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Abstract

We use a machine learning approach to identify the importance of microstructure characteristics in
causing magnetization reversal in ideally structured large-grained Nd,Fe,,B permanent magnets. The
embedded Stoner—Wohlfarth method is used as a reduced order model for determining local switching
field maps which guide the data-driven learning procedure. The predictor model is a random forest
classifier which we validate by comparing with full micromagnetic simulations in the case of small
granular test structures. In the course of the machine learning microstructure analysis the most
important features explaining magnetization reversal were found to be the misorientation and the
position of the grain within the magnet. The lowest switching fields occur near the top and bottom
edges of the magnet. While the dependence of the local switching field on the grain orientation is
known from theory, the influence of the position of the grain on the local coercive field strength is less
obvious. As a direct result of our findings of the machine learning analysis we show that edge
hardening via Dy-diffusion leads to higher coercive fields.

1. Introduction

Permanent magnets are widely used in modern society. The high performance magnet market is dominated by
Nd,Fe, 4B magnets. The six major application areas are acoustic transducers, air conditioning, electric bikes,
wind turbines, hybrid and electric cars, and hard disk drives [1, 2]. Growing demands for permanent magnets
are predicted for green technology applications such as sustainable energy production and eco-friendly
transport. The generator of a direct drive wind mill requires high performance magnets of 400kg/MW power;
and on average a hybrid and electric vehicle needs 1.25 kg of high end permanent magnets [3]. Another rapidly
growing market is electric bikes. The global demand for rare-earth elements in permanent magnets will exceed
50 thousand tons per year in 2025 [3]. With the quest for rare-earth reduced or rare-earth free permanent
magnets [4], an optimal control of the magnet’s microstructure becomes increasingly important. In other fields
of materials research, data driven machine learning approaches have been applied recently, in order to obtain a
deeper understanding of the material’s microstructure on its properties. Mangal and Holm [5] combined crystal
plasticity based simulation with machine learning techniques for predicting stress hot-spots in polycrystalline
metals. Using random-forest (RF) based machine learning they correlate the formation of grains with high stress
by uniaxial tensile deformation with local microstructural features that describe crystallography, geometry, and
connectivity. In another paper [6], they addressed the problem of feature selection for the classification of stress
hot spots. They showed that a proper set of microstructural features is required, in order to find out what
microstructural characteristics will cause high local stress during tensile deformation.

© 2018 The Author(s). Published by IOP Publishing Ltd
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Modern Nd,Fe; 4B permanent magnets show a granular structure. Ideally, the grains are separated by a
nonmagnetic grain boundary phase [7]. In order to improve the isolation of the grains by a nonmagnetic Nd-
rich grain boundary phase, a high Nd content and a dopand such as Al [7] or Ga [8] are required. In this work we
investigate the influence of the microstructure on the local coercivity of permanent magnets with ideal structure.
We assume grains that are completely separated by a nonmagnetic phase, and we do not introduce any soft
magnetic defects. Using machine learning techniques we identify the microstructural characteristics that may
cause weak grains, which are defined as the grains that will reverse first when an increasing opposite field is
applied to the magnet. By neglecting defects and ferromagnetic grain boundaries we focus on the effects of key
structural features that are common to any polycrystalline material such as grain size, grain shape, grain
sphericity, and crystallographic orientation. We use machine learning techniques to study microstructural
features only and choose as a reference material Nd,Fe, 4B as the nowadays most important permanent magnets
material. The anisotropy field of Nd,Fe 4B is pioHs = 7.65 T, whereby it is considered to be the maximum
possible coercive field [9]. Since we do not include any soft magnetic defects, we expect nucleation fields in the
range of 3-7.65 T for the investigated ideal grain structures.

2. Methods

2.1. Dataset generation

We investigate magnetic multigrain structures in view of their switching field distribution aiming at predicting
grains with low switching field (weak grains) and those with high switching field (strong grains), respectively.
More precisely, we take the 20th percentile of the lowest switching fields in the distribution as a threshold for
labeling weak grains. We generate synthetic microstructures consisting of polyhedral grains using the software
Neper [10, 11]. We use the default grain growth parameter which gives a wider grain size distribution and
higher grain sphericities than a standard Voronoi tessellation. The grain size normalized by the average grain
size, D/ (D), follows alognormal distribution with a standard deviation of 0.35. The sphericity s is a metric for
the shape of the grains [11]. Itis defined as the ratio of the surface area of a sphere with equivalent volume to the
surface area of the grain. The quantity 1 — sfollows alognormal distribution with a mean of 0.145 and a
standard deviation of 0.03. We investigate three scenarios depending on the standard deviation of the
misorientation angle of the anisotropy direction: 0y = 0°, 0y = 5°,and 0y = 15°. For each scenario 10
synthetic microstructures with 1000 grains each were generated. Seven structures were randomly selected to
form the so-called training set, hence containing 7 x 1000 grains. The remaining three structures build the so-
called test set, which is used in the very end to measure the performance of the predictor model. Figure 1(a) shows
atypical microstructure. Figures 1(b)—(d) show the distributions of some features in the training set: the
misorientation angle of the anisotropy axes, the distance of the grain from the magnet’s center, and the

grain size.

Switching field values are calculated near the surface of the grains which serve as underlying datasets for the
microstructure machine learning analysis. Figure 2 shows a cut through the grain structure, the locations of the
field-evaluation points, and the calculated switching fields. Since there are no pinning sites for domain walls
within a grain a reversed domain will expand through the grain once it is nucleated. Therefore, the minimum
value of the switching fields within a grain defines its reversal field which is used for machine learning. For the
simulations we use the material properties of Nd,Fe,,B (anisotropy constant K; = 4.9 MJ m >, spontaneous
magnetic polarization y1oM; = 1.61 T, and exchange constant A = 8 pJ m™ ' [12]) and a mean grain size of
2 pm. Here p14 is the permeability of vacuum.

2.1.1. Embedded Stoner—Wohlfarth (ESW) method

The micromagnetic calculation of switching fields in permanent magnet models relies on hysteresis
computation usually using numerous successive total energy minimization steps for slightly varying external
field strength. This is only feasible for models in the nanometer regime with a few grains. Since our data driven
approach requires hundreds of grains our models are too large for conventional micromagnetic simulations.
Hence we apply a reduced order model for the prediction of critical fields, called the ESW method [13]. The
approach has its origin in the work of Schrefl and Fidler [14] and adapts the original Stoner—Wohlfarth model
for small ferromagnetic particles in a way to additionally account for long-range interactions of uniformly
magnetized grains. First the total field is calculated

hy = hey + hdemag + hy, (D

at evaluation points which are located at a distance d from the grain surface. The total field is the sum of the
external field h,,, the demagnetizing field hgem,g, and the exchange field h,. To this end the stray field
computations are accomplished by analytical formulas for polyhedral geometries [15] calculating
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Figure 1. (a) Example of a synthetically generated grain structure. (The color code is for visualization only and not related to any
physical property.) (b)—(d) Distributions of features of grains in the training set: misorientation angle (for the scenario with a standard
deviation of the misorientation angle of 5°), distance of the grain from the magnet’s center, and grain diameter.
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Figure 2. Cut through a synthetic microstructure to visualize the grain shapes (left) and the local switching field at evaluation points
(right), where the color bar shows the values of the local switching fields.
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The demagnetizing field at point x is the sum of surface integrals over the surfaces of all polyhedra S, where the
index j runs over all grains and the index k over the surfaces of a grain. The vector nj; is the outer normal to
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Figure 3. Field components in the embedded Stoner—Wohlfarth method. Left: the black arrows correspond to the nonlocal stray field
within the magnet, the external field (blue) is constant in negative z-direction and the exchange field (green) in positive z-direction.
Right: the total field (black) and the magnetization m (red) as well as the exchange direction in the middle (red).

surface k of grain j; and m; is the magnetization vector of grain j. The perpendicular component of the
demagnetizing field grows with no bound towards the edges of a polyhedron, which is compensated by the
exchange field [16]. The exchange field comes from the Heisenberg exchange h,(x) = —>"J;s; takinginto
account the exchange interactions of the spin at point x with the neighboring spins s;. In a continuum approach
the exchange integral J,; is replaced by an expression containing the exchange constant A [17]. Here we assume
that the spins within a grain remain parallel before switching. Therefore the exchange field acting at the
evaluation point x is parallel to the magnetization vector of the grain. In the ESW model we set its magnitude to
hy = (1/(po My))A/d” [13]. Please note that in an ideal Nd,Fe, 4B permanent magnet the grains are separated by
anonmagnetic grain boundary phase [7]. Therefore we do not take into account any exchange interactions with
neighboring grains. Figure 3 shows the field components in a cubic particle. The distance dis 1.2L.. The
exchange length Le, is \/A/(1iyMJ).

According to Stoner—Wohlfarth [18], the switching field of a small uniformly magnetized particle can be
given in terms of the angle ¢ between the easy axis and the total field by the formula [19]

hsw = f(w) hNJ f(¢) - (Sin2/3¢ + C052/3 w)73/2 5 (3)

where hy is the ideal nucleation field [20], by = 2K; /(s M;). In ahard magnetic particle the easy axis coincides
with the magneto-crystalline anisotropy direction. The Stoner—Wohlfarth switching field (3) is evaluated for a
varying external field at target points at a distance d away from the surface of the polyhedral grains [13, 21],
where the angle between the anisotropy direction and the total field (1) is taken. Please note that in the remanent
state the magnetization can be assumed to be approximately parallel to the anisotropy direction. The local
switching field at a target point is the smallest value of |h.,| which makes the total field greater than the value
obtained from (3), thatis |hyo| > hgy. Then we compute the minimum switching field over all target points of a
grain. This minimum value is the switching field of the grain, which is then used for labeling weak and strong
grains in the subsequent machine learning task.

2.1.2. Microstructure attributes

Our main intuition is that weak points in permanent magnet grain structures can be well understood by their
(mainly) geometrical microstructure attributes. The machine learning approach will assign these features to
each grain together with the grain label (weak or strong grain) according to calculated switching field values
using the ESW model as an effective reduced order model. The following geometrical attributes are assigned:

+ The absolute value of the z-coordinate of the center of the polyhedral grain measured from the center of the
cube (z-position).

+ Thesign of the z-position (z-pos sign).

+ The distance to the center of the magnet (distance).

+ The diameter of the polyhedron (diameter) defined as the diameter of a sphere with equivalent volume.

+ The number of next neighbor grains (no of neighbors).

4
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Figure 4. Sketch of the selected descriptors: Distance to center, z-position, sign of z-position, misorientation, diameter, sphericity and
dihedral angle, where we use the maximum and minimum dihedral angle of a grain

+ The sphericity of the grain (sphericity).

+ The absolute deviation of the current grain diameter from the average diameter of the next neighbors (diam
variation).

+ The maximum dihedral angle of the polyhedron (max dihedral angle).

+ The minimum dihedral angle of the polyhedron (min dihedral angle).

In permanent magnets the magnetocrystalline anisotropy energy is expressed by K; sin* (¢ — ) where ¢ 1is
the angle between the magnetization and the saturation direction and 6 is the angle between the c-axis of the
tetragonal crystal and the saturation direction. In the ESW model the orientation dependence of the switching
field expressed by (3) describes the reduction of the anisotropy field by a factor that depends on the angle

between the easy axis and the total field (1). Hence, additionally to geometrical features we assign the orientation
of the easy axis for each grain:

+ The orientation angle  of the grains
(misorientation).

Figure 4 shows a sketch of some of the descriptors.

The contribution of each of the above attributes in predicting weak and strong grains is studied statistically
by the machine learning approach. These features represent an already preselected and rather uncorrelated
subset of a larger possible set of attributes. For instance, attributes like the surface area, the volume and the
diameter of the grains exhibit correlation coefficients above 0.95. Pearson’s correlation coefficient [22] is a
measure of the tendency of the features to increase or decrease together. Therefore, we only took one
‘representative’ when the correlation coefficient between a pair of features was greater than 0.76. For example,
we only take the grain diameter and drop surface area and volume. The correlation matrix for the selected
descriptors is shown in figure 5 which in addition includes the local switching field attribute and misorientation

corresponding to polar angles with standard deviation of 5° and zero mean. In section 3.2 we will study the

significance of the features in explaining local switching as indicated by feature importance measures based on
different predictor models.

2.2. Machine learning methods

Machine learning is a statistical approach that aims at automating analytical model fitting for data analysis, for
instance finding clusters/structures in data or generating data-based predictive decision tools. For very
comprehensive introductions to machine learning the reader is referred to [23, 24]. We use so-called supervised
learning, where the training data also includes the true solutions. In our case, the training data consist of grains
together with their microstructure features and labels (switching fields). We aim at classifying weak grains, that
is, predicting those feature classes which exhibit a switching field below a certain threshold (class of weak grains)
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Figure 5. Correlation matrix of the selected descriptors including the local switching field. Misorientation corresponding to polar
angles with standard deviation of 5° and zero mean. All correlation coefficients are smaller or equal 0.76.

samples = 1041 samples = 552
value = [551, 490] value = [231, 321]
class = strong class = weak

Figure 6. Example of individual decision tree. First, the training set consisting of 7000 grains is split into 5990 strong grains and 1010
weak grains depending on the crystallographic orientation. The two nodes in the second level are split depending on the z-position
and on the misorientation, respectively.

and above it (class of strong grains), respectively. This refers to as binary classification. The learning algorithm
produces a function that maps a sample’s feature vector to the class of weak grains or to the class of strong grains.
Beside classification a second common supervised learning task is regression, which would try to predict values
instead of classes, that is, a function that maps a given feature vector to predictions for switching field values. We
will compare logistic regression with £'- and #*-regularization and RF [25]. We also get insight into the feature
importance causing weak grains. However, similar as in [26] we observe best results for the RF algorithm. RF
algorithms are bagging methods (short for bootstrap aggregation) built up by combining predictions of individual
decision trees trained over randomly generated sub-training samples with replacement (bootstrap sample). At
any instance an average of the individual estimators is taken to generate the ensemble model. An example of one
decision tree with depth two is given in figure 6.

An important and nontrivial task is the performance measure of a classifier. The accuracy of a model is the
amount of correctly predicted instances relative to all instances. Depending on the tightness of the threshold of
the switching field value (=decision threshold) used for classifying weak grains any accuracy could be achieved.
For instance, if the smallest 10% of all grains are labeled as weak, a classifier which invariably predicts strong
grains will have a 90% accuracy. A way out is to determine the confusion matrix of a binary classifier, that is to
count the number of times instances of one class (strong or weak grain) are classified correctly (true weak or
strong) or incorrectly (false weak or strong), respectively. The ratio of the number of true weak grains and all
grains classified as weak is called precision, the accuracy of positive predictions (weak grains). A high precision
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means that few strong grains are erroneously classified as weak, where possibly many weak instances can still be
erroneously classified as strong. Instead, the so-called recall (also true positive rate) is the ratio of the number of
true weak grains and the sum of true weak and false strong instances. A high recall means that few weak grains are
erroneously classified as strong, where possibly many strong instances can still be erroneously classified as weak.
Obviously there is a trade-off between precision and recall. The harmonic mean of precision and recall is the f1-
score of the binary classifier. Machine learning models depend on various hyperparameters. Hyperparameters
refer to underlying model settings such as tree depth in a random forest or polynomial degree in a regression
model. Such parameters, which control the model capacity, can not be tuned by learning on the training set since
this would lead to overfitting to the training set, that is, the maximum possible model capacity is chosen (like
highest possible polynomial degree in regression). Such an over-fitted model would correctly predict every
sample of the training set but lacks predicting the general patterns of the data set leading to poor generalization
error on new data. The traditional way to overcome this is to split the training set into two disjoint subsets, the
validation set and the actual training data set [23]. The validation set is therefore separated from the training (and
test) set and thus never observed by the training algorithm. The validation set is used to estimate the
generalization error (model fit) in an unbiased manner while calibrating the hyperparameters. In this sense the
hyperparameters are ‘trained’ on the validation set. However, if the dataset is too small alternative procedures
need to be applied to avoid reducing the available training data by completely setting aside a validation set. One
way is to use resampling techniques for hyperparameter tuning, such as k-fold cross validation. This procedure is
based on repeated training and testing of models on different randomly chosen disjoint and roughly equally
sized subsets of the original (training) dataset. It can be seen as an iterated version of the traditional training/
validation set splitting but leveraging the complete training set. The test error (e.g. f1-score) of each model is
estimated by taking the average error across k different trials for which always one held-out subset serves as the
test set and the rest for training. This averaging strategy has a beneficial effect on the error of each model asitisa
close approximation of really unseen data [5]. The choice of k is usually 5 or 10, however this is not a formal rule.
As k gets larger, the difference in size between the (original) training set and the resampling subsets gets smaller
and thus also the difference between the estimated performance error and the true error gets smaller. This latter
difference is referred to as the bias of the technique [1]. By balancing a model’s complexity one achieves an
optimal trade-off between bias and variance of a model [24, 27]. In fact, the authors of [27] make a
recommendation for small sample sizes of using k-fold cross validation because of the good variance and bias
properties for only minor additional computational costs due to the rather small sample sizes. A slight variant of
this method is to select the k partitions in a way that makes the folds balanced with respect to the distribution of
the outcomes [28], which is then referred to as stratified k-fold cross validation. To avoid over-fitting, which
refers to small bias but high variance we choose stratified five-fold cross validation, i.e. a smaller k to achieve
decent small bias. In addition, Breiman [25] showed that bagging reduces the variance of the overall ensemble
relative to any individual learner in the ensemble.

We then maximized the f1-score by searching optimal values for the tree depth, the number of trees, and the
number of features to consider when splitting a node, see section 3.2. We calculated the confusion matrix with
respect to the test set where we used 50% probability for the class membership threshold in the forthcoming
analysis. Another performance measure is the receiver operating characteristic (ROC) curve which plots the true
positive rate versus the false positive rate. The area under the ROC curve (AUC) is a common evaluation metric
where values close to 1 indicate a good classifier.

In a decision tree important features are likely to appear closer to the root of the tree, whereas unimportant
features are found near the leaves or not at all. Estimates of a feature’s importance in an RF classifier can be
calculated by the average depth at which it appears across all trees. Another approach to determine feature
importance is a model-agnostic version called model reliance, where feature importance is indicated by the
amount of increase of model error, for example measured by the AUC or any other performance measure, by
fitting a model after permuting the features [29, 30]. We will use the model-agnostic approach [24] as
implemented in Skater [31]. Skater measures the mean absolute value of the change in predictions given a
perturbation of a certain feature. The idea behind is the following: the algorithm works through all features in
the test set and replaces the values corresponding to a single feature by randomly chosen feature values from the
training set and calculates new predictions. The more important a specific feature, the more the predictions will
change as a function of perturbing the feature. This approach works for any predictor model. Further, we will
compare with features’ importance measure based on the magnitude of coefficients when using logistic
regression models.
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Figure 7. Example of identification of the weakest grain with the full micromagnetic simulation for one test structure. Magnetization
reversal starts in the highlighted grain on the bottom-left where a reversed domain is already formed, where the red arrows indicate the
magnetization and the blue region the reversed domain. The image shows the expansion of the reversed domain (in blue) in the
weakest grain.

3. Results

3.1. Micromagnetic validation

In the case of structures consisting of very few grains we can validate our approach with full micromagnetic
computations including the conventional determination of the magnetostatic field via Maxwell’s equations. The
question is whether a trained RF model can predict where magnetization reversal will start. We create 100
granular structures consisting of only 64 grains each with a mean grain size of 50 nm. We split the data structures
into 80 training structures and 20 test structures. For each structure the grain orientations with respect to the z-
direction are set randomly according to a zero-mean normal distribution with a standard deviation of 5° for the
polar angle and a uniform distribution for the azimuthal angle. We first label the grains as ‘weak’ or ‘strong’
according to the switching fields computed by the ESW model. Then we train an RF model on the training set
using the Python library Scikit-Learn [32]. In order to validate the model, we perform full micromagnetic
simulations using the finite element method [33]. Following the demagnetization curve we compute the grain
and corresponding switching fields where magnetization reversal starts. This identifies the true weakest grains in
the test set (see figure 7). In 16 out of the 20 test cases the RF prediction of the weakest grain coincides with the
results from full micromagnetic simulations.

We also estimated the model error of the ESW model. In 18 out of 20 cases the weakest grains according to
the ESW and full micromagnetic switching fields coincide. This discrepancy reflects the model error mainly
corresponding to the simplified stray field calculation in the ESW model which does not take into account
reversible magnetization rotations before switching.

Considering both, the model error of the ESW model and the performance measure of the RF model (see
table 3) gives an overall accuracy of 80% in accordance with the above validation result.

3.2. Microstructure machine learning analysis

We use ten multigrain models with 1000 grains each, where we randomly put aside three models for the
validation (this is the test data set). For the grains in each model we determine the feature values and calculate the
true labels by the ESW method in order to supervise the subsequent learning process. Note that the generation of
the dataset is very expensive, in fact, both the creation of the microstructure as well as the calculation of the labels
limit the usable size of data. The anisotropy directions are set randomly according to a uniform distribution for
the azimuthal angle and a zero-mean normal distribution with a standard deviation of 6y = 0°, 0y = 5°, or
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Table 1. Confusion matrices (with threshold 50% for classification) for the # 1—logistic regression model for 0°,5°, and
15° standard deviation of the misorientation angle. The model performance metrics include accuracy, precision, recall,
fl-scoreand AUC.

oy =0° Predicted: Performance Metrics
0 1 Accuracy Precision Recall fl-score AUC
Actual: 0 2334 74 0.9430 0.9423 0.9630 0.9426 0.99
97 495
0y =5° Predicted: Performance Metrics
0 1 Accuracy Precision Recall fl-score AUC
Actual: 0 2288 121 0.8903 0.8858 0.8903 0.8869 0.94
1 208 383
oy = 15° Predicted: Performance Metrics
0 1 Accuracy Precision Recall fl-score AUC
Actual: 0 2314 95 0.8917 0.8864 0.8917 0.8862 0.92
230 361

Table 2. Confusion matrices (with threshold 50% for classification) for the £ 2—logistic regression model for 0°, 5°, and
15° standard deviation of the misorientation angle. The model performance metrics include accuracy, precision, recall,
fl-scoreand AUC.

oy =0° Predicted: Performance Metrics
0 1 Accuracy Precision Recall fl-score AUC
Actual: 0 2333 75 0.9427 0.9420 0.9427 0.9423 0.99
1 97 495
0y = 5° Predicted: Performance Metrics
0 1 Accuracy Precision Recall fl-score AUC
Actual: 0 2288 121 0.8903 0.8858 0.8903 0.8869 0.94
208 383
oy = 15° Predicted: Performance Metrics
0 1 Accuracy Precision Recall fl-score AUC
Actual: 0 2313 96 0.8913 0.8860 0.8913 0.8859 0.92
230 361

oy = 15° for the polar angle. This determines three different scenarios. For each scenario we label grains with a
switching field smaller than the 20th percentile of the switching field distribution as ‘weak’ and use the records of
the training set to train logistic regression classifier with #'- and #*-regularization and a random forest model
applying the Python library Scikit-Learn [32]. The optimal value for the regularization strength, « = 1/C,
for logistic regression was determined by a grid search-based hyperparameter tuning using five-fold cross-
validation as described above. The values turned out to be identical for #'- and #>-regularization: In the oy = 0°
case C = 1,inthe oy = 5° case C = 7.74 and inthe oy = 15° case C = 1. The optimal hyperparameter values in
the random forest model for the three scenarios were found to be as follows:

The 0y = 0° case: 20 for the maximum tree depth, 500 for the number of trees in the forest and the square
root of all features for the optimal number of features considered for splitting a node. The oy = 5° case: 10 for
the maximum tree depth, 500 for the number of trees in the forest and all features for the optimal number of
features considered for splitting a node. The 0y = 15° case: 10 for the maximum tree depth, 200 for the number
of trees in the forest and all features for the optimal number of features considered for splitting a node.

Table 1 shows the confusion matrices together with several model performance metrics for the #'-logistic
regression classifier model also with 50% threshold for class membership probability. Table 2 depicts the case for
the #°-regression model. Table 3 shows the confusion matrices with 50% threshold for class membership
probability and several model performance metrics for the RF model for oy = 0°, 09 = 5°,and oy = 15°.
Confusion matrices and performance measures give roughly the same results for the two logistic models, while
they perform slightly worse than the random forest predictor especially in the smaller oy-regime.

Table 4 compares all models, in detail it gives for all 74-cases the Pearson correlation of the features to the
local switching field as well as all determined feature importance for the logistic regression and random forest
models. We remark that only the random forest model is able to weight the distance as an important feature in
the cases with misorientation, which explains, together with the decisive role of the z-position, the weak edges of
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Table 3. Confusion matrices (with threshold 50% for classification) for the random forest model for 0°, 5°, and 15°
standard deviation of the misorientation angle. The model performance metrics include accuracy, precision, recall, f1-
score and AUC.
oy =0° Predicted: Performance Metrics
0 1 Accuracy Precision Recall fl-score AUC
Actual: 0 2374 34 0.9727 0.9725 0.9727 0.9725 0.99
1 48 544
0y =5° Predicted: Performance Metrics
0 1 Accuracy Precision Recall fl-score AUC
Actual: 0 2310 99 0.9243 0.9231 0.9243 0.9236 0.97
1 128 463
oy = 15° Predicted: Performance Metrics
0 1 Accuracy Precision Recall fl-score AUC
Actual: 0 2308 101 0.9027 0.8989 0.9027 0.8995 0.93
191 400

LExletal

Table 4. The first column describes the features, the second column gives the Pearson correlation of the features to the local switching
field and all further columns give the feature importance for the different models: LogReg (") and LogReg (#) denote logistic
regression with #'- and #*-regularization, respectively, and RF indicates the random forest model. In the cases of the logistic

regression models we also give feature importance based on the determined coefficients’ magnitude. In all other cases we also report
the feature importance computed with Skater. All this is given for the three scenarios oy = 0°,5° and 15°.

Feature Pearson LogReg (£") LogReg (7") LogReg (£2) LogReg (£2) RF
correlation coefficients Skater coefficients Skater Skater

gg = 0°

misorientation 0.00 0.01 0.00 0.01 0.00 0.02
z-position —0.68 0.47 0.46 0.46 0.47 0.40
distance —0.63 0.36 0.36 0.36 0.35 0.30
diameter —0.18 0.12 0.13 0.13 0.14 0.09
noofneighbors 0.27 0.02 0.02 0.01 0.01 0.05
sphericity 0.35 0.00 0.00 0.00 0.00 0.04
diamvariation —0.04 0.00 0.00 0.00 0.00 0.03
maxdihedral angle —0.03 0.00 0.00 0.00 0.00 0.03
mindihedral angle 0.21 0.01 0.01 0.01 0.01 0.03
z-pos sign 0.02 0.00 0.00 0.00 0.00 0.00
g9 = 50

misorientation —0.57 0.35 0.38 0.35 0.38 0.41
z-position —0.45 0.23 0.22 0.23 0.22 0.27
distance —0.36 0.02 0.02 0.02 0.02 0.12
diameter —0.15 0.15 0.14 0.15 0.14 0.06
noofneighbors 0.15 0.15 0.14 0.15 0.14 0.03
sphericity 0.19 0.02 0.01 0.02 0.02 0.05
diamvariation —0.03 0.02 0.02 0.02 0.02 0.02
maxdihedral angle —0.06 0.04 0.04 0.04 0.04 0.02
mindihedral angle 0.10 0.03 0.02 0.03 0.02 0.02
z-pos sign 0.02 0.00 0.00 0.00 0.00 0.00
o9 = 15°

misorientation —0.77 0.40 0.45 0.40 0.45 0.45
z-position —0.22 0.17 0.16 0.17 0.16 0.16
distance —0.08 0.05 0.05 0.05 0.05 0.09
diameter —0.14 0.16 0.15 0.16 0.15 0.07
noofneighbors —0.06 0.13 0.11 0.13 0.11 0.06
sphericity —0.02 0.02 0.02 0.02 0.02 0.05
diamvariation 0.00 0.00 0.00 0.00 0.00 0.03
maxdihedral angle —0.10 0.01 0.00 0.01 0.01 0.04
mindihedral angle —0.03 0.04 0.04 0.04 0.04 0.04
z-pos sign —0.04 0.02 0.02 0.02 0.02 0.00

10



10P Publishing

J. Phys.: Mater. 2 (2019) 014001 LExletal

Receiver Operating Characteristic (ROC) Curve

1 —
GG:Oo ,,'
0.8
i
e 7
X 0.6
2 L
g ”,
£ 04
[} P
2 -7
[ = o
0.2 L
527 AUC =0.99
0 < :

—_
Y

True Positive Rate

True Positive Rate

AUC =0.93

0 0.2 0.4 0.6 0.8 1
False Positive Rate

Figure 8. Receiver operating characteristic (ROC) curve for the random forest classification in the case of 0°, 5°, and 15° standard
deviation of the misorientation angle.

the magnet, compare with sections 3.2 and 4, especially figures 13—15. We use the RF model for further analysis,
and give some more validation next.

Figure 8 shows the ROC curves for the three different scenarios and random forest model. The model
performance metrics as well as the AUC indicate very high performance of the trained random forest models,
whereas a slight decline can be observed with increasing orientation angle. Figure 9 shows the feature
importance for the three scenarios for the random forest model which was computed using the model agnostic
approach [24] as implemented in Skater [31]. For perfectly aligned grains (0° misorientation) there are
essentially two most important features, the absolute value of the vertical position of the grain in the magnet (z-
position) and the distance of the grain from the center of the magnet. Clearly the sign of the z-position plays no
important role, which indicates the symmetry of the problem. When misorientation is introduced, this becomes
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Figure 9. Feature importance for the random forest classification in the case 0of 0°, 5°, and 15° standard deviation of the misorientation

angle.

the most important feature. One can clearly observe in figure 9 that the misorientation becomes more relevant
with higher average misorientation angle. Whereas the dependence of the local switching field on the orientation
is expected [19], the importance of the positions of the grain within the magnet is less obvious.

In a second step, we apply RF regression to predict the value of the local switching fields of the grains. Then
we can get additional insight into feature dependence by one-way partial dependence plots for the random forest
predictor. The partial dependence function represents the effect of a specific feature (for example the z-position)
on the switching field after averaging out the influence of all other features [34]. Figures 10—12 show
comparisons for different orientation scenarios by one-way dependency based on z-position, distance to center
and misorientation angle, respectively.
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Figure 10. One-way partial dependence based on the vertical position of the grain within the magnet for 0°, 5°, and 15° standard

deviation of the misorientation angle. A z-position close to 10 sm indicates a grain near the bottom or top surface of the magnet,
respectively.

4. Discussion

We applied machine learning techniques in order to correlate the microstructure characteristics with the local
magnetization reversal field of large-grained Nd,Fe;,B permanent magnets. In order to focus on general features
of polycrystalline materials we assumed an ideal structure: (i) the grains are separated by a nonmagnetic grain
boundary phase and (ii) there are no defects with reduced magnetocrystalline anisotropy. Though this setting is
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Figure 11. One-way partial dependence based on the distance of the grain to the center of the magnet for 0°, 5°, and 15° standard
deviation of the misorientation angle.

unrealistic, it can provide clear insight what other features in addition to soft inclusions or ferromagnetic grain
boundaries [35, 36] influence coercivity. The data used for machine learning was generated by a reduced order
model that makes it possible to treat magnets which are much larger with respect to both grain size and number
of grains than models suitable for conventional micromagnetic simulations. For small model size the prediction
of the machine learning model can be compared with the results of full micromagnetic simulations. This

comparison shows that a random forest classifier can predict the weakest grain in a magnet in 16 out of 20 test
cases correctly.
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Figure 12. One-way partial dependence based on the misorientation of the anisotropy axes for 5 (top) and 15 (bottom) degrees
standard deviation of the misorientation angle.

In order to find out what microstructure features are most significant, we computed the feature importance
of arandom forest classifier trained with the switching field distribution of 7 polycrystalline samples consisting
of 1000 grains each. The feature importance was found to depend on the degree of alignment. For a scenario with
a standard deviation of the misorientation angle of 15° the most important feature is the crystallographic
orientation. As expected [19] the switching field decreases with increasing misorientation angle. The second and
third most important features are the vertical position of the grain, and the distance of the magnet from the
magnet’s center. For perfect alignment (zero degree misorientation) these two are the most important features
followed by the grain diameter. Local interpretable model agnostic explanation [37] shows that the switching
field of a grain is smaller the closer the grain is located to the top or bottom surface of the magnet. This
dependence is more pronounced for the perfectly aligned grains where the switching field of a grain near the top
or bottom is more than 11% smaller than that of a grain near the center. For the scenario with 15° mean
misalignment the decrease of the switching field based on the vertical position is 7%. Similarly, the switching
field of a grain decreases with increasing distance from the center of the magnet. A two-way partial dependence
plot of the switching field as function of z-position and distance from center shows that the lowest switching fields
occur near the top and bottom edges of the magnet (see figure 13). These are the locations where the local
demagnetizing field of the magnet reach the highest values [38]. Furthermore, near these edges the
demagnetizing field is tilted with respect to the magnetization direction which reduces the local Stoner—
Wohlfarth switching field according to (3). While the dependence of the local switching field on the grain
orientation is known from the basic micromagnetic theory [19], the influence of the position of the grain on the
local coercive field strength is less obvious. One may argue that strong local demagnetizing fields may also occur
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Figure 14. Grain structure showing the weakest grains (dark gray) together with the switching field distribution of a homogeneous
Nd,Fe, 4B model.

16



10P Publishing

J. Phys.: Mater. 2 (2019) 014001 LExletal

(i) edge diffusion (ii) surface diffusion

(Nd,,Dyy).Feq4B

0.1 Xx=0.1

>
I

150

=
o
o

Ll o

U
o

number of grains

x=0.34 x=0.34

ILI

b s

number of grains

i
4 5 6 8 4 5

6
Hsw (T) HoHsw(T)

Figure 15. Comparison of switching fields of models with (i) Dy edge diffusion and (ii) Dy surface diffusion. The grains shown in dark
gray refer to Dy containing grains, (Ndg 9Dy ;),Fe 4B for the histograms on the left-hand side and (Ndg 6Dyo 34)2Fe 4B for the
histograms on the right-hand side. The grains shown in light gray are Nd,Fe, 4B.

near the nonmagnetic grain boundary phase inside the magnet that may initiate magnetization reversal. The
machine learning model shows that this is not the case and the lowest reversal fields always occur near the edges
of the magnet. These results indicate that local variation of the magnetic properties, which enhances the
switching field near the surfaces or edges of the magnet, is sufficient to improve the magnet’s performance.
Possible routes to achieve higher coercive grains locally are grain boundary diffusion [39, 40] and additive
manufacturing [41, 42]. Thompson et al [43] used electron probe microanalysis to analyze the Dy-concentration
in diffusion treated sintered magnets and showed that the highest heavy rare-earth concentration occurred near
the corners of the magnet. A similar local variation of the magnetic properties may be achieved by additive
manufacturing.

As shown above, machine learning revealed a strong effect of the position of the grain within the magnet on
the switching field. Indeed, figure 13 shows that the lowest switching fields occur for grains located at the edges
(near the top and bottom of the magnet and at a large distance of the center). We now take a grain structure from
the test set with 5° misorientation and analyze its switching field distribution. Figure 14 shows the switching field
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distribution of the grains and the location of the weakest grains. The distribution shows a small peak for

toHy, < 4T whereas the mean switching fieldisat 5.9 T and the maximum switching fieldisat 7.2 T. We can
identify the grains with low switching field, which are shown in figure 14. As predicted by the machine learning
algorithm these are the grains at the top and bottom edges of the magnet.

In order to show how Nd,Fe; 4B magnets can be improved by Dy-diffusion, we compare the switching field
distribution for different scenarios: (i) A sample where the grains near top and bottom edges have higher
anisotropy field, and (ii) a sample where the grains near top and bottom surfaces have higher anisotropy field.
The grains with higher anisotropy field have a composition (Nd, _,Dy,),Fe,4B. Following Oikawa et al [44] we
decrease the spontaneous magnetization M, linearly with increasing Dy-content. For the grains with higher
anisotropy field we used (Ndg 9Dy 1),Fe14B or (Ndg 66Dyo 34)-Fe1 4B with a magnetization poM; = 1.52 Tand
1.3 T, respectively. When the grains at the top and bottom edges are hardened by Dy diffusion the peak at low
fields disappears gradually. The minimum switching field increases from fioHgy min = 3.8 T without Dy-
diffusion (see figure 14) to pioHgy min = 4.14 T and 4.62 T for a Dy-content of x = 0.1 andx = 0.34 in the grains
near the top and bottom edges, respectively (see figure 15(i)).

In Dy-free magnets the grains near the top and bottom surface have reduced switching field which in turn
reduce the coercive field of the magnet. Hardening of the grains near the top and bottom edges by Dy-diffusion
avoids these low coercive grains. A similar result was achieved by hardening the grains near the top and bottom
surface, see figure 15(ii). This effect may be used in magnet production and may further reduce the heavy rare-
earth content while keeping a high coercive field.

5. Conclusion

In summary, we showed that machine learning techniques can be applied to characterize the role of
microstructure features in permanent magnets. The results derived from the machine learning model show that
the position of the grain within the magnet is important. The grains near the top and bottom edges of the
magnets have lower switching fields than grains located elsewhere. Other properties like number of neighbors,
dihedral angle, or sphericity play a minor role. For future applications of machine learning in permanent magnet
design we can envision several scenarios ranging from the structure optimization, guided rapid prototyping by
additive manufacturing to the use of machine learning models as building blocks for the multiscale simulation of
hysteresis.

In the example given in this work we identified the location of the weakest grains in ideally structured
Nd,Fe,,B magnets without any defects. The grains with the lowest switching fields are located at the top and
bottom edges of the magnet. This suggests that localizing grain boundary diffusion of heavy rare-earth elements
to these specific regions only may be sufficient to increase coercivity. Thus, the magnet’s performance and
temperature stability may be improved with a minimum amount of heavy rare-earth elements.
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