined by grid search. The details are provided in the supplementary
information (S1) available online at stacks.iop.org/JPMATER/2/024003/mmedia. The correct and predicted
values of training and test data are plotted in figures 2(a)–(f). Gray and colored circles represent training and test
data, respectively. The circles on the diagonal gray linemean that the predicted values are equal to the actual
values. Sincemost of the colored circles are on the gray line in figures 2(a)–(f), our neural networkmodel can
predict those local properties accurately, indicating that the information about both geometrical and bonding
properties is implicitly contained in the spectral features of the core-loss spectrum.Moreover, the prediction
model workswell not only for bond lengths and bond angles but also for Voronoi volume. Core-loss is often
believed tomainly reflect very localized information (such as bond lengths and angles); however, the present
results imply thatmiddle range information (such asVoronoi volume) is also included implicitly, and it can be
extracted bymachine learning.

In addition to geometrical properties, the same argument can also apply to the bonding properties. The
neural network can correctly predict all bonding properties (figures 2(d)–(f)). It is notable that the present
method can correctly predict the excitation energy ‘only’ using the spectral features. In core-loss spectra, the
spectral features and the excitation energy have been often separately discussed; for instance, the excitation
energy, i.e. the chemical shift, is related to the oxidization state, whereas the spectral profile reflects themore
detailedfine structure of the partial density of states (PDOS) of the conduction band.However, the present
results indicate that the spectral features themselves contain information on excitation energy, and excitation
energy can be predicted solely by spectral features. Furthermore, the presentmethod can correctly predict the
valence band information at the ground states, viz. theMilliken charge and bond overlap population. The core-
loss spectrum is known to reflect the PDOSof the conduction band at the excited state and has no direct
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relationshipwith the valence states; however, the present results indicate that spectral features definitely contain
information on valence states. By using neural network, geometrical and bonding informationwere extracted
from the spectral features of the core-loss spectrum.

On the other hand, a detailed inspection offigure 2 reveals some circles located away from the diagonal lines
(indicated by yellow arrows), indicating that the prediction by neural network has failed for somematerials/
sites. On careful examination of those circles, i.e. the spectra, with large errors, it was found that the spectra with
large errors for one property tended to have similar large errors for other properties. Specifically, thirteen spectra
ranked in theworst ten ofmore than two properties, and six spectra ranked inmore than four properties. The
spectrawith large errors are pointed out by yellow arrows infigures 2(a)–(f).

On analyzing the data in detail, two causes ofmispredictionwere found: (1)no similar spectrumwas
included in the training data, and (2) although similar spectra were included in the training data, corresponding
properties differed from each other. Both of these causes can be attributed to unique electronic structures, which
cannot be learned from the training data.

Figure 3 shows the representative cases. The two spectrawere obtained fromone site of thematerials
ID=mp-555823 andmp-557076 in theMaterials Project database, which are hereafter referred to as Spectrum
A andB, respectively. In addition to Spectra A andB (blue line), the threemost closely resembling spectra to each
one in the training data (gray line) are shown in the samefigure. The spectral similarity wasmeasured by
Euclidean distance. It is seen that SpectrumAhas two characteristic peaks, indicated by yellow arrows, whereas
the same characteristic features cannot be found in the reference spectra even though they are judged to be
similar to SpectrumA, indicating that SpectrumA is the only spectrum to exhibit these characteristic features in
the present datasets. Aswith the specificity of the spectrum, its atomic structure is also very characteristic. The
characteristic features of SpectrumAare related to characteristic Si site which have Si–Si bonding. Such Si–Si
bonding is quite rare in crystalline silicon oxides, resulting in no similar features in the training data. As there
were no similar spectral features in the datasets, the predictionmodel could not be constructed correctly for
SpectrumA.

In contrast to SpectrumA, SpectrumBwas considerably similar to the three closest resembling spectra in
Euclidean distance (figure 3(b)). They commonly have one sharp peak around the threshold. Tofind the origin
of the error, the properties for SpectrumBwere comparedwith those of the closely resembling spectra (table 1).
Because the spectra resemble one another, the prediction values (gray shaded rows in table 1) are also close on all
four properties, and the predictions for the 1st, 2nd, and 3rd closest spectra workwell. However, the prediction

Figure 2.Accurate and predicted values of six kinds of properties: (a) average bond length, (b) average bond angle, (c)Voronoi
volume, (d) bond overlap population, (e)Mulliken charge, and (f) excitation energy. Gray and colored dots represent training and test
data, respectively. Gray diagonal lines indicate that predicted values are equal to the actual ones. Yellow arrows indicate the spectra
with large errors. Distribution plots of the training and test data are shown joint to their corresponding axes, respectively.
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for SpectrumB failed because the accurate properties for SpectrumB are different from those of the other
spectra, though their spectral features are similar to each other. The discrepancy between the similarity of the
spectra and the difference in properties are the origin of thismisprediction.

The electronic structure of SpectrumB is actually different from that of the closest spectra. Figure 4 shows
PDOS at the ground states of the correspondingmaterials. SinceO-K edge spectrum reflects the electron
transition from1s-states to the p-component in the conduction band, theDOS of p-component in the
conduction band are shown infigure 4. Blue and gray lines are PDOS of SpectrumB and the relating spectra.

Figure 3.Representative core-loss spectrawith large errors. (a)mp-555823 and (b)mp-557076 inMaterials Project database. Blue
lines represent the two reference spectra, and gray lines represent the threemost similar spectra to each of them. Vertical axes have
arbitrary units; however, the scales are same in all of them.

Table 1.Accurate and predicted values of SpectrumB and the similar spectra regarding four properties. SpectrumB ranks
in those four properties among the six properties as theworst five errors.

SpectrumB 1st closest 2nd closest 3rd closest

Average bond length (Å) Accurate 1.683 1.617 1.621 1.621

Predicted 1.620 1.620 1.618 1.621

Average bond angle (degrees) Accurate 132 151 179 149

Predicted 155 150 175 150

Mulliken charge (electrons) Accurate −1.14 −1.21 −1.21 −1.20

Predicted −1.21 −1.20 −1.21 −1.20

Excitation energy (eV) Accurate 541.9 542.8 542.7 542.7

Predicted 542.7 542.8 542.7 542.7

Figure 4.DOSof oxygen 2p-orbitals. Blue and gray lines represent SpectrumB and the threemost similar spectra, respectively. The
scales of vertical axes are same in all of them.
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Each PDOS is aligned to the threshold 0 eV. The PDOS of SpectrumBhas peaks in lower energy region and it is
different from the other three PDOS.However, their core-loss spectra are very similar to each other as shown in
figure 3(b).

This difference can be ascribed to the difference of core-hole effect. A strong core-hole effect changes the
DOS toward lower energy by attracting the positively charged core-hole, and produces a sharp peak in core-loss
spectrum [33]. Thefirst peaks of the closest spectra are ascribed to the strong core-hole effect. On the other hand,
the PDOS for SpectrumB already has strong intensity at lower energies even at the ground state and does not
significantly change the feature upon core-hole introduction. Although their spectral features are similar to each
other, their origins are different, in particular, the core-hole effect is strong for the closest spectra and not strong
for SpectrumB. To improve the errors caused by the core-hole effect like SpectrumB,we incorporated
excitation energy into input data because it is directly correlated with the core-hole effects.We aligned the
spectral data according to the excitation energy to incorporate the information on the core-hole effect.
Intensities in lower energy region than each excitation energy are set to be 0, namely, zero padding. Figure 5
showsmean absolute errors without/with excitation energy. Four properties, average bond length, average bond
angle,Mulliken charge and excitation energy, were dramatically improved. Especially, average bond length and
Mulliken charge took approximately 30% reduction of the errors. Furthermore, the errors of SpectrumBwere
also improved as shown in supplementary (S2). Therefore, we can conclude that considering excitation energy as
input data could reduce the errors originating the core-hole effect differences.

Finally, we applied ourmodel to an experimental spectrum.Wemeasured theO-K edge of a clashedα-
quartz sample.We used an aberration-corrected STEM (JEM-ARM200F, JEOLLtd) equippedwith a
monochrometer with 30 meV energy resolution. Since oxygen-K edge is broadened by core-hole lifetime,
approximately 0.1 eV, the energy resolution of the instrument can be sufficiently ignored.We retrained the
model by the database broaden byGaussianwith 0.1 eV and predicted the properties of the experimental
spectrum. Figures 6(a) and (b) show the experimental and theoretical spectra and both of the properties. The
experimental spectrumhas similar profile to the calculated spectrum, however, it apparently has some noises.
Nevertheless, the predicted properties of the experimental spectrum are very similar to the accurate values.

Figure 5.Mean absolute errors of six properties of test data: (a) average bond length, (b) average bond angle, (c)Voronoi volume, (d)
bond overlap population, (e)Mulliken charge, and (f) excitation energyw/o andw/mean the cases without/with excitation energy as
input data, respectively.
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Therefore, we can conclude that themodel constructed by the simulated spectrawas considerably robust to the
experimental noises and could predict the properties accurately even from the experimental spectrum.

4. Conclusion

The extraction of hidden information from core-loss spectra via a feedforward neural networkwas attempted.
As a result, three kinds of geometrical properties, including average bond length, average bond angle and
Voronoi volumewere predicted. This implies that the spectral features reflect not only short range information
but also relativelymiddle range information. Furthermore, ourmethod could simultaneously predict three

Figure 6. (a)The experimental and theoretical O-K edge spectrumofα-quartz. (b)Theoretical and experimental (predicted) values
from the experimental spectrum.
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kinds of bonding properties, bond overlap population,Mulliken charge, and excitation energy. Although those
chemical bonding propertiesmainly originate from the valence band, the presentmethod can correctly predict
this bonding information, indicating that the core-loss spectrum, which reflects the conduction band, contains
information pertaining to the valence bands at the ground states.

Furthermore, we also investigated the limitations of the presentmethod by analyzing themispredicted cases.
From the analysis, we found that therewere two cases ofmisprediction in presentmethod: (1)no similar
spectrumwas present in the training data, and (2) the similar spectrawere included in the training data, but the
corresponding properties were different. Fortunately, the spectrum calculations can generate the spectra from
virtual structures (materials), such as hypothetical crystal structures, resulting in constructing larger databases.
We believe that the large databases can correct the errors in the first case. Furthermore, detailed analysis revealed
that the second casewas attributed to the core-hole effects, andwe could correct themisprediction by adding the
excitation energy to input data, which is correlated with the core-hole effects.

Despite the limitation, the presentmethod correctly predictedmaterial properties via the spectral features
formost cases, and could be applied to the experimental spectrumwhich had somenoises. Therefore, we believe
that thismethod has enormous potential to pave theway for localmeasurement ofmaterial properties.
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