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Abstract
Weuse amachine learning approach to identify the importance ofmicrostructure characteristics in
causingmagnetization reversal in ideally structured large-grainedNd2Fe14B permanentmagnets. The
embedded Stoner–Wohlfarthmethod is used as a reduced ordermodel for determining local switching
fieldmapswhich guide the data-driven learning procedure. The predictormodel is a random forest
classifier whichwe validate by comparingwith fullmicromagnetic simulations in the case of small
granular test structures. In the course of themachine learningmicrostructure analysis themost
important features explainingmagnetization reversal were found to be themisorientation and the
position of the grainwithin themagnet. The lowest switching fields occur near the top and bottom
edges of themagnet.While the dependence of the local switching field on the grain orientation is
known from theory, the influence of the position of the grain on the local coercive field strength is less
obvious. As a direct result of ourfindings of themachine learning analysis we show that edge
hardening viaDy-diffusion leads to higher coercive fields.

1. Introduction

Permanentmagnets arewidely used inmodern society. The high performancemagnetmarket is dominated by
Nd2Fe14Bmagnets. The sixmajor application areas are acoustic transducers, air conditioning, electric bikes,
wind turbines, hybrid and electric cars, and hard disk drives [1, 2]. Growing demands for permanentmagnets
are predicted for green technology applications such as sustainable energy production and eco-friendly
transport. The generator of a direct drive windmill requires high performancemagnets of 400kg/MWpower;
and on average a hybrid and electric vehicle needs 1.25 kg of high end permanentmagnets [3]. Another rapidly
growingmarket is electric bikes. The global demand for rare-earth elements in permanentmagnets will exceed
50 thousand tons per year in 2025 [3].With the quest for rare-earth reduced or rare-earth free permanent
magnets [4], an optimal control of themagnet’smicrostructure becomes increasingly important. In otherfields
ofmaterials research, data drivenmachine learning approaches have been applied recently, in order to obtain a
deeper understanding of thematerial’smicrostructure on its properties.Mangal andHolm [5] combined crystal
plasticity based simulationwithmachine learning techniques for predicting stress hot-spots in polycrystalline
metals. Using random-forest (RF) basedmachine learning they correlate the formation of grains with high stress
by uniaxial tensile deformationwith localmicrostructural features that describe crystallography, geometry, and
connectivity. In another paper [6], they addressed the problemof feature selection for the classification of stress
hot spots. They showed that a proper set ofmicrostructural features is required, in order tofind outwhat
microstructural characteristics will cause high local stress during tensile deformation.
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ModernNd2Fe14B permanentmagnets show a granular structure. Ideally, the grains are separated by a
nonmagnetic grain boundary phase [7]. In order to improve the isolation of the grains by a nonmagneticNd-
rich grain boundary phase, a highNd content and a dopand such as Al [7] orGa [8] are required. In this workwe
investigate the influence of themicrostructure on the local coercivity of permanentmagnets with ideal structure.
We assume grains that are completely separated by a nonmagnetic phase, andwe do not introduce any soft
magnetic defects. Usingmachine learning techniqueswe identify themicrostructural characteristics thatmay
causeweak grains, which are defined as the grains that will reversefirst when an increasing opposite field is
applied to themagnet. By neglecting defects and ferromagnetic grain boundaries we focus on the effects of key
structural features that are common to any polycrystallinematerial such as grain size, grain shape, grain
sphericity, and crystallographic orientation.We usemachine learning techniques to studymicrostructural
features only and choose as a referencematerial Nd2Fe14B as the nowadaysmost important permanentmagnets
material. The anisotropy field ofNd2Fe14B isμ0HA=7.65 T,whereby it is considered to be themaximum
possible coercive field [9]. Sincewe do not include any softmagnetic defects, we expect nucleation fields in the
range of 3–7.65T for the investigated ideal grain structures.

2.Methods

2.1.Dataset generation
We investigatemagneticmultigrain structures in view of their switching field distribution aiming at predicting
grains with low switchingfield (weak grains) and thosewith high switchingfield (strong grains), respectively.
More precisely, we take the 20th percentile of the lowest switchingfields in the distribution as a threshold for
labelingweak grains.We generate syntheticmicrostructures consisting of polyhedral grains using the software
Neper [10, 11].We use the default grain growth parameter which gives awider grain size distribution and
higher grain sphericities than a standardVoronoi tessellation. The grain size normalized by the average grain
size, D Dá ñ, follows a lognormal distributionwith a standard deviation of 0.35. The sphericity s is ametric for
the shape of the grains [11]. It is defined as the ratio of the surface area of a sphere with equivalent volume to the
surface area of the grain. The quantity 1−s follows a lognormal distributionwith amean of 0.145 and a
standard deviation of 0.03.We investigate three scenarios depending on the standard deviation of the
misorientation angle of the anisotropy direction:σθ=0°,σθ=5°, andσθ=15°. For each scenario 10
syntheticmicrostructures with 1000 grains eachwere generated. Seven structures were randomly selected to
form the so-called training set, hence containing 7×1000 grains. The remaining three structures build the so-
called test set, which is used in the very end tomeasure the performance of the predictormodel. Figure 1(a) shows
a typicalmicrostructure. Figures 1(b)–(d) show the distributions of some features in the training set: the
misorientation angle of the anisotropy axes, the distance of the grain from themagnet’s center, and the
grain size.

Switching field values are calculated near the surface of the grains which serve as underlying datasets for the
microstructuremachine learning analysis. Figure 2 shows a cut through the grain structure, the locations of the
field-evaluation points, and the calculated switchingfields. Since there are no pinning sites for domainwalls
within a grain a reversed domainwill expand through the grain once it is nucleated. Therefore, theminimum
value of the switchingfields within a grain defines its reversalfieldwhich is used formachine learning. For the
simulationswe use thematerial properties ofNd2Fe14B (anisotropy constantK1=4.9MJ m−3, spontaneous
magnetic polarizationμ0Ms=1.61 T, and exchange constantA=8 pJ m−1 [12]) and amean grain size of
2 μm.Hereμ0 is the permeability of vacuum.

2.1.1. Embedded Stoner–Wohlfarth (ESW)method
Themicromagnetic calculation of switchingfields in permanentmagnetmodels relies on hysteresis
computation usually using numerous successive total energyminimization steps for slightly varying external
field strength. This is only feasible formodels in the nanometer regimewith a few grains. Since our data driven
approach requires hundreds of grains ourmodels are too large for conventionalmicromagnetic simulations.
Hencewe apply a reduced ordermodel for the prediction of criticalfields, called theESWmethod [13]. The
approach has its origin in thework of Schrefl and Fidler [14] and adapts the original Stoner–Wohlfarthmodel
for small ferromagnetic particles in away to additionally account for long-range interactions of uniformly
magnetized grains. First the totalfield is calculated

h h h h , 1tot ext demag x= + + ( )

at evaluation points which are located at a distance d from the grain surface. The totalfield is the sumof the
externalfieldhext, the demagnetizing fieldhdemag, and the exchange fieldhx. To this end the strayfield
computations are accomplished by analytical formulas for polyhedral geometries [15] calculating
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The demagnetizing field at point x is the sumof surface integrals over the surfaces of all polyhedra Sjk, where the
index j runs over all grains and the index k over the surfaces of a grain. The vectornjk is the outer normal to

Figure 1. (a)Example of a synthetically generated grain structure. (The color code is for visualization only and not related to any
physical property.) (b)–(d)Distributions of features of grains in the training set:misorientation angle (for the scenariowith a standard
deviation of themisorientation angle of 5°), distance of the grain from themagnet’s center, and grain diameter.

Figure 2.Cut through a syntheticmicrostructure to visualize the grain shapes (left) and the local switching field at evaluation points
(right), where the color bar shows the values of the local switching fields.
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surface k of grain j; andmj is themagnetization vector of grain j. The perpendicular component of the
demagnetizing field growswith no bound towards the edges of a polyhedron, which is compensated by the
exchangefield [16]. The exchange field comes from theHeisenberg exchange Jh x sxi ix = -å( ) taking into
account the exchange interactions of the spin at point xwith the neighboring spins si. In a continuum approach
the exchange integral Jxi is replaced by an expression containing the exchange constantA [17]. Here we assume
that the spins within a grain remain parallel before switching. Therefore the exchange field acting at the
evaluation point x is parallel to themagnetization vector of the grain. In the ESWmodel we set itsmagnitude to
hx=(1/(μ0Ms))A/d

2 [13]. Please note that in an idealNd2Fe14B permanentmagnet the grains are separated by
a nonmagnetic grain boundary phase [7]. Thereforewe do not take into account any exchange interactions with
neighboring grains. Figure 3 shows thefield components in a cubic particle. The distance d is 1.2Lex. The

exchange length Lex is A M0 s
2m( ) .

According to Stoner–Wohlfarth [18], the switching field of a small uniformlymagnetized particle can be
given in terms of the angleψ between the easy axis and the totalfield by the formula [19]

h f h f, sin cos , 3sw N
2 3 2 3 3 2y y y y= = + -( ) ( ) ( ) ( )

where hN is the ideal nucleationfield [20], h K M2N 1 0 sm= ( ). In a hardmagnetic particle the easy axis coincides
with themagneto-crystalline anisotropy direction. The Stoner–Wohlfarth switching field (3) is evaluated for a
varying externalfield at target points at a distance d away from the surface of the polyhedral grains [13, 21],
where the angle between the anisotropy direction and the totalfield (1) is taken. Please note that in the remanent
state themagnetization can be assumed to be approximately parallel to the anisotropy direction. The local
switchingfield at a target point is the smallest value of hext∣ ∣whichmakes the totalfield greater than the value
obtained from (3), that is hhtot sw>∣ ∣ . Thenwe compute theminimum switching field over all target points of a
grain. Thisminimumvalue is the switchingfield of the grain, which is then used for labelingweak and strong
grains in the subsequentmachine learning task.

2.1.2.Microstructure attributes
Ourmain intuition is that weak points in permanentmagnet grain structures can bewell understood by their
(mainly) geometricalmicrostructure attributes. Themachine learning approachwill assign these features to
each grain togetherwith the grain label (weak or strong grain) according to calculated switchingfield values
using the ESWmodel as an effective reduced ordermodel. The following geometrical attributes are assigned:

• The absolute value of the z-coordinate of the center of the polyhedral grainmeasured from the center of the
cube (z-position).

• The sign of the z-position (z-possign).

• The distance to the center of themagnet (distance).

• The diameter of the polyhedron (diameter) defined as the diameter of a sphere with equivalent volume.

• The number of next neighbor grains (noofneighbors).

Figure 3. Field components in the embedded Stoner–Wohlfarthmethod. Left: the black arrows correspond to the nonlocal stray field
within themagnet, the external field (blue) is constant in negative z-direction and the exchange field (green) in positive z-direction.
Right: the totalfield (black) and themagnetizationm (red) aswell as the exchange direction in themiddle (red).

4

J. Phys.:Mater. 2 (2019) 014001 L Exl et al



• The sphericity of the grain (sphericity).

• The absolute deviation of the current grain diameter from the average diameter of the next neighbors (diam
variation).

• Themaximumdihedral angle of the polyhedron (maxdihedralangle).

• Theminimumdihedral angle of the polyhedron (mindihedralangle).

In permanentmagnets themagnetocrystalline anisotropy energy is expressed by K sin1
2 j q-( )wherej is

the angle between themagnetization and the saturation direction and θ is the angle between the c-axis of the
tetragonal crystal and the saturation direction. In the ESWmodel the orientation dependence of the switching
field expressed by (3) describes the reduction of the anisotropy field by a factor that depends on the angleψ
between the easy axis and the totalfield (1). Hence, additionally to geometrical features we assign the orientation
of the easy axis for each grain:

• The orientation angle θ of the grains
(misorientation).

Figure 4 shows a sketch of some of the descriptors.
The contribution of each of the above attributes in predictingweak and strong grains is studied statistically

by themachine learning approach. These features represent an already preselected and rather uncorrelated
subset of a larger possible set of attributes. For instance, attributes like the surface area, the volume and the
diameter of the grains exhibit correlation coefficients above 0.95. Pearson’s correlation coefficient [22] is a
measure of the tendency of the features to increase or decrease together. Therefore, we only took one
‘representative’when the correlation coefficient between a pair of features was greater than 0.76. For example,
we only take the grain diameter and drop surface area and volume. The correlationmatrix for the selected
descriptors is shown infigure 5which in addition includes the local switching field attribute andmisorientation
corresponding to polar angles with standard deviation of 5° and zeromean. In section 3.2wewill study the
significance of the features in explaining local switching as indicated by feature importancemeasures based on
different predictormodels.

2.2.Machine learningmethods
Machine learning is a statistical approach that aims at automating analyticalmodel fitting for data analysis, for
instance finding clusters/structures in data or generating data-based predictive decision tools. For very
comprehensive introductions tomachine learning the reader is referred to [23, 24].We use so-called supervised
learning, where the training data also includes the true solutions. In our case, the training data consist of grains
togetherwith theirmicrostructure features and labels (switchingfields).We aim at classifying weak grains, that
is, predicting those feature classes which exhibit a switchingfield below a certain threshold (class of weak grains)

Figure 4. Sketch of the selected descriptors: Distance to center, z-position, sign of z-position,misorientation, diameter, sphericity and
dihedral angle, wherewe use themaximumandminimumdihedral angle of a grain.
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and above it (class of strong grains), respectively. This refers to as binary classification. The learning algorithm
produces a function thatmaps a sample’s feature vector to the class of weak grains or to the class of strong grains.
Beside classification a second common supervised learning task is regression, whichwould try to predict values
instead of classes, that is, a function thatmaps a given feature vector to predictions for switching field values.We
will compare logistic regressionwithℓ1- andℓ2-regularization andRF [25].We also get insight into the feature
importance causingweak grains. However, similar as in [26]we observe best results for the RF algorithm. RF
algorithms are baggingmethods (short for bootstrap aggregation) built up by combining predictions of individual
decision trees trained over randomly generated sub-training samples with replacement (bootstrap sample). At
any instance an average of the individual estimators is taken to generate the ensemblemodel. An example of one
decision tree with depth two is given infigure 6.

An important and nontrivial task is the performancemeasure of a classifier. The accuracy of amodel is the
amount of correctly predicted instances relative to all instances. Depending on the tightness of the threshold of
the switchingfield value (=decision threshold) used for classifying weak grains any accuracy could be achieved.
For instance, if the smallest 10%of all grains are labeled asweak, a classifierwhich invariably predicts strong
grains will have a 90% accuracy. Away out is to determine the confusionmatrix of a binary classifier, that is to
count the number of times instances of one class (strong orweak grain) are classified correctly (trueweak or
strong) or incorrectly (falseweak or strong), respectively. The ratio of the number of trueweak grains and all
grains classified as weak is called precision, the accuracy of positive predictions (weak grains). A high precision

Figure 5.Correlationmatrix of the selected descriptors including the local switching field.Misorientation corresponding to polar
angles with standard deviation of 5° and zeromean. All correlation coefficients are smaller or equal 0.76.

Figure 6.Example of individual decision tree. First, the training set consisting of 7000 grains is split into 5990 strong grains and 1010
weak grains depending on the crystallographic orientation. The two nodes in the second level are split depending on the z-position
and on themisorientation, respectively.
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means that few strong grains are erroneously classified as weak, where possiblymanyweak instances can still be
erroneously classified as strong. Instead, the so-called recall (also true positive rate) is the ratio of the number of
trueweak grains and the sumof trueweak and false strong instances. A high recallmeans that fewweak grains are
erroneously classified as strong, where possiblymany strong instances can still be erroneously classified asweak.
Obviously there is a trade-off between precision and recall. The harmonicmean of precision and recall is the f1-
score of the binary classifier.Machine learningmodels depend on various hyperparameters. Hyperparameters
refer to underlyingmodel settings such as tree depth in a random forest or polynomial degree in a regression
model. Such parameters, which control themodel capacity, can not be tuned by learning on the training set since
this would lead to overfitting to the training set, that is, themaximumpossiblemodel capacity is chosen (like
highest possible polynomial degree in regression). Such an over-fittedmodel would correctly predict every
sample of the training set but lacks predicting the general patterns of the data set leading to poor generalization
error on newdata. The traditional way to overcome this is to split the training set into two disjoint subsets, the
validation set and the actual training data set [23]. The validation set is therefore separated from the training (and
test) set and thus never observed by the training algorithm. The validation set is used to estimate the
generalization error (modelfit) in an unbiasedmannerwhile calibrating the hyperparameters. In this sense the
hyperparameters are ‘trained’ on the validation set. However, if the dataset is too small alternative procedures
need to be applied to avoid reducing the available training data by completely setting aside a validation set. One
way is to use resampling techniques for hyperparameter tuning, such as k-fold cross validation. This procedure is
based on repeated training and testing ofmodels on different randomly chosen disjoint and roughly equally
sized subsets of the original (training) dataset. It can be seen as an iterated version of the traditional training/
validation set splitting but leveraging the complete training set. The test error (e.g. f1-score) of eachmodel is
estimated by taking the average error across k different trials for which always one held-out subset serves as the
test set and the rest for training. This averaging strategy has a beneficial effect on the error of eachmodel as it is a
close approximation of really unseen data [5]. The choice of k is usually 5 or 10, however this is not a formal rule.
As k gets larger, the difference in size between the (original) training set and the resampling subsets gets smaller
and thus also the difference between the estimated performance error and the true error gets smaller. This latter
difference is referred to as the bias of the technique [1]. By balancing amodel’s complexity one achieves an
optimal trade-off between bias and variance of amodel [24, 27]. In fact, the authors of [27]make a
recommendation for small sample sizes of using k-fold cross validation because of the good variance and bias
properties for onlyminor additional computational costs due to the rather small sample sizes. A slight variant of
thismethod is to select the k partitions in away thatmakes the folds balancedwith respect to the distribution of
the outcomes [28], which is then referred to as stratified k-fold cross validation. To avoid over-fitting, which
refers to small bias but high variance we choose stratifiedfive-fold cross validation, i.e. a smaller k to achieve
decent small bias. In addition, Breiman [25] showed that bagging reduces the variance of the overall ensemble
relative to any individual learner in the ensemble.

We thenmaximized the f1-score by searching optimal values for the tree depth, the number of trees, and the
number of features to consider when splitting a node, see section 3.2.We calculated the confusionmatrix with
respect to the test set wherewe used 50%probability for the classmembership threshold in the forthcoming
analysis. Another performancemeasure is the receiver operating characteristic (ROC) curvewhich plots the true
positive rate versus the false positive rate. The area under theROC curve (AUC) is a common evaluationmetric
where values close to 1 indicate a good classifier.

In a decision tree important features are likely to appear closer to the root of the tree, whereas unimportant
features are found near the leaves or not at all. Estimates of a feature’s importance in anRF classifier can be
calculated by the average depth at which it appears across all trees. Another approach to determine feature
importance is amodel-agnostic version calledmodel reliance, where feature importance is indicated by the
amount of increase ofmodel error, for examplemeasured by the AUCor any other performancemeasure, by
fitting amodel after permuting the features [29, 30].Wewill use themodel-agnostic approach [24] as
implemented inSkater [31].Skatermeasures themean absolute value of the change in predictions given a
perturbation of a certain feature. The idea behind is the following:the algorithmworks through all features in
the test set and replaces the values corresponding to a single feature by randomly chosen feature values from the
training set and calculates newpredictions. Themore important a specific feature, themore the predictionswill
change as a function of perturbing the feature. This approachworks for any predictormodel. Further, wewill
comparewith features’ importancemeasure based on themagnitude of coefficients when using logistic
regressionmodels.
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3. Results

3.1.Micromagnetic validation
In the case of structures consisting of very few grains we can validate our approachwith fullmicromagnetic
computations including the conventional determination of themagnetostatic field viaMaxwell’s equations. The
question is whether a trained RFmodel can predict wheremagnetization reversal will start.We create 100
granular structures consisting of only 64 grains eachwith amean grain size of 50nm.We split the data structures
into 80 training structures and 20 test structures. For each structure the grain orientations with respect to the z-
direction are set randomly according to a zero-mean normal distributionwith a standard deviation of 5° for the
polar angle and a uniformdistribution for the azimuthal angle.Wefirst label the grains as ‘weak’ or ‘strong’
according to the switchingfields computed by the ESWmodel. Thenwe train anRFmodel on the training set
using the Python libraryScikit-Learn [32]. In order to validate themodel, we perform fullmicromagnetic
simulations using thefinite elementmethod [33]. Following the demagnetization curvewe compute the grain
and corresponding switchingfields wheremagnetization reversal starts. This identifies the trueweakest grains in
the test set (seefigure 7). In 16 out of the 20 test cases the RF prediction of theweakest grain coincides with the
results from fullmicromagnetic simulations.

We also estimated themodel error of the ESWmodel. In 18 out of 20 cases theweakest grains according to
the ESWand fullmicromagnetic switchingfields coincide. This discrepancy reflects themodel errormainly
corresponding to the simplified strayfield calculation in the ESWmodel which does not take into account
reversiblemagnetization rotations before switching.

Considering both, themodel error of the ESWmodel and the performancemeasure of the RFmodel (see
table 3) gives an overall accuracy of 80% in accordancewith the above validation result.

3.2.Microstructuremachine learning analysis
Weuse tenmultigrainmodels with 1000 grains each, wherewe randomly put aside threemodels for the
validation (this is the test data set). For the grains in eachmodel we determine the feature values and calculate the
true labels by the ESWmethod in order to supervise the subsequent learning process. Note that the generation of
the dataset is very expensive, in fact, both the creation of themicrostructure aswell as the calculation of the labels
limit the usable size of data. The anisotropy directions are set randomly according to a uniformdistribution for
the azimuthal angle and a zero-mean normal distributionwith a standard deviation ofσθ=0°,σθ=5°, or

Figure 7.Example of identification of the weakest grainwith the fullmicromagnetic simulation for one test structure.Magnetization
reversal starts in the highlighted grain on the bottom-left where a reversed domain is already formed, where the red arrows indicate the
magnetization and the blue region the reversed domain. The image shows the expansion of the reversed domain (in blue) in the
weakest grain.
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σθ=15° for the polar angle. This determines three different scenarios. For each scenario we label grains with a
switchingfield smaller than the 20th percentile of the switching field distribution as ‘weak’ and use the records of
the training set to train logistic regression classifierwithℓ1- andℓ2-regularization and a random forestmodel
applying the Python libraryScikit-Learn [32]. The optimal value for the regularization strength,α=1/C,
for logistic regressionwas determined by a grid search-based hyperparameter tuning using five-fold cross-
validation as described above. The values turned out to be identical forℓ1- andℓ2-regularization: In theσθ=0°
caseC=1, in theσθ=5° caseC=7.74 and in theσθ=15° caseC=1. The optimal hyperparameter values in
the random forestmodel for the three scenarioswere found to be as follows:

The 0s = q case: 20 for themaximum tree depth, 500 for the number of trees in the forest and the square
root of all features for the optimal number of features considered for splitting a node. Theσθ=5° case: 10 for
themaximum tree depth, 500 for the number of trees in the forest and all features for the optimal number of
features considered for splitting a node. Theσθ=15° case: 10 for themaximum tree depth, 200 for the number
of trees in the forest and all features for the optimal number of features considered for splitting a node.

Table 1 shows the confusionmatrices together with severalmodel performancemetrics for theℓ1-logistic
regression classifiermodel alsowith 50% threshold for classmembership probability. Table 2 depicts the case for
theℓ2-regressionmodel. Table 3 shows the confusionmatrices with 50% threshold for classmembership
probability and severalmodel performancemetrics for the RFmodel forσθ=0°,σθ=5°, andσθ=15°.
Confusionmatrices and performancemeasures give roughly the same results for the two logisticmodels, while
they perform slightly worse than the random forest predictor especially in the smallerσθ-regime.

Table 4 compares allmodels, in detail it gives for allσθ-cases the Pearson correlation of the features to the
local switchingfield aswell as all determined feature importance for the logistic regression and random forest
models.We remark that only the random forestmodel is able toweight the distance as an important feature in
the cases withmisorientation, which explains, togetherwith the decisive role of the z-position, theweak edges of

Table 1.Confusionmatrices (with threshold 50% for classification) for theℓ1-logistic regressionmodel for 0°, 5°, and
15° standard deviation of themisorientation angle. Themodel performancemetrics include accuracy, precision, recall,
f1-score andAUC.

σθ=0° Predicted: Performance Metrics

0 1 Accuracy Precision Recall f1-score AUC

Actual: 0 2334 74 0.9430 0.9423 0.9630 0.9426 0.99

1 97 495

σθ=5° Predicted: Performance Metrics

0 1 Accuracy Precision Recall f1-score AUC

Actual: 0 2288 121 0.8903 0.8858 0.8903 0.8869 0.94

1 208 383

σθ=15° Predicted: Performance Metrics

0 1 Accuracy Precision Recall f1-score AUC

Actual: 0 2314 95 0.8917 0.8864 0.8917 0.8862 0.92

1 230 361

Table 2.Confusionmatrices (with threshold 50% for classification) for theℓ2-logistic regressionmodel for 0°, 5°, and
15° standard deviation of themisorientation angle. Themodel performancemetrics include accuracy, precision, recall,
f1-score andAUC.

σθ=0° Predicted: Performance Metrics

0 1 Accuracy Precision Recall f1-score AUC

Actual: 0 2333 75 0.9427 0.9420 0.9427 0.9423 0.99

1 97 495

σθ=5° Predicted: Performance Metrics

0 1 Accuracy Precision Recall f1-score AUC

Actual: 0 2288 121 0.8903 0.8858 0.8903 0.8869 0.94

1 208 383

σθ=15° Predicted: Performance Metrics

0 1 Accuracy Precision Recall f1-score AUC

Actual: 0 2313 96 0.8913 0.8860 0.8913 0.8859 0.92

1 230 361
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Table 3.Confusionmatrices (with threshold 50% for classification) for the random forestmodel for 0°, 5°, and 15°
standard deviation of themisorientation angle. Themodel performancemetrics include accuracy, precision, recall, f1-
score andAUC.

σθ=0° Predicted: Performance Metrics

0 1 Accuracy Precision Recall f1-score AUC

Actual: 0 2374 34 0.9727 0.9725 0.9727 0.9725 0.99

1 48 544

σθ=5° Predicted: Performance Metrics

0 1 Accuracy Precision Recall f1-score AUC

Actual: 0 2310 99 0.9243 0.9231 0.9243 0.9236 0.97

1 128 463

σθ=15° Predicted: Performance Metrics

0 1 Accuracy Precision Recall f1-score AUC

Actual: 0 2308 101 0.9027 0.8989 0.9027 0.8995 0.93

1 191 400

Table 4.The first columndescribes the features, the second column gives the Pearson correlation of the features to the local switching
field and all further columns give the feature importance for the differentmodels: LogReg (ℓ1) and LogReg (ℓ2) denote logistic
regressionwithℓ1- andℓ2-regularization, respectively, andRF indicates the random forestmodel. In the cases of the logistic
regressionmodels we also give feature importance based on the determined coefficients’magnitude. In all other cases we also report
the feature importance computedwithSkater. All this is given for the three scenariosσθ=0°, 5° and 15°.

Feature Pearson LogReg (ℓ1) LogReg (ℓ1) LogReg (ℓ2) LogReg (ℓ2) RF

correlation coefficients Skater coefficients Skater Skater

σθ=0°
misorientation 0.00 0.01 0.00 0.01 0.00 0.02

z-position −0.68 0.47 0.46 0.46 0.47 0.40

distance −0.63 0.36 0.36 0.36 0.35 0.30

diameter −0.18 0.12 0.13 0.13 0.14 0.09

noofneighbors 0.27 0.02 0.02 0.01 0.01 0.05

sphericity 0.35 0.00 0.00 0.00 0.00 0.04

diamvariation −0.04 0.00 0.00 0.00 0.00 0.03

maxdihedralangle −0.03 0.00 0.00 0.00 0.00 0.03

mindihedralangle 0.21 0.01 0.01 0.01 0.01 0.03

z-possign 0.02 0.00 0.00 0.00 0.00 0.00

σθ=5°
misorientation −0.57 0.35 0.38 0.35 0.38 0.41

z-position −0.45 0.23 0.22 0.23 0.22 0.27

distance −0.36 0.02 0.02 0.02 0.02 0.12

diameter −0.15 0.15 0.14 0.15 0.14 0.06

noofneighbors 0.15 0.15 0.14 0.15 0.14 0.03

sphericity 0.19 0.02 0.01 0.02 0.02 0.05

diamvariation −0.03 0.02 0.02 0.02 0.02 0.02

maxdihedralangle −0.06 0.04 0.04 0.04 0.04 0.02

mindihedralangle 0.10 0.03 0.02 0.03 0.02 0.02

z-possign 0.02 0.00 0.00 0.00 0.00 0.00

σθ=15°
misorientation −0.77 0.40 0.45 0.40 0.45 0.45

z-position −0.22 0.17 0.16 0.17 0.16 0.16

distance −0.08 0.05 0.05 0.05 0.05 0.09

diameter −0.14 0.16 0.15 0.16 0.15 0.07

noofneighbors −0.06 0.13 0.11 0.13 0.11 0.06

sphericity −0.02 0.02 0.02 0.02 0.02 0.05

diamvariation 0.00 0.00 0.00 0.00 0.00 0.03

maxdihedralangle −0.10 0.01 0.00 0.01 0.01 0.04

mindihedralangle −0.03 0.04 0.04 0.04 0.04 0.04

z-possign −0.04 0.02 0.02 0.02 0.02 0.00
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themagnet, comparewith sections 3.2 and 4, especially figures 13–15.We use the RFmodel for further analysis,
and give somemore validation next.

Figure 8 shows the ROC curves for the three different scenarios and random forestmodel. Themodel
performancemetrics as well as the AUC indicate very high performance of the trained random forestmodels,
whereas a slight decline can be observedwith increasing orientation angle. Figure 9 shows the feature
importance for the three scenarios for the random forestmodel whichwas computed using themodel agnostic
approach [24] as implemented inSkater [31]. For perfectly aligned grains (0°misorientation) there are
essentially twomost important features, the absolute value of the vertical position of the grain in themagnet (z-
position) and the distance of the grain from the center of themagnet. Clearly the sign of the z-position plays no
important role, which indicates the symmetry of the problem.Whenmisorientation is introduced, this becomes

Figure 8.Receiver operating characteristic (ROC) curve for the random forest classification in the case of 0°, 5°, and 15° standard
deviation of themisorientation angle.
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themost important feature. One can clearly observe infigure 9 that themisorientation becomesmore relevant
with higher averagemisorientation angle.Whereas the dependence of the local switching field on the orientation
is expected [19], the importance of the positions of the grainwithin themagnet is less obvious.

In a second step, we apply RF regression to predict the value of the local switchingfields of the grains. Then
we can get additional insight into feature dependence by one-way partial dependence plots for the random forest
predictor. The partial dependence function represents the effect of a specific feature (for example the z-position)
on the switchingfield after averaging out the influence of all other features [34]. Figures 10–12 show
comparisons for different orientation scenarios by one-way dependency based on z-position, distance to center
andmisorientation angle, respectively.

Figure 9. Feature importance for the random forest classification in the case of 0°, 5°, and 15° standard deviation of themisorientation
angle.
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4.Discussion

Weappliedmachine learning techniques in order to correlate themicrostructure characteristics with the local
magnetization reversalfield of large-grainedNd2Fe14B permanentmagnets. In order to focus on general features
of polycrystallinematerials we assumed an ideal structure: (i) the grains are separated by a nonmagnetic grain
boundary phase and (ii) there are no defects with reducedmagnetocrystalline anisotropy. Though this setting is

Figure 10.One-way partial dependence based on the vertical position of the grainwithin themagnet for 0°, 5°, and 15° standard
deviation of themisorientation angle. A z-position close to 10 μmindicates a grain near the bottomor top surface of themagnet,
respectively.
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unrealistic, it can provide clear insight what other features in addition to soft inclusions or ferromagnetic grain
boundaries [35, 36] influence coercivity. The data used formachine learningwas generated by a reduced order
model thatmakes it possible to treatmagnets which aremuch larger with respect to both grain size and number
of grains thanmodels suitable for conventionalmicromagnetic simulations. For smallmodel size the prediction
of themachine learningmodel can be comparedwith the results of fullmicromagnetic simulations. This
comparison shows that a random forest classifier can predict theweakest grain in amagnet in 16 out of 20 test
cases correctly.

Figure 11.One-way partial dependence based on the distance of the grain to the center of themagnet for 0°, 5°, and 15° standard
deviation of themisorientation angle.
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In order tofind outwhatmicrostructure features aremost significant, we computed the feature importance
of a random forest classifier trainedwith the switchingfield distribution of 7 polycrystalline samples consisting
of 1000 grains each. The feature importance was found to depend on the degree of alignment. For a scenario with
a standard deviation of themisorientation angle of 15° themost important feature is the crystallographic
orientation. As expected [19] the switchingfield decreases with increasingmisorientation angle. The second and
thirdmost important features are the vertical position of the grain, and the distance of themagnet from the
magnet’s center. For perfect alignment (zero degreemisorientation) these two are themost important features
followed by the grain diameter. Local interpretablemodel agnostic explanation [37] shows that the switching
field of a grain is smaller the closer the grain is located to the top or bottom surface of themagnet. This
dependence ismore pronounced for the perfectly aligned grains where the switching field of a grain near the top
or bottom ismore than 11% smaller than that of a grain near the center. For the scenariowith 15°mean
misalignment the decrease of the switchingfield based on the vertical position is 7%. Similarly, the switching
field of a grain decreases with increasing distance from the center of themagnet. A two-way partial dependence
plot of the switchingfield as function of z-position and distance from center shows that the lowest switchingfields
occur near the top and bottom edges of themagnet (seefigure 13). These are the locationswhere the local
demagnetizing field of themagnet reach the highest values [38]. Furthermore, near these edges the
demagnetizing field is tiltedwith respect to themagnetization directionwhich reduces the local Stoner–
Wohlfarth switching field according to (3).While the dependence of the local switchingfield on the grain
orientation is known from the basicmicromagnetic theory [19], the influence of the position of the grain on the
local coercive field strength is less obvious. Onemay argue that strong local demagnetizing fieldsmay also occur

Figure 12.One-way partial dependence based on themisorientation of the anisotropy axes for 5 (top) and 15 (bottom) degrees
standard deviation of themisorientation angle.
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Figure 13.Two-way partial dependence based on z-position and distance from center for 5° standard deviation of themisorientation
angle. A z-position close to 10 indicates a grain near the bottomor top surface of themagnet.

Figure 14.Grain structure showing theweakest grains (dark gray) together with the switching field distribution of a homogeneous
Nd2Fe14Bmodel.
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near the nonmagnetic grain boundary phase inside themagnet thatmay initiatemagnetization reversal. The
machine learningmodel shows that this is not the case and the lowest reversal fields always occur near the edges
of themagnet. These results indicate that local variation of themagnetic properties, which enhances the
switchingfield near the surfaces or edges of themagnet, is sufficient to improve themagnet’s performance.
Possible routes to achieve higher coercive grains locally are grain boundary diffusion [39, 40] and additive
manufacturing [41, 42]. Thompson et al [43] used electron probemicroanalysis to analyze theDy-concentration
in diffusion treated sinteredmagnets and showed that the highest heavy rare-earth concentration occurred near
the corners of themagnet. A similar local variation of themagnetic propertiesmay be achieved by additive
manufacturing.

As shown above,machine learning revealed a strong effect of the position of the grainwithin themagnet on
the switchingfield. Indeed,figure 13 shows that the lowest switchingfields occur for grains located at the edges
(near the top and bottomof themagnet and at a large distance of the center).We now take a grain structure from
the test set with 5°misorientation and analyze its switchingfield distribution. Figure 14 shows the switching field

Figure 15.Comparison of switching fields ofmodels with (i)Dy edge diffusion and (ii)Dy surface diffusion. The grains shown in dark
gray refer toDy containing grains, (Nd0.9Dy0.1)2Fe14B for the histograms on the left-hand side and (Nd0.66Dy0.34)2Fe14B for the
histograms on the right-hand side. The grains shown in light gray areNd2Fe14B.
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distribution of the grains and the location of theweakest grains. The distribution shows a small peak for
μ0Hsw<4Twhereas themean switchingfield is at 5.9T and themaximum switching field is at 7.2T.We can
identify the grains with low switching field, which are shown infigure 14. As predicted by themachine learning
algorithm these are the grains at the top and bottom edges of themagnet.

In order to showhowNd2Fe14Bmagnets can be improved byDy-diffusion, we compare the switchingfield
distribution for different scenarios: (i)A sample where the grains near top and bottom edges have higher
anisotropy field, and (ii) a sample where the grains near top and bottom surfaces have higher anisotropy field.
The grains with higher anisotropy field have a composition (Nd1−xDyx)2Fe14B. FollowingOikawa et al [44]we
decrease the spontaneousmagnetizationMs linearly with increasingDy-content. For the grains with higher
anisotropy fieldwe used (Nd0.9Dy0.1)2Fe14B or (Nd0.66Dy0.34)2Fe14Bwith amagnetizationμ0Ms=1.52 T and
1.3T, respectively.When the grains at the top and bottom edges are hardened byDy diffusion the peak at low
fields disappears gradually. Theminimum switchingfield increases fromμ0Hsw,min=3.8 TwithoutDy-
diffusion (seefigure 14) toμ0Hsw,min=4.14 T and 4.62T for aDy-content of x=0.1 and x=0.34 in the grains
near the top and bottom edges, respectively (seefigure 15(i)).

InDy-freemagnets the grains near the top and bottom surface have reduced switching fieldwhich in turn
reduce the coercive field of themagnet. Hardening of the grains near the top and bottom edges byDy-diffusion
avoids these low coercive grains. A similar result was achieved by hardening the grains near the top and bottom
surface, see figure 15(ii). This effectmay be used inmagnet production andmay further reduce the heavy rare-
earth contentwhile keeping a high coercive field.

5. Conclusion

In summary, we showed thatmachine learning techniques can be applied to characterize the role of
microstructure features in permanentmagnets. The results derived from themachine learningmodel show that
the position of the grainwithin themagnet is important. The grains near the top and bottom edges of the
magnets have lower switching fields than grains located elsewhere. Other properties like number of neighbors,
dihedral angle, or sphericity play aminor role. For future applications ofmachine learning in permanentmagnet
designwe can envision several scenarios ranging from the structure optimization, guided rapid prototyping by
additivemanufacturing to the use ofmachine learningmodels as building blocks for themultiscale simulation of
hysteresis.

In the example given in this workwe identified the location of theweakest grains in ideally structured
Nd2Fe14Bmagnets without any defects. The grains with the lowest switching fields are located at the top and
bottom edges of themagnet. This suggests that localizing grain boundary diffusion of heavy rare-earth elements
to these specific regions onlymay be sufficient to increase coercivity. Thus, themagnet’s performance and
temperature stabilitymay be improvedwith aminimumamount of heavy rare-earth elements.
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