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Abstract
Faithful representations of atomic environments and generalmodels for regression can be harnessed
to learn electron densities that are close to the ground state. One of the applications of data-derived
electron densities is orbital-free density functional theory (DFT). However, extrapolations of densities
learned from a training set to dissimilar structures could result in inaccurate results, whichwould limit
the applicability of themethod.Here, we show that a non-Bayesian approach can produce estimates of
uncertainty which can successfully distinguish accurate from inaccurate predictions of electron
density.We apply our approach toDFTwherewe initialise calculationswith data-derived densities
onlywhenwe are confident about their quality. This results in a guaranteed acceleration to self-
consistency for configurations that are similar to those seen during training and could be useful for
sampling-basedmethods, where previous ground state densities cannot be used to initialise
subsequent calculations.

1. Introduction

Density functional theory (DFT) has seenwidespread adoption inmany areas of research spanning the natural
sciences due to its high predictive capability atmodest computational cost and transferability across different
systems [1]. The staggering number of applications and papers that exploit DFT are a testament to its value in
materials science [2].

The foundations ofDFT are theHohenberg–Kohn theorems [3]. Thefirst of these expresses the total energy
of amany-electron system as a functional, F[n], of the ground state electron density, n(x), where x denotes a
location in real space. The second theorem tells us the ground state density is found byminimising F[n]with
respect to n(x). Although an exact form for F[n] has not been established, the unknown components can be
separated into a kinetic energy contribution,T[n] and a term called the exchange correlation functional, Exc[n]
[4]. Themagnitude of contributions from Exc[n] to the total energy are known to be relatively small and so the
exchange correlation term can be approximated to some extent by approaches such as the local density
approximation and the generalised gradient approximation [5, 6]. The kinetic energy term cannot however be so
well approximated and a universally applicable functional is still unknown [7]. This forcesmany applications to
an alternative paradigm,Kohn–Sham (KS)DFT [5]. Here,T[n] is replaced by an expectation over independent
electronwave functions. Inmany cases, this vastly improves the accuracy of the kinetic energy contribution to
F[n] but it introduces a significant increase in the computational expense [8].

With the recent renewed interest inmachine learning, theoretical attempts to learnT[n]have been
supplementedwith data-driven inferences [9]. These are hampered by difficulties in approximating gradients
∂T[n]/∂n(x), an evaluationwhich is necessary infinding the ground state density [10]. Recently, an approach to
circumvent this issuewas proposed, stimulating a newwave of interest in data-driven orbital free (OF)DFT
[11–13]. The alternative route to evaluating data-derivedOF functionals on the ground state density is to
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empirically infer the ground state density itself, removing the variational optimisation of F[n] completely. Two
possible issues with this approach ultimately stem from the availability of data.WhileT[n] and n(x)may be very
accurate for structures similar to those seen during training, when extrapolating for unfamiliar structures, either
T[n] or n(x)may give predictions that are far from the true values.

The key contribution thatwemake in thiswork is to show that predictive uncertainty canbeharnessed to
prevent poor extrapolations ofn(x) for structures that are dissimilar to those seenduring training.We illustrate how
such ameasure of confidence canbe applied to accelerateKSDFTby initialising calculationswith adata-driven
contributiononlywhenwe are confident about its quality.Wenote that such an application ismost suited to
samplingmethods such as nested sampling,where subsequent structures are not guaranteed to be similar [14]. To
the best of our knowledge, ab initionested samplinghas yet to be realised due to the prohibitive computational
requirements of standardKSDFT.Thisworkmay contribute, in somepart, to realising such calculations. For other
applications likemolecular dynamics or geometry optimisation, a temporary history of ground state densities can be
applied to subsequent configurations in the calculation. This results in successive calculations being initialised fairly
close to their ground state, rendering any improvementsmade fromadata-deriveddensitymuch less significant.

2.Quantifying uncertainty

Evaluating an error ormeasure of confidence in a data-driven prediction like n(x) is a well studied problem
[15, 16]. Applications of uncertainty quantification have recently begun appearing inmaterials science, with
some even inDFT, such as the linearmodel exchange correlation functional of Aldegunde et al [17–21]. In this
work, we show that useful applications of a predictive uncertainty in n(x) can be realised for just one ofmany
possible approaches. By illustrating a proof-of-concept application to accelerating KSDFT, we hope to
encourage a greater awareness of the advantages of quantifying uncertainty and to stimulate interest in
alternativemethods and applications such as inOFDFT.

2.1. Non-Bayesian regression
In the followingwe adopt the notation that n and x refer to a known idealmodel contribution to electron density
and a corresponding representation for the environment of that density point, respectively. Specifically, we
adopt the bispectrum representation for x=(x local, x global), which is a concatenation of local and global
contributions [22, 23].We refer the reader to appendix A for further detail and also note that explicit
dependence of n upon x has been dropped in this section to improve clarity. In this work, we use a non-Bayesian
approach to quantify uncertainty. Although a Bayesianmethod to parametric regressionwill give amore reliable
measure of uncertainty, evaluating uncertainty from the predictive distribution for nonlinearmodels is not a
simple task and often sampling is involvedwhich can incur significant computational overhead [15].

We propose amodel inwhich observations of the true ground state density n are prone to random error
which is distributed normally about themodel predictionsμ(x,w):

p n nx w x w x w, , , , . 12 m s=( ∣ ) ( ∣ ( ) ( ) ) ( )

Wealso introduce a dependency of the variance of this random error,σ(x,w)2, on the environment x, which
is known as a heteroskedasticmodel for noise [24].We use a fully connected feed-forward neural networkwith
hidden networkweightsw, to calculateμ(x,w) andσ(x,w)2. Observations of n are treated as independent and
identically distributed randomvariables and to inferw, we calculate themaximum likelihood estimate by
maximising the product p n x w,n x, ( ∣ ) over all observations in the training set.

Toquantify error in the predictions ofn given anew x, we adopt an ensembleofNens neural networks, eachwith
networkweightswi. Adopting a uniformlyweightedGaussianmixture, the likelihoodof the ensemble is then:
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2.2.Doing no harm
Toapplyourmodel for predictionuncertaintyσML(x)2 in (3) to accelerateKSDFT,weneed to evaluate a global
measure of uncertainty for an entire structure.We call thismeasure H p MLs[ ], where anunknowndependencyon the
empirical prior distribution p MLs ofσML is shownexplicitly. In thiswork,we adopt the very simplemeasure that:

H p
N

xln
1

ln 4p
i

N

i
ML

1

ML
ML ML ås s= =s

=
s

[ ] [ ( )] ( ( )) ( )

forN densities in a crystal.We now abbreviate H p HML =s[ ] and introduce a tapering functionΓ(H), which is
essentially a step functionwith a controllable transition point and length scale. For details of the specific formof
Γ used in this work, we refer the reader to appendix C.WithΓ(H), we can control the empirical contribution
nML(x) to an initial density estimate:

n n H nx x x . 50
ML= + G( ) ( ) ( ) ( ) ( )

n0(x) represents any standard initialisation technique for thedensity inDFTbut typically, this is a combinationof the
radial components of electrondensity for atomsassumed tobe in vacuum.The idealmodel contributionn from
section2.1 is thedifferenceof the true ground state density and the standard initial contribution,n(x)−n0(x) from (5).

Wenote that an alternative strategy couldbe to taper empirical contributions locally at eachgridpoint, butwe
choose a global approach todiscourage spuriousnon-smoothness innML(x)Γ(σML(x)) thatmight occur if

x x x 0ML MLs d s+ - ∣ ( ) ( )∣ , for a small perturbation in environmentδx.Wealsonote that the effects of any
randomerror inσML(x) are significantly reducedbyconsideringdistribution averages.Whilewe found that the simple
choiceofHused in (4)workedverywell at identifyinguncertainpredictions for the applications in thiswork, amore
informativemeasureof thedistribution p MLs may improve this distinction further.Higherordermoments of p MLs
suchas thedistributionvariance for example couldbeutilised, in addition toknowledge about thedistributionmean.

3. Results

In this sectionwe illustrate how the non-Bayesian approach to uncertainty quantification adopted in this work
can qualitatively distinguish accurate from inaccurate values of the data-derived contribution nML(r).We also
showhow the number of self-consistent field iterations needed to reach self-consistency in aKSDFT calculation
can be reduced as the initial density tends to the exact ground state density. For environments dissimilar to those
seen during training, we expect a larger predictive uncertainty.

3.1. 5–7 defect in graphene
Figure 1 showsσML(x) for a single layer of graphenewith a 5–7 pair (orDienes) topological defect [26]. Only
densities from a single pristine layer of graphenewere used during training. In the area immediately surrounding
the defect, predictive uncertainties increase (denoted by dark shading), identifying this region as an environment
dissimilar to the defect-free layer.

Figure 1.Amodel trained on pristine graphene identifies a large degree of prediction uncertainty,σML(x) denoted by greyscale
shading, in the area surrounding a 5–7 pair defect.We note thatσML(x) is given in units of 10−2e Å−3.
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3.2. In-plane strain in graphite
Infigure 2, we compare the prediction uncertainty of graphite with 0% and 5% in-plane strain. Specifically, we
show the [100] lattice vector contour and find that predictions are significantlymore certain for the 0% contour
whichwas seen during training than the 5% contour that was not. Further details of the bispectrum andKSDFT
calculations forfigures 1 and 2 can be found in appendix C.

3.3. Accurate initial densities
Tomotivate our application of uncertainty quantification toKSDFT,we examine the convergence of single
point KSDFT calculations to self-consistency aswe perturb initial densities away from the exact ground state via
changes to the idealmodel contribution, n(x)−n0(x) in (5).

We study a non-metallic crystal, graphite, and calculate the ground state density for several hundred
primitive cell configurations sampled fromaNPTmolecular dynamics trajectory. The components of the
discrete Fourier transformof the idealmodel contribution are perturbed by additive Gaussian noise. By taking
the inverse transform, we have a continuously deformed version of the true density.Wemeasure deformation by
the root-mean-squared error (RMSE) of the perturbed and true ground state density.

Infigure 3, the self-consistent calculation is initialisedwith chargedensitieswhich are increasinglydeformed
versionsof thegroundstate.Wesee that as themagnitude indeformation fromthegroundstate, theRMSE, increases,
so toodoes thenumberof iterationsneeded to reach self-consistency.Thequantitydisplayedon the abscissa, dSCF, is
the improvement, in thenumberof iterations, relative to a calculationwith the standard initial density.Asdeformations
increase, the improvementdecreases.Thehashedand shadedareas infigure3 represent confidence intervals of 67%,
showing that the relationbetweenRMSEandconvergence to self-consistency is stochastic to somedegree.

To ensure that any empiricalmethod for initialisingKSDFTdensities does not negatively affect convergence
to self-consistency in regionswhere the empirical densities extrapolate poorly, uncertainty quantification is
clearly needed. For further details of theDFT calculations infigure 3, see appendix C.

4. Applying global uncertainty

Aswe sawby the calculations infigure 3, ameasure of confidence in density is necessary if we are to use empirical
densities inDFT in a ‘safe’manner. Notwanting to leave things worse than howwe found them,we hope to
ensure that every calculation initialised by a data-driven density does noworse than its ordinary counterpart.

To illustrate that a globalmeasure of confidence in predictions,H from (4), can be applied to accelerate KS
DFT,wefirst consider using empirical densities without using knowledge of their uncertainty. After training on
five unit cell graphite configurations from aNVTmolecular dynamics simulation atT=300 K,we predict
densities for all 300 crystals in our data set. Details of the empiricalmodel andKSDFT calculations can be found
in appendix C.Without applying any information about uncertainty, we blindly initialise Broyden density
mixing (DM)DFT calculations and record the reduction in the number of iterations to self-consistency, dSCF,
relative to a calculationwith a standard initial density. Next, we calculate the global confidencemeasure

Figure 2.Amodel trainedonly onprimitive graphitewith 0% in-plane lattice strain identifies a regionofhighdegreeof uncertaintywhen
makingpredictions along the [100] contour of a primitive graphite crystalwith 5% in-plane strain. The shaded regions show the interval
nML(r)±3σML(x) and the dashed lines show the true ground state density.Wenote that chargedensities are given inunits of e Å−3.
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H ln ML s= [ ( )] for each crystal and categorise crystals into discrete sets according to their dSCF score.We
show the corresponding empirical joint distribution p ln , dSCFML s( [ ( )] ) infigure 4.

We can expand the empirical joint distribution

p H p H p H, dSCF dSCF 6=( ) ( ∣ ) ( ) ( )

in terms of the unknown conditional distribution p HdSCF( ∣ ) fromwhichwewant to decide if a given
prediction,H, is good enough to initialise a KSDFT calculation. Taking the prior p(H) as constant,
p H p H, dSCF dSCFµ( ) ( ∣ ) andwe look for a gap inH between p(H, dSCF�0) and p(H, dSCF<0). It is here
that a transition point can be set in the tapering functionΓ(H), to reduce uncertain predictions to zero. This can
be visualised by comparing the peak at dSCF=−1with that at dSCF=0. Although there is some overlap
between these two peaks, there is almost zero overlap between dSCF=−1 and all other peaks. Thismeans that
H can be used to identify the quality of density predictions before anyDFT calculation ismade.We note that the

Figure 3.As the initial KSDFTdensities are deformed away from the true ground state, the number of iterations necessary to reach
self-consistency increases and the improvement from standardDFT initialisation, dSCF, decreases. Pulay andBroyden densitymixing
schemes result in a very similar convergence for all calculations.

Figure 4.The empirical joint distribution p(H, dSCF) evaluated for a set of primitive graphite configurations shows separable
categorisations of performance into good (dSCF>0) and poor (dSCF<0) predictions.
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joint distribution shown infigure 4 is a smoothed approximation of the true empirical distribution but that
important properties such thewidth of each conditional distribution p HdSCF( ∣ ), are preserved.

In fact we see that for the small study here, the expectation ofH conditioned on dSCF

H Hp H Hd dSCF 7p H dSCF ò=[ ] ( ∣ ) ( )( ∣ )

which is the dashed line infigure 4, follows amonotonic relationwith dSCF. This shows that predicted
uncertainty really does correspond in amonotonic way to actual error. Using the distribution of predicted
uncertainties over a crystal, we can identifymodel predictionswhich are poor andwill harm convergence to self-
consistency. By effectively turning off poor predictions usingΓ(H), empirical corrections to the initial KS density
can be applied only for crystals which are similar to those seen during training.

4.1. Accelerating self-consistency
Now that we have established amechanism to detect global uncertainty in density, we can apply this to single
point KSDFT calculations to accelerate convergence to self-consistency. Infigure 5, we compare the empirical
distributions p(dSCF) for BroydenDMDFT calculations performed using data-derived densities with and
without tapering. The upper half offigure 5 shows a number of extrapolations where poor predictions of density
have a negative effect upon convergence (dSCF<0). In the lower half, uncertain predictions have been
identified and reduced to zero, increasing the peak at dSCF=0.

Crucially, the computation time required to evaluate our data-derived density estimate is just less than the
time taken to evaluate a single SCF iteration. For further details of the calculations infigure 5 involvingKSDFT
parameters, see appendix C.Despite ourmodel being trained only on 5 configurations, a large proportion of
crystals exhibit a speed up in convergence to self-consistency. Such an effect could also arise by poorly choosing a
test set of crystals, whereby all atompositions remain in almost identical positions. A trivial approach of applying
the ground state density from a randomcrystal, or an average of ground state densities over all crystals, would
therefore achieve similar, or better results. However, in fact this is not the case.When such simulationswere run,
we found that almost all (∼95%) of predictions obtained dSCF=0.Our test set is in fact a rather dissimilar
collection of configurations,most of which involve significant shifts in registry across the basal plane, as
configurations jump fromoneAB-stacked state to another.We attribute the ability of ourmodel to infer useful
predictions from such an incredibly small number of configurations to the fact that each crystal in the training

Figure 5.When data-derived densities are used in KSDFTwithout using uncertainty prediction (untapered contributions), there is a
non-zero chance p(dSCF) that inaccurate predictions can harm convergence to self-consistency (dSCF<0).When prediction
uncertainties are applied to identify (taper) unfamiliar crystals, only a neutral or positive speed up is seen.
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set contributes 104( ) grid points. Simply put,more data leads to a better inference, evenwhen a large number
of data points come from the same crystal.

4.2.Wider applicability
To this point, all calculations in this work have beenmade to illustrate that data-derived densities can be applied
to a single system to improve the standard analytical initial densities that are used in KSDFT.We consider the
wider implications of this work beyond graphite by comparing the dissimilarity of ground state and standard
initial densities for a collection of 29metals and 37 non-metals under both low and high pressure.Wefind that
all of themetals we considered here have initial densities that aremuch closer to the ground state density than
with graphite, while the converse is true for approximately half of the non-metals studied here.We use theRMSE
of all density grid points within a crystal as ameasure of dissimilarity between these two densities. To classify
metals and non-metals we use the density of states at the Fermi level.We use a value of 0.2 e(eV)−1 which is just
above the density of states for themetalloid As to classify the two classes.

We show infigure 6 a smoothed approximation of the conditional distribution p log RMSE10 h( ( )∣ ) formetals
or non-metals η alongwith a dashed vertical line showing the RMSEbetween the standard initial and ground
state densities for graphite. The logarithmof the RMSE illustrates that the RMSEdiffers by almost two orders of
magnitude between graphite and some of themetals.We note that the approximate representation of
p log RMSE10 h( ( )∣ ) is a four-component Gaussianmixturemodel of the true data [15]. Based upon the systems
studied here, we summarise that data-derived densitiesmay in general bemore suitably applied to non-metals
thanmetals. Details of these systems aswell as and theKSDFT calculations that were used to calculate the RMSE
infigure 6 can be found in appendix C.

5.Discussion

Wehave shown that uncertainty quantification can be applied to accelerate KSDFT for samplingmethods like
nested sampling, attaining amaximum speed up of 57%4 for the systems studied in this work.We view the
approach taken in this work asmore a proof of concept than afinal solution, confident that exciting
developments and insights are accessible to futurework. To this end, we note that the approach taken in this
work is just one ofmany possiblemethods.We use this section to discuss whatwe believe to be themost
prominent disadvantages of this approach and outline a few ideas that could address these short comings.

While our parametric approach leads to a computation time for data-derived densities that is smaller than a
single self-consistent field cycle, the time needed to train densities from a single crystal is orders ofmagnitude
larger than a full DFT calculation. Although samplingmethods require thousands of crystal configurations, the
time to train or refine a data-derived density should ideally be as close to a single KSDFT calculation as possible.

Figure 6.TheRMSE between the standard initial and ground state densities ismuch smaller for themetals studied here thenwith
graphite and approximately half of the non-metals. Four-componentGaussianmixturemodels approximate the conditional
distributions p log RMSE10 h( ( )∣ ) of the RMSE given the characterisation η of the system. The vertical dashed line shows the RMSE of
graphite.

4
See appendixD for the definition of speed up that we adopt here.
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Some heuristic techniques, such asmaximising the sample variance of observations in a smaller training subset,
may give some reduction in this, but amore promising avenue could be to use approximate Bayesian inference,
such as deterministic variational inference [27]. A Bayesian approach, evenwhen the posterior distribution is
approximate, could also lead tomore reliable uncertainty estimates. The non-Bayesian approach adopted in this
work does not guarantee that ‘false positives’ cannot occurwhen determining if confidence should be placed in a
data-derived density or not. In addition, Bayesian online learning could allow for an incremental approach to
learning densities such that refinements aremade during sampling only to crystals which are dissimilar to all of
those that were previously seen during training [28].

The approach thatwe use in this work tomake decisions about confidence in the density does not take
account of the type of crystal. For applications like nested sampling, where several different phases are sampled
from, itmay become essential for our decision process to include knowledge about the global environment, such
as from a global bispectrum representation of the crystal. An unsupervisedmethod, such as aGaussianmixture
model,may be necessary to associate crystals with nearby clusters and to apply decisions using a predetermined
set of distinct confidence thresholds for each cluster.

An aspect that we have not considered in this work is the question of whichmethod ofminimising theKS
Hamiltonian, given an initial density, gives the lowest computation time. Although this is a well studied
problem, perhaps new insights are possible when an estimate of confidence is available in the initial density [29].

Wenote thatourdiscussionofKSDFTand the applicationofdata-deriveddensities to accelerate convergence to
self-consistency in thisworkhas so far ignored spin. Formanysystemsandprocesses suchas radicals, transitionmetal
complexes orhomolytic bondbreaking, the spatialwave functionsof opposing spin states arenot equal

r ry y¹a b( ( ) ( )) [30–32]. Spin-unrestrictedKSDFT is a generalisationof the spin-restricted form,where
r ry y¹a b( ) ( ) is possible and the variationalminimisationof total energyE[n,Q] is performedwith respect toboth

the total electrondensityn(r) and the spindensityQ r r r
i i

2 2å y y= - åa b( ) ∣ ( )∣ ∣ ( )∣ [33]. Initial densities for
unrestricted spin therefore requireQ(r) in addition ton(r). A generalisationof thedata-deriveddensities used in this
work tounrestricted spinDFTcouldbe realisedbyadopting p t x w t, , 1 m L= -( ∣ ) ( ∣ ) for t=(n(r),Q(r)). A
parametricmodelwould then represent x , 1m L -( ) rather then x , 2m s ( ) as in(1). Thegeneralisationof (2)
leads to tp t x W, ,ML ML 1 m L= -( ∣ ) ( ∣ ( ) where n Q,ML ML MLm = ( ) and the covariancematrix ML 1L -( ) represents
uncertainty in the initial data-derived total (nML) and spin (QML)densities. The simplestway to apply MLL to identify
uncertainpredictionsmight be to sumthediagonal components of ML 1L -( ) todefine a scalarmeasure analogous to
σML in(4).Wealsonote thatE[n,Q] iswell known toexhibit anumberof stationarypoints and in the absenceof any
knowledge about theground state ofQ, some formof approximate global optimisationmust beutilised. If thedata-
deriveddensities are sufficiently accurate thenglobal optimisation for spin-unrestrictedDFTcouldbe abandoned
altogether, providing significant reductions to the computation required.

6. Conclusions

Wehave shown that a non-Bayesian treatment of predictive uncertainty canbe applied to electrondensity
regression to identify structures that are dissimilar to those seen during training.Wehave applied this approach to
KSDFTwherewehavebeen able to identify andprevent unfamiliar structures fromnegatively effecting
convergence to self-consistency. For the systems studied in thiswork,where confident predictionsweremade,we
sawamaximumspeedup in convergence to self-consistency of 57% (see footnote 4) and cautiously note
that further improvements couldbemadewith amore indepth studyof the approach tominimise theKS
Hamiltonian. Crucially, our predictions canbe evaluated in less time than a single self-consistentfield iteration for
a primitive crystal,meaning that our application toKSDFTcouldbeuseful formethods like nested sampling.

We view this work as a proof of concept. Quantifying uncertainty in predicted densities is shown to be a
fruitful endeavour andwe hope ourworkwill encourage further applications and alternative approaches, for
example inOFDFT.More generally, this workmotivatesmore sophisticated treatments of interpolation, or
caching, which are currently treated deterministically to accelerate high performance planewaveDFT codes
[34, 35].We anticipate that a paradigm shift towards ‘probabilistic caching’, or regression, will lead to the
efficient use of previously computed data.
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AppendixA.

In the bispectrum approximation, elements of local and global contributions to the representation of
environment, x(r), are determined by the projections cnlm of local and global environment into radial (n) and
spherical harmonic (lm) bases.
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Ωr is a spherical volume offinite radius surrounding a point in real space r. Indices i and j denote pairs of theN
atoms contained in the primitive cell of a crystal. r r rd i i= -∣ ∣, r r rd ij j i= -∣ ∣and dθ and df are the polar and
azimuth projections respectively of ri−r and rj−ri.

Appendix B.

There aremany equally adequate tapering functions which could be chosen.We used:

r
r

, 1
, 0

0, 0

B.1

4

4

scale

*
*

s s
s
s

s

s
s

s s
s

G = +
>

<
=

-
⎧
⎨⎪
⎩⎪

( ( ) )
˜

˜
˜

˜
˜ ( ) ( )

simply because it has property that every nth derivative∂(n)Γ/∂σ(r)(n) remains continuous.

AppendixC.

For all of the KSDFT calculations in table C1, a Fermi surface smearingwidth of 250 K, an energy tolerance of
10−6 eV/atom, the PBE exchange correlation functional and BroydenDMwere used, except for the calculations
infigure 3which used both Broyden and PulayDMand the calculations infigure 6which used a smearingwidth
of 300 K. All graphite and graphene configurations except for theNPT calculations offigure 3 had an in-plane
C–C spacing of 1.42Å and an inter-layer spacing of 3.34Å. In addition, a vacuumcorresponding to a unit cell of
20Å in the plane-normal axis was adopted for the graphene layer in figure 1 and infigure 5 a tapering function of
the form in (B.1)was usedwith the threshold and scaling factor , 6.83, 10scale

3*s s = - -( ) ( ). *denotes use of the
power spectrum rather than bispectrum representation for the calculations infigure 2. The notation adopted in
table C1 regarding the number of nodes used in each neural network, is that x×y denotes a neural network of x
node layers, each containing ynodes. Table C2 lists the database, unique identifying number and
characterisation of each systemused to generate the calculations infigure 6.We supply inputfiles for all data sets
within this work at https://github.com/andrew31416/densityregression/tree/master/data_sets.

Table C1.Calculation parameters.

Bispectrum Neural network KSDFT

Calculation rcut (Å) nmax lmax Nens nodes Ecut (eV) k-point grid

Figure 1 4 3 3 5 2×100 400 [36 36 1]
Figure 2 6 10* 8* 10 2×50 400 [36 36 6]
Figure 3 — — — — — 800 [36 36 6]
Figure 4 6 6 6 10 2×200 300 [18 18 4]
Figure 5 4 4 4 5 2×150 300 [18 18 4]
Figure 6 — — — — — 800 (0.1, 0.1, 0.1)Å−1
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AppendixD.

Weadopt the convention that the speed up

N N

N
100% D.1old new

new

t =
-

´
⎛
⎝⎜

⎞
⎠⎟ ( )

for data-derived initial densities that require Nnew self-consistent field iterations to reach self-consistency.Nold is
the number of iterations required for a standard calculation that uses a non data-derived initial density. τ is
defined such that a data-derived density that halves then required number of self-consistent field iterations
corresponds to a 100% speed up.
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