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Abstract

Faithful representations of atomic environments and general models for regression can be harnessed
to learn electron densities that are close to the ground state. One of the applications of data-derived
electron densities is orbital-free density functional theory (DFT). However, extrapolations of densities
learned from a training set to dissimilar structures could result in inaccurate results, which would limit
the applicability of the method. Here, we show that a non-Bayesian approach can produce estimates of
uncertainty which can successfully distinguish accurate from inaccurate predictions of electron
density. We apply our approach to DFT where we initialise calculations with data-derived densities
only when we are confident about their quality. This results in a guaranteed acceleration to self-
consistency for configurations that are similar to those seen during training and could be useful for
sampling-based methods, where previous ground state densities cannot be used to initialise
subsequent calculations.

1. Introduction

Density functional theory (DFT) has seen widespread adoption in many areas of research spanning the natural
sciences due to its high predictive capability at modest computational cost and transferability across different
systems [1]. The staggering number of applications and papers that exploit DFT are a testament to its value in
materials science [2].

The foundations of DFT are the Hohenberg—Kohn theorems [3]. The first of these expresses the total energy
of a many-electron system as a functional, F[#], of the ground state electron density, n(x), where x denotes a
location in real space. The second theorem tells us the ground state density is found by minimising F[n] with
respect to n(x). Although an exact form for F[n] has not been established, the unknown components can be
separated into a kinetic energy contribution, T[n] and a term called the exchange correlation functional, E[#]
[4]. The magnitude of contributions from E, [n] to the total energy are known to be relatively small and so the
exchange correlation term can be approximated to some extent by approaches such as the local density
approximation and the generalised gradient approximation [5, 6]. The kinetic energy term cannot however be so
well approximated and a universally applicable functional is still unknown [7]. This forces many applications to
an alternative paradigm, Kohn—Sham (KS) DFT [5]. Here, T[n] is replaced by an expectation over independent
electron wave functions. In many cases, this vastly improves the accuracy of the kinetic energy contribution to
F[n] but it introduces a significant increase in the computational expense [8].

With the recent renewed interest in machine learning, theoretical attempts to learn T[n] have been
supplemented with data-driven inferences [9]. These are hampered by difficulties in approximating gradients
0 T[n]/0n(x), an evaluation which is necessary in finding the ground state density [ 10]. Recently, an approach to
circumvent this issue was proposed, stimulating a new wave of interest in data-driven orbital free (OF) DFT
[11-13]. The alternative route to evaluating data-derived OF functionals on the ground state density is to

©2019 The Author(s). Published by IOP Publishing Ltd
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empirically infer the ground state density itself, removing the variational optimisation of F[#n] completely. Two
possible issues with this approach ultimately stem from the availability of data. While T[#] and n(x) may be very
accurate for structures similar to those seen during training, when extrapolating for unfamiliar structures, either
T[n] or n(x) may give predictions that are far from the true values.

The key contribution that we make in this work is to show that predictive uncertainty can be harnessed to
prevent poor extrapolations of n(x) for structures that are dissimilar to those seen during training. We illustrate how
such a measure of confidence can be applied to accelerate KS DFT by initialising calculations with a data-driven
contribution only when we are confident about its quality. We note that such an application is most suited to
sampling methods such as nested sampling, where subsequent structures are not guaranteed to be similar [14]. To
the best of our knowledge, ab initio nested sampling has yet to be realised due to the prohibitive computational
requirements of standard KS DFT. This work may contribute, in some part, to realising such calculations. For other
applications like molecular dynamics or geometry optimisation, a temporary history of ground state densities can be
applied to subsequent configurations in the calculation. This results in successive calculations being initialised fairly
close to their ground state, rendering any improvements made from a data-derived density much less significant.

2. Quantifying uncertainty

Evaluating an error or measure of confidence in a data-driven prediction like n(x) is a well studied problem
[15, 16]. Applications of uncertainty quantification have recently begun appearing in materials science, with
some even in DFT, such as the linear model exchange correlation functional of Aldegunde et al [17-21]. In this
work, we show that useful applications of a predictive uncertainty in #(x) can be realised for just one of many
possible approaches. By illustrating a proof-of-concept application to accelerating KS DFT, we hope to
encourage a greater awareness of the advantages of quantifying uncertainty and to stimulate interest in
alternative methods and applications such as in OF DFT.

2.1. Non-Bayesian regression
In the following we adopt the notation that # and x refer to a known ideal model contribution to electron density
and a corresponding representation for the environment of that density point, respectively. Specifically, we
adopt the bispectrum representation forx = (x'°, x#°®¥) which is a concatenation of local and global
contributions [22, 23]. We refer the reader to appendix A for further detail and also note that explicit
dependence of n upon x has been dropped in this section to improve clarity. In this work, we use a non-Bayesian
approach to quantify uncertainty. Although a Bayesian method to parametric regression will give a more reliable
measure of uncertainty, evaluating uncertainty from the predictive distribution for nonlinear modelsis nota
simple task and often sampling is involved which can incur significant computational overhead [15].

We propose a model in which observations of the true ground state density 7 are prone to random error
which is distributed normally about the model predictions pu(x, w):

p(nlx, w) = Mn|ux, w), o(x, w)?). 1)

We also introduce a dependency of the variance of this random error, o(x, w)?, on the environment x, which
is known as a heteroskedastic model for noise [24]. We use a fully connected feed-forward neural network with
hidden network weights w, to calculate y(x, w) and o(x, w)2. Observations of 1 are treated as independent and
identically distributed random variables and to infer w, we calculate the maximum likelihood estimate by
maximising the product [], | p(n|x, w) over all observations in the training set.

To quantify error in the predictions of  given a new x, we adopt an ensemble of N, neural networks, each with
network weights w;. Adopting a uniformly weighted Gaussian mixture, the likelihood of the ensemble is then:

Nens
(% W) = — 5% Ml (x, w, o (%, wi)?)

ens j—1
= Nn|nM-(x, W), oMi(x, W)?), 2
where W = (wy, ..., wy, ) and p(n|x, W) isalsoa normal distribution [25]. Uncertainty in our prediction of n

is given by the variance of p(n|x, W), cML(x, W)? and can be evaluated as:

N, Nens

M2 =S¥ L w2 — M2 4 S o (x, w2
Nens i=1 ens j=1
| Ny
M (x) = — > p(x, wy). 3)
ens j—1
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Figure 1. A model trained on pristine graphene identifies a large degree of prediction uncertainty, ™"(x) denoted by greyscale
shading, in the area surrounding a 5-7 pair defect. We note that M(x)is given in units of 1072 A3,

2.2.Doing no harm

To apply our model for prediction uncertainty o™"(x)* in (3) to accelerate KS DFT, we need to evaluate a global
measure of uncertainty for an entire structure. We call this measure H [ p_w.], where an unknown dependency on the
empirical prior distribution p_sm. of o™ is shown explicitly. In this work, we adopt the very simple measure that:

N
Hlp,l = By lln(@M0)] = -3 In (0¥ x) @

i=1

for N densities in a crystal. We now abbreviate H[p_wm.] = H and introduce a tapering function I'(H), which is
essentially a step function with a controllable transition point and length scale. For details of the specific form of
I" used in this work, we refer the reader to appendix C. With I'(H), we can control the empirical contribution
#™(x) to an initial density estimate:

n(x) = no(x) + IT'(H)n"(x). )

no(X) represents any standard initialisation technique for the density in DFT but typically, this is a combination of the
radial components of electron density for atoms assumed to be in vacuum. The ideal model contribution 7 from
section 2.1 is the difference of the true ground state density and the standard initial contribution, n(x) — #y(x) from (5).
We note that an alternative strategy could be to taper empirical contributions locally at each grid point, but we
choose a global approach to discourage spurious non-smoothness in M) (oM (x)) that might occur if
oMl (x + 6x) — oME(x)| > 0, for asmall perturbation in environment 6x. We also note that the effects of any
random error in o™*(x) are significantly reduced by considering distribution averages. While we found that the simple
choice of H used in (4) worked very well at identifying uncertain predictions for the applications in this work, a more
informative measure of the distribution p_w. may improve this distinction further. Higher order moments of p_su.
such as the distribution variance for example could be utilised, in addition to knowledge about the distribution mean.

3. Results

In this section we illustrate how the non-Bayesian approach to uncertainty quantification adopted in this work
can qualitatively distinguish accurate from inaccurate values of the data-derived contribution n™"(r). We also
show how the number of self-consistent field iterations needed to reach self-consistency in a KS DFT calculation
can be reduced as the initial density tends to the exact ground state density. For environments dissimilar to those
seen during training, we expect a larger predictive uncertainty.

3.1.5-7 defect in graphene

Figure 1 shows o™"(x) for a single layer of graphene with a 5-7 pair (or Dienes) topological defect [26]. Only
densities from a single pristine layer of graphene were used during training. In the area immediately surrounding
the defect, predictive uncertainties increase (denoted by dark shading), identifying this region as an environment
dissimilar to the defect-free layer.
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Figure 2. A model trained only on primitive graphite with 0% in-plane lattice strain identifies a region of high degree of uncertainty when

making predictions along the [100] contour of a primitive graphite crystal with 5% in-plane strain. The shaded regions show the interval
nMU(r) £ 30 ™MY(x) and the dashed lines show the true ground state density. We note that charge densities are given in units of e A~

3.2.In-plane strain in graphite

In figure 2, we compare the prediction uncertainty of graphite with 0% and 5% in-plane strain. Specifically, we
show the [100] lattice vector contour and find that predictions are significantly more certain for the 0% contour
which was seen during training than the 5% contour that was not. Further details of the bispectrum and KS DFT
calculations for figures 1 and 2 can be found in appendix C.

3.3. Accurate initial densities

To motivate our application of uncertainty quantification to KS DFT, we examine the convergence of single
point KS DFT calculations to self-consistency as we perturb initial densities away from the exact ground state via
changes to the ideal model contribution, n(x) — #g(x)in (5).

We study a non-metallic crystal, graphite, and calculate the ground state density for several hundred
primitive cell configurations sampled from a NPT molecular dynamics trajectory. The components of the
discrete Fourier transform of the ideal model contribution are perturbed by additive Gaussian noise. By taking
the inverse transform, we have a continuously deformed version of the true density. We measure deformation by
the root-mean-squared error (RMSE) of the perturbed and true ground state density.

In figure 3, the self-consistent calculation is initialised with charge densities which are increasingly deformed
versions of the ground state. We see that as the magnitude in deformation from the ground state, the RMSE, increases,
so too does the number of iterations needed to reach self-consistency. The quantity displayed on the abscissa, dSCF, is
the improvement, in the number of iterations, relative to a calculation with the standard initial density. As deformations
increase, the improvement decreases. The hashed and shaded areas in figure 3 represent confidence intervals of 67%,
showing that the relation between RMSE and convergence to self-consistency is stochastic to some degree.

To ensure that any empirical method for initialising KS DFT densities does not negatively affect convergence
to self-consistency in regions where the empirical densities extrapolate poorly, uncertainty quantification is
clearly needed. For further details of the DFT calculations in figure 3, see appendix C.

4. Applying global uncertainty

As we saw by the calculations in figure 3, a measure of confidence in density is necessary if we are to use empirical
densities in DFT in a ‘safe’ manner. Not wanting to leave things worse than how we found them, we hope to
ensure that every calculation initialised by a data-driven density does no worse than its ordinary counterpart.

Toillustrate that a global measure of confidence in predictions, H from (4), can be applied to accelerate KS
DFT, we first consider using empirical densities without using knowledge of their uncertainty. After training on
five unit cell graphite configurations from a NVT molecular dynamics simulation at T = 300 K, we predict
densities for all 300 crystals in our data set. Details of the empirical model and KS DFT calculations can be found
in appendix C. Without applying any information about uncertainty, we blindly initialise Broyden density
mixing (DM) DFT calculations and record the reduction in the number of iterations to self-consistency, dSCF,
relative to a calculation with a standard initial density. Next, we calculate the global confidence measure

4
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Figure 3. As the initial KS DFT densities are deformed away from the true ground state, the number of iterations necessary to reach

self-consistency increases and the improvement from standard DFT initialisation, dSCF, decreases. Pulay and Broyden density mixing
schemes result in a very similar convergence for all calculations.
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Figure 4. The empirical joint distribution p(H, dSCF) evaluated for a set of primitive graphite configurations shows separable
categorisations of performance into good (dSCF > 0) and poor (dSCF < 0) predictions.

H = E[ln (cMY)] for each crystal and categorise crystals into discrete sets according to their dSCF score. We
show the corresponding empirical joint distribution p(E[ln (cMY)], dSCF) in figure 4.
We can expand the empirical joint distribution

p(H, dSCF) = p(dSCF|H)p(H) ©)

in terms of the unknown conditional distribution p(dSCF|H) from which we want to decide if a given
prediction, H, is good enough to initialise a KS DFT calculation. Taking the prior p(H) as constant,

p(H, dSCF) x p(dSCF|H) and we look for a gap in H between p(H, dSCF > 0) and p(H, dSCF < 0).Itis here
thata transition point can be set in the tapering function I'(H), to reduce uncertain predictions to zero. This can
be visualised by comparing the peak at dSCF = —1 with that at dSCF = 0. Although there is some overlap
between these two peaks, there is almost zero overlap between dSCF = —1 and all other peaks. This means that
H can be used to identify the quality of density predictions before any DFT calculation is made. We note that the
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Figure 5. When data-derived densities are used in KS DFT without using uncertainty prediction (untapered contributions), there is a
non-zero chance p(dSCF) that inaccurate predictions can harm convergence to self-consistency (dSCF < 0). When prediction
uncertainties are applied to identify (taper) unfamiliar crystals, only a neutral or positive speed up is seen.

joint distribution shown in figure 4 is a smoothed approximation of the true empirical distribution but that
important properties such the width of each conditional distribution p(dSCF|H), are preserved.
In fact we see that for the small study here, the expectation of H conditioned on dSCF

Epnjascp [H] = dep(HldSCF)H %)

which is the dashed line in figure 4, follows a monotonic relation with dSCF. This shows that predicted
uncertainty really does correspond in a monotonic way to actual error. Using the distribution of predicted
uncertainties over a crystal, we can identify model predictions which are poor and will harm convergence to self-
consistency. By effectively turning off poor predictions using I'(H), empirical corrections to the initial KS density
can be applied only for crystals which are similar to those seen during training.

4.1. Accelerating self-consistency

Now that we have established a mechanism to detect global uncertainty in density, we can apply this to single
point KS DFT calculations to accelerate convergence to self-consistency. In figure 5, we compare the empirical
distributions p(dSCF) for Broyden DM DFT calculations performed using data-derived densities with and
without tapering. The upper half of figure 5 shows a number of extrapolations where poor predictions of density
have a negative effect upon convergence (dSCF < 0). In the lower half, uncertain predictions have been
identified and reduced to zero, increasing the peak at dSCF = 0.

Crucially, the computation time required to evaluate our data-derived density estimate is just less than the
time taken to evaluate a single SCF iteration. For further details of the calculations in figure 5 involving KS DFT
parameters, see appendix C. Despite our model being trained only on 5 configurations, a large proportion of
crystals exhibit a speed up in convergence to self-consistency. Such an effect could also arise by poorly choosing a
test set of crystals, whereby all atom positions remain in almost identical positions. A trivial approach of applying
the ground state density from a random crystal, or an average of ground state densities over all crystals, would
therefore achieve similar, or better results. However, in fact this is not the case. When such simulations were run,
we found that almost all (~95%) of predictions obtained dSCF = 0. Our test set is in fact a rather dissimilar
collection of configurations, most of which involve significant shifts in registry across the basal plane, as
configurations jump from one AB-stacked state to another. We attribute the ability of our model to infer useful
predictions from such an incredibly small number of configurations to the fact that each crystal in the training

6
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Figure 6. The RMSE between the standard initial and ground state densities is much smaller for the metals studied here then with
graphite and approximately half of the non-metals. Four-component Gaussian mixture models approximate the conditional
distributions p(log,,(RMSE)|n) of the RMSE given the characterisation 7 of the system. The vertical dashed line shows the RMSE of
graphite.

set contributes O(10%) grid points. Simply put, more data leads to a better inference, even when a large number
of data points come from the same crystal.

4.2. Wider applicability

To this point, all calculations in this work have been made to illustrate that data-derived densities can be applied
to a single system to improve the standard analytical initial densities that are used in KS DFT. We consider the
wider implications of this work beyond graphite by comparing the dissimilarity of ground state and standard
initial densities for a collection of 29 metals and 37 non-metals under both low and high pressure. We find that
all of the metals we considered here have initial densities that are much closer to the ground state density than
with graphite, while the converse is true for approximately half of the non-metals studied here. We use the RMSE
of all density grid points within a crystal as a measure of dissimilarity between these two densities. To classify
metals and non-metals we use the density of states at the Fermi level. We use a value of 0.2 e(eV) ' which is just
above the density of states for the metalloid As to classify the two classes.

We show in figure 6 a smoothed approximation of the conditional distribution p(log,,(RMSE)|7) for metals
or non-metals 77 along with a dashed vertical line showing the RMSE between the standard initial and ground
state densities for graphite. The logarithm of the RMSE illustrates that the RMSE differs by almost two orders of
magnitude between graphite and some of the metals. We note that the approximate representation of
p(og,,(RMSE)|n) is a four-component Gaussian mixture model of the true data [15]. Based upon the systems
studied here, we summarise that data-derived densities may in general be more suitably applied to non-metals
than metals. Details of these systems as well as and the KS DFT calculations that were used to calculate the RMSE
in figure 6 can be found in appendix C.

5. Discussion

We have shown that uncertainty quantification can be applied to accelerate KS DFT for sampling methods like
nested sampling, attaining a maximum speed up of 57% for the systems studied in this work. We view the
approach taken in this work as more a proof of concept than a final solution, confident that exciting
developments and insights are accessible to future work. To this end, we note that the approach taken in this
work is just one of many possible methods. We use this section to discuss what we believe to be the most
prominent disadvantages of this approach and outline a few ideas that could address these short comings.
While our parametric approach leads to a computation time for data-derived densities that is smaller than a
single self-consistent field cycle, the time needed to train densities from a single crystal is orders of magnitude
larger than a full DFT calculation. Although sampling methods require thousands of crystal configurations, the
time to train or refine a data-derived density should ideally be as close to a single KS DFT calculation as possible.

*See appendix D for the definition of speed up that we adopt here.

7
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Some heuristic techniques, such as maximising the sample variance of observations in a smaller training subset,
may give some reduction in this, but a more promising avenue could be to use approximate Bayesian inference,
such as deterministic variational inference [27]. A Bayesian approach, even when the posterior distribution is
approximate, could also lead to more reliable uncertainty estimates. The non-Bayesian approach adopted in this
work does not guarantee that ‘false positives’ cannot occur when determining if confidence should be placed in a
data-derived density or not. In addition, Bayesian online learning could allow for an incremental approach to
learning densities such that refinements are made during sampling only to crystals which are dissimilar to all of
those that were previously seen during training [28].

The approach that we use in this work to make decisions about confidence in the density does not take
account of the type of crystal. For applications like nested sampling, where several different phases are sampled
from, it may become essential for our decision process to include knowledge about the global environment, such
as from a global bispectrum representation of the crystal. An unsupervised method, such as a Gaussian mixture
model, may be necessary to associate crystals with nearby clusters and to apply decisions using a predetermined
set of distinct confidence thresholds for each cluster.

An aspect that we have not considered in this work is the question of which method of minimising the KS
Hamiltonian, given an initial density, gives the lowest computation time. Although this is a well studied
problem, perhaps new insights are possible when an estimate of confidence is available in the initial density [29].

We note that our discussion of KS DFT and the application of data-derived densities to accelerate convergence to
self-consistency in this work has so far ignored spin. For many systems and processes such as radicals, transition metal
complexes or homolytic bond breaking, the spatial wave functions of opposing spin states are not equal
(¥ (r) = % (r)) [30-32]. Spin-unrestricted KS DFT is a generalisation of the spin-restricted form, where
1 (r) = 7 (r) is possible and the variational minimisation of total energy E[#, Q] is performed with respect to both
the total electron density n(r) and the spin density Q(r) = Zil Y(r) P — 3¢ (r) |? [33]. Initial densities for
unrestricted spin therefore require Q(r) in addition to n(r). A generalisation of the data-derived densities used in this
work to unrestricted spin DFT could be realised by adopting p (t|x, w) = N(t|p, AV fort = (n(r), Q(x)). A
parametric model would then represent x — (1, A!) rather then x — (u, 02) asin (1). The generalisation of (2)
leadsto p(t]x, W) = N(t|puML, (AML)~!where pMl = (ML, QML) and the covariance matrix (AMY)~! represents
uncertainty in the initial data-derived total (n™'") and spin (Q""") densities. The simplest way to apply AM" to identify
uncertain predictions might be to sum the diagonal components of (AMY)~! to define a scalar measure analogous to
o™MLin (4). We also note that E[, Q] is well known to exhibit a number of stationary points and in the absence of any
knowledge about the ground state of Q, some form of approximate global optimisation must be utilised. If the data-
derived densities are sufficiently accurate then global optimisation for spin-unrestricted DFT could be abandoned
altogether, providing significant reductions to the computation required.

6. Conclusions

We have shown that a non-Bayesian treatment of predictive uncertainty can be applied to electron density
regression to identify structures that are dissimilar to those seen during training. We have applied this approach to
KS DFT where we have been able to identify and prevent unfamiliar structures from negatively effecting
convergence to self-consistency. For the systems studied in this work, where confident predictions were made, we
saw a maximum speed up in convergence to self-consistency of 57% (see footnote 4) and cautiously note

that further improvements could be made with a more in depth study of the approach to minimise the KS
Hamiltonian. Crucially, our predictions can be evaluated in less time than a single self-consistent field iteration for
a primitive crystal, meaning that our application to KS DFT could be useful for methods like nested sampling.

We view this work as a proof of concept. Quantifying uncertainty in predicted densities is shown to be a
fruitful endeavour and we hope our work will encourage further applications and alternative approaches, for
example in OF DFT. More generally, this work motivates more sophisticated treatments of interpolation, or
caching, which are currently treated deterministically to accelerate high performance plane wave DFT codes
[34, 35]. We anticipate that a paradigm shift towards ‘probabilistic caching’, or regression, will lead to the
efficient use of previously computed data.
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Appendix A.

In the bispectrum approximation, elements of local and global contributions to the representation of
environment, x(r), are determined by the projections c,,,,, of local and global environment into radial (n) and
spherical harmonic (Im) bases.

) = 3 8,(dn) ¥, (0, do)
i€Q,

obal 1
cgobal NZ > 8,(dry) Yi(d6y, dopy). (A1)

i=1jeqy,

Q. is a spherical volume of finite radius surrounding a point in real space r. Indices i and j denote pairs of the N
atoms contained in the primitive cell of a crystal. dr; = |r; — r|, drj = |r; — r;/and df and d¢ are the polar and
azimuth projections respectively ofr; — randr; — r;.

Appendix B.

There are many equally adequate tapering functions which could be chosen. We used:

4

5
L(o@), 0™ =91+ 5%
0,

Q

0 . of—o@
o =—""7

0 Oscale

= (B.1)
<

Q

simply because it has property that every nth derivative 9"”T' /9o (r)"™ remains continuous.

Appendix C.

For all of the KS DFT calculations in table C1, a Fermi surface smearing width of 250 K, an energy tolerance of
10~° eV /atom, the PBE exchange correlation functional and Broyden DM were used, except for the calculations
in figure 3 which used both Broyden and Pulay DM and the calculations in figure 6 which used a smearing width
of 300 K. All graphite and graphene configurations except for the NPT calculations of figure 3 had an in-plane
C—C spacing of 1.42 A and an inter-layer spacing of 3.34 A. In addition, a vacuum corresponding to a unit cell of
20 Ain the plane-normal axis was adopted for the graphene layer in figure 1 and in figure 5 a tapering function of
the formin (B.1) was used with the threshold and scaling factor (¢, 0ya1e) = (—6.83, 1072). “denotes use of the
power spectrum rather than bispectrum representation for the calculations in figure 2. The notation adopted in
table C1 regarding the number of nodes used in each neural network, is that x x y denotes a neural network of x
node layers, each containing y nodes. Table C2 lists the database, unique identifying number and
characterisation of each system used to generate the calculations in figure 6. We supply input files for all data sets
within this work at https: //github.com/andrew31416 /densityregression /tree/master/data_sets.

Table C1. Calculation parameters.

Bispectrum Neural network KSDFT

Calculation Teut (/u\) Mmax Imax Nens nodes E.y (eV) k-point grid
Figure 1 4 3 3 5 2 x 100 400 [36361]
Figure 2 6 10" 8" 10 2 x 50 400 [3636 6]
Figure 3 — — — — — 800 [3636 6]
Figure 4 6 6 6 10 2 x 200 300 [18184]
Figure 5 4 4 4 5 2 x 150 300 [18184]
Figure 6 — — — — — 800 (0.1,0.1,0.1)A "
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Table C2. The collection of metals and non-metals from figure 6 were taken from the crystallography
open database (COD) [36] and the inorganic crystal structure database (ICSD) [37]. A unique
identifying number is given for each crystal along with its characterisation as discussed in section 4.2.

Database Identifier Characterisation Database Identifier Characterisation
COD 9008572 Non-metal COD 9008531 Metal
COD 9008594 Non-metal COD 9008468 Metal
COD 9008595 Non-metal COD 9008544 Metal
COD 9008569 Non-metal COD 9008482 Metal
COD 9008577 Non-metal COD 9008478 Metal
COD 9008561 Non-metal COD 9008485 Metal
COD 1011098 Non-metal COD 9008463 Metal
COD 9008568 Non-metal COD 9008458 Metal
1ICSD 193853 Non-metal COD 9008552 Metal
ICSD 26158 Non-metal COD 9008501 Metal
ICSD 9863 Non-metal COD 9008490 Metal
1CSD 18154 Non-metal COD 9008522 Metal
ICSD 16516 Non-metal COD 9008470 Metal
ICSD 15598 Non-metal COD 9008549 Metal
ICSD 41440 Non-metal COD 9008513 Metal
ICSD 2130 Non-metal COD 9008536 Metal
ICSD 411857 Non-metal COD 9008514 Metal
ICSD 27249 Non-metal COD 9008546 Metal
ICSD 20904 Non-metal COD 9008584 Metal
ICSD 22156 Non-metal COD 9008570 Metal
1CSD 84461 Non-metal COD 9008543 Metal
ICSD 15390 Non-metal COD 9008525 Metal
ICSD 39566 Non-metal COD 9008512 Metal
1CSD 27798 Non-metal COD 9008557 Metal
ICSD 40914 Non-metal COD 9008477 Metal
ICSD 16428 Non-metal COD 9008558 Metal
ICSD 165592 Non-metal ICSD 15535 Metal
ICSD 22157 Non-metal ICSD 63670 Metal
ICSD 19079 Non-metal ICSD 653014 Metal
ICSD 29128 Non-metal

ICSD 107946 Non-metal

ICSD 60559 Non-metal

ICSD 16262 Non-metal

ICSD 187642 Non-metal

ICSD 22158 Non-metal

ICSD 18012 Non-metal

ICSD 77378 Non-metal

Appendix D.
We adopt the convention that the speed up
= (M) X 100% (D.1)
Nnew

for data-derived initial densities that require N, self-consistent field iterations to reach self-consistency. N4 1s
the number of iterations required for a standard calculation that uses a non data-derived initial density. 7is
defined such that a data-derived density that halves then required number of self-consistent field iterations
corresponds toa 100% speed up.
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