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sbunite | Abstract

thework,journal citation  The Model-Analogs technique is used in the present study to assess the decadal sea surface

andpoL temperature (SST) prediction skill over the Southern Ocean (SO). The Model-Analogs here is based

on reanalysis products and model control simulations that have ~1° ocean/ice (refined to 0.5° at high
latitudes) components and 100 km atmosphere/land components. It is found that the model analog
hindcasts show comparable skills with the initialized retrospective decadal hindcasts south of 50°S,
with even higher skills over the Weddell Sea at longer lead years. The high SST skills primarily arise
from the successful capture of SO deep convection states. This deep ocean memory and the associated
decadal predictability are also clearly seen when we assess the Model-Analogs technique in a perfect
model context. Within 30°S-50°S latitudinal band, the model analog hindcasts show low skills. When
we include the externally forced signals estimated from the large ensemble simulations, the model
analog hindcasts and initialized decadal hindcasts show identical skills. The Model-Analogs method
therefore provides a great baseline for developing future decadal forecast systems. It is unclear whether
such analog techniques would also be successful with models that explicitly resolve ocean mesoscale
eddies or other small-scale processes. This area of research needs to be explored further.

1. Introduction

The Southern Ocean (SO) plays a critical role in the global climate system mainly through its large influence on
oceanic uptake of anthropogenic heat and carbon (e.g., Russell et al 2006, Marshall and Speer 2012). The deep
SO can absorb and store heat/carbon and its efficiency is largely determined by the strength of meridional
overturning circulation (MOC) (e.g., Sigman and Boyle 2000). Over the SO, the Antarctic bottom water
(AABW) feeds the lower limb of the MOC. The AABW becomes the densest abyssal water as it moves down the
continental slope and mixes with ambient water (e.g., Lumpkin and Speer 2007, Marshall and Speer 2012,
Purkey and Johnson 2012, 2013). The return path of this deep water from the interior ocean to the surface is
largely through SO upwelling that closes the MOC (Marshall and Speer 2012). Because of the long memory of
deep ocean, the SO has been suggested to be one of the most predictable regions on decadal time scales (e.g.,
Boer 2004,2011, Yangetal 2013, Zhang et al 2017a, b, Zhang et al 2019, Yang et al 2021, Zhang et al 2022b).
The decadal predictability is usually estimated by two common approaches: diagnostic and prognostic
approaches. Boer (2004) estimated the sea surface temperature (SST) predictability over global oceans using a
diagnostic predictability variance fraction (ppvf) method. The ppvf measures the ratio of slow potentially
predictable component with respect to the total variance. The SO exhibits high values of ppvf and therefore has a
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large potential predictability. Zhang et al (2017a) then used a maximizing predictability method called average
predictability time (APT, DelSole and Tippett 2009a, b) to examine the most predictable mode in a long control
simulation from Geophysical Fluid Dynamics Laboratory (GFDL) CM2.1 model (Delworth et al 2006). They
found that the most predictable SO SST mode is associated with the mature phase of SO internal deep
convection variability. Using the same CM2.1 control simulation, Zhang et al (2017b) further estimate the SO
perfect model predictability from a prognostic perspective, in which the control simulation at some time points
is initialized by identical oceanic and perturbed atmospheric conditions. The spread within the ensemble is
interpreted as an estimate of predictability. Again, they found that the SO decadal SST skill primarily arises from
the deep ocean memory. Yang et al (2013) and (2021) extended this prognostic approach to the initialized real
retrospective decadal forecasts/hindcasts. However, it is still very challenging on how to initialize the decadal
prediction system and how to assess the prediction skill over the SO, largely because SO observations are very
sparse in both time and space. This is in stark contrast to the North Atlantic and North Pacific Oceans where the
observations are more numerous and can better be used for model initialization (e.g., Mochizuki et al 2010,
Meehland Teng 2012, Robson etal 2012, Yeager etal 2012, Yang et al 2013, Msadek et al 2014, Yeager et al 2018,
Smith et al 2019, Smith et al 2020). Moreover, the initialized retrospective decadal forecasts require large
computational resources and thus are only undertaken by large model centers.

Dingetal (2018) and (2019) proposed an alternative forecast method (Model-Analogs) to avoid additional
forecast ensemble integration. In this method, the predictions are obtained from a long preindustrial control
simulation by matching their selected variables to observed fields. The forecast members at various lead times
are then taken from the subsequent evolution of these states in the control simulation. They showed skillful
seasonal prediction of tropical Pacific SST anomalies using Model-Analogs. The skills in some regions such as
the eastern equatorial Pacific even exceed that from initialized seasonal forecasts. In this study, we attempt to
apply the Model-Analogs technique to decadal forecasts and try to evaluate if such a method is comparable to the
initialized retrospective decadal hindcasts/forecasts over the SO. This Model-Analogs method may provide a
benchmark for prediction skill when developing future decadal prediction systems.

2. Methods and models

In the Model-Analogs approach, we take advantage of large amounts of model output available from an existing
long control simulation of a model. We refer to this data as a ‘library’ of climate states. For any observation, we
then search through this ‘library’ for a small set of times where the model state most closely resembles the
observed state by some metric. We then use the subsequent time evolution of these model states (which are
closest to the observed state) as a forecast, with forecast spread corresponding to the differing time evolutions
from these various selected time points in the control simulation. According to Ding et al (2018), the analogs we
o e P
or o1
distance between a target state T(#) and each library state L(¢"). The target state is the observed state at the
initialization time and the library state is from model’s control simulation. The v denotes a variable and V is the
total number of variables. The j represents spatial grid points and J is the total number of grid points. The 67 and
} are the domain averaged standard deviation. To define analogs, we set V = 4 and constructed target and
library states from SST anomalies (v = 1), subsurface temperature anomalies at 1500 m depth (v = 2), sea
surface salinity (SSS) anomalies (v = 3) and subsurface salinity anomalies at 1500 m depth (v = 4) within the SO
domain (50°S-77°S). We choose these four variables, because these variables control ocean stratification over

choose at each time t are through a distance metric d (¢, t') = ZV: 1211':1 by minimizinga

the SO which is critical to the deep-water formation and thus determines the long memory of deep ocean. We
then ranked the distance metric in an ascending order, and chose the P states closest to the target state as the
model-analog ensemble members {L (¢'}), L(t';), L(t'3)... ... L(t'p)} where Pis the analog index and #'pis the
time of this analog in the library. The subsequent evolution of ensemble within the control simulation

(Lt +7), L{t', + 1), L(t's + 7)... ... L(t'p + 7)} is the Model-Analogs forecast ensemble for T'(t 4 7) at
lead time 7 years.

The library dataset we used in the present study comes from the GFDL newly developed SPEAR (Seamless
system for Prediction and EArth system Research) (Delworth et al 2020) simulation. We use SPEAR_LO version
and its preindustrial control run has 4000 years. The SPEAR_LO has approximately 1° (refined to 0.5° at high
latitudes) ocean and ice components from MOMG6 (Adcroft e al 2019) and 100 km atmosphere and land
components from AM4-LM4 (Zhao et al 2018a, b). The observations used for target states or the initial Model-
Analogs states are obtained from SPEAR_ECDA (Lu et al 2020) and SPEAR_atm_sst_restore reanalysis (discuss
below). SPEAR_ECDA is based on SPEAR_LO and includes the ocean data assimilation (ODA) system in
MOMBG6 as its backbone and incorporates the ocean tendency adjustment (OTA) bias correction scheme.
SPEAR_ECDA assimilates a large amount of ocean observations such as the Argo dataset in recent years. We
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then average these two reanalysis datasets in their overlapping periods in to order to get a more reasonable
‘observation’.

We compare the Model-Analogs based prediction skill with that from the retrospective decadal forecasts/
hindcasts system initialized with SPEAR _atm_sst_restore reanalysis (Yang e al2021). The SPEAR _atm_sst_restore is
based on SPEAR_LO, in which the atmospheric winds and temperature were restored toward the 55-year Japanese
Reanalysis (JRA-55) (Kobayashi et al 2015) and the SST was restored toward the NOAA Extended Reconstructed Sea
Surface Temperature version 5 (ERSSTv5) data (Huang et al 2017). We then conducted a decadal retrospective
forecast using the SPEAR_LO initialized from SPEAR _atm_sst_restore. The retrospective forecasts have 20 members
and were initialized on 1 January every year from 1961 to 2021 and integrated for 10 years with the temporally varying
historical forcings. To effectively remove the climate drift, the forecast anomalies for each variable were obtained by
subtracting out the lead-time-dependent climatology from forecasts.

3. Perfect model predictability using model-analogs

We first assess the Model-Analogs technique in a perfect model context. In SPEAR_LO control simulation, we
take the 1001-3500 years (abandon the first 1000-year data due to model spin-up process) as the library data and
the last 500 years (3501-4000) is used for verification. The analog ensemble size (P) we set to 15. We test the
sensitivity of perfect model skill on the ensemble size (P) and training data length and find the results are very
similar when the ensemble size is larger than 10 and the library data is longer than 1500 years (Supplementary
figure 1). We show in figure S2 (Supplementary figure) how well the model analogs reproduce the target states at
zero lag. The correlation between the Model-Analogs ensemble means and target state is very high throughout
the training region (white box in figure S2) for all four analogs (SST, SSS, subsurface temperature and salinity),
suggesting high matches between the target states and model analogs. The highest matching regions are over the
Ross, Amundsen-Bellingshausen and Weddell Seas. It is interesting to see the surface correlations (SST, SSS) are
smaller than that in the subsurface variables (figures S2(a), (c) versus figures S2(b), (d)), which is probably due to
smaller noises from the subsurface ocean. Overall, the model analogs capture the target states very well at zero lag
within the training region. The correlation dramatically drops outside the training region.

We then show in figure 1 the perfect model skill of ensemble mean model-analog reconstruction of SO SST
anomalies at different lead times. Atalead of 2-yr, the SST prediction skill is very high in most areas (figure 1(a)),
with a maximum over the Ross and eastern Weddell Seas where the SST correlation exceeds 0.8. As the lead time
increases, the SST correlation gradually decreases (figures 1(a)—(e)). Atalead of 10-yr, the SST correlation in
most areas is still above 0.6 (figure 1(e)), indicating that the SO SST is predictable on decadal time scales. We note
that the regions with high prediction skills (Ross and Weddell Seas) coincide with the SO deep convection
regions in SPEAR_LO (Delworth et al 2020). This implies that the high SO SST skill is largely associated with the
deep convection memory.

We further show in figure 1(f) the prediction skill of SO area averaged SST as a function of lead times. It confirms
that the SO area averaged SST can be predicted 10 years in advance in this perfect model context. The longitude
dependence of SST skill is clearly seen from figure 1(g). The SST correlation over the Ross (~180°W) and Weddell
(~10°E) Seas shows the highest values and persists the longest. Again, this highlights the important role of SO deep
convection in the SST prediction skill. To verify this speculation, we plot the SO SST and deep convection index (the
AABW cell strength) in target states and those from model analogs at various lead years (figure 2). It is clearly seen that
the model analogs well capture the SO deep convection evolutions (figure 2(b)). The convection persistence then
provides a predictability source for the SO SST (figure 2(a)). These results are consistent with our conclusions from
previous APT analysis and perfect model predictability experiments (Zhang et al 2017a, b). Thus, the Model-Analogs
technique in essence successfully captures the most predictable mode over the SO in our model system.

4. Retrospective prediction using Model-Analogs versus using initialization

In this section, we use the Model-Analogs to make retrospective hindcasts of observed SST anomalies over the
SO. To make real-world hindcasts using Model-Analogs, we choose the target state from ‘observed” anomalies
(SST, SSS, subsurface temperature and salinity) in years 1961-2021 and the data library from the entire dataset in
SPEAR_LO control simulation (1001-4000 years). Since observations over the SO are very sparse in both time
and space, particularly over the subsurface ocean, we use the averaged results of data assimilation product
(SPEAR_ECDA) and SPEAR_atm_sst_restore reanalysis as a substitute for the observations. We construct
model-analog hindcasts for forecast leads of 0-10 years. We set ensemble size P = 15 and there are only small
improvements when the P further increases. We then compare ensemble mean model analog skills with the
SPEAR retrospective decadal prediction system initialized with SPEAR _atm_sst_restore reanalysis (Yang et al
2021).
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Figure 1. Perfect model skill (correlation) of Southern Ocean (SO) SST using Model-Analogs method at (a) 2-year lead, (b) 4-year lead,
(c) 6-year lead, (d) 8-year lead and (e) 10-year lead. (f) Perfect model skill of SO area averaged (0°-360°E, 50°~70°S) SST skill as a
function of lead years. (g) Perfect model skill of SO meridionally averaged (50°—70°S) SST skill as a function of lead years. The grey
points overlapping on the shading denote that the SST correlation is significant at a 95% confidence level bast on a Student’s t-test.

Figures 3(a)—(j) shows Model-Analogs and initialized decadal hindcast skills of observed SST anomalies at
various lead times. The Model-Analogs overall show high prediction skills south of 50°S over the SO
(figures 3(a)—(e)). The highest skill is mainly over the Ross, Amundsen, and Weddell Seas. The SST correlation
gradually decreases as the lead time increases. The SST prediction skill over part of the SO can be predicted up to
adecade (figure 3(e)). These SST skill characteristics using Model-Analogs share great similarities with that from
perfect model (figures 1(a)—(e) versus figures 3(a)—(e)), suggesting that the predictability source may be the same
in reanalysis and in model. The Model-Analogs also reproduce many details of skill from the initialized decadal
hindcast (figures 3(a)—(e) versus figures 3(f)—(j)). Both sets of hindcasts are skillful over the Ross and Amundsen-
Bellingshausen Seas, where SST correlation is as high as 0.7 even at alead time of 10-yr. The initialized skills are
generally comparable to that from Model-Analogs before 4-yr leads. After that, the Model-Analogs have higher
skills over the Weddell Sea than the initialized hindcasts. Consistent with Yang et al (2021), the success of skill in
initialized hindcasts mainly arises from the correct initialization of SO deep convection states, with strong
AABW cell states around 1975-1985 and weak AABW cell states during 2000-2015 (figure 4(d)). The Model-
Analogs technique also broadly captures the SO AABW cell evolutions in reanalysis (figure 4(c)). The long
persistence of SO deep convection eventually reflects on the SST and provides a decadal predictability source for
the SO SST skill (figures 4(a), (b)).

Figures 4(a) and (b) also display that the SO SST tends to warm in recent years. These warming anomalies are
accompanied with an extreme low Antarctic Sea ice in late 2016 and persistent sea ice decreases thereafter (e.g.,
Wang et al 2019). The physical processes leading to these SO warming/sea ice decreases are primarily associated
with the atmosphere forcings and upper ocean (0—500 m) variabilities (e.g., Meehl et al 2019, Zhang et al 2022b),
which is very different from the warming around 1980s when the deep ocean process is involved. Thus, the
ocean stratification (1500 m and 0 m) based Model-Analogs can’t capture these upper ocean processes and thus
have worse prediction skills than the initialized decadal hindcasts (figures 4(a), (b)).

It is also worth noting that the SST prediction skill north of 50°S in the initialized hindcasts is much higher
than that from Model-Analogs (figures 3(a)—(e) versus figures 3(f)—(j)). Within 30°S-50°S, the SST shows a
strong warming trend in both observation and climate models (Armour et al 2016). This warming trend is
largely associated with the greenhouse gas induced warming and is thus driven by external forcings (e.g.,
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Figure 2. (a) SO area averaged (0°-360°E, 50°~70°S) SST anomalies (°C) from target state (2501-3000 year in SPEAR_LO control
simulation, black line), 0-year lead (light blue line), 5-year lead (blue line) and 10-year lead (red line) Model-Analogs hindcasts in
SPEAR_LO. (b) Same as (a) but for the Antarctic Bottom Water (AABW) cell index (Sv) time series. The AABW cell index is defined as
the absolute value of minimum global meridional overturning circulation streamfunction south of 60°S, which well represents the SO
deep convection strength (e.g., Zhang et al 2022).
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Figure 3. Model-Analogs hindcast skills of SO SST estimated by the SST correlation between ERSST and analog hindcasts at (a) 2-year
lead, (b) 4-year lead, (c) 6-year lead, (d) 8-year lead and (e) 10-year lead. (f-j) Same as (a-¢) but for the correlation between ERSST and
decadal hindcast skills initialized from SPEAR _atm_sst_restore reanalysis. (k-0) Same as (a-e) but for the improved Model-Analogs
hindcast skill by adding externally forced signals. The grey points overlapping on the shading denote that the correlation is significant
ata 95% confidence level bast on a Student’s t-test.

Marshall et al 2015, Armour et al 2016, Liu et al 2018). The physical processes are as follows: the heat uptake
mainly occurs south of 50°S in the SO. This heat is then balanced by an anomalous northward heat transport by
the mean Deacon Cell. The heat is eventually converged within the 30°—50°S latitudinal band. Since the Model-
Analogs are constructed from a pre-industrial control simulation, the externally forced signals are not taken into
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Figure 4. (a) SO areaaveraged (0°-360°E, 50°~70°S) SST time series (°C) in ERSST (black line), Model-Analogs hindcasts at 0-year
lead (light blue line), 5-year lead (blue line), and 10-year lead (red line). (b) Same as (a) but for the decadal hindcasts initialized from
SPEAR_atm_sst_restore reanalysis. (c-d) Same as (a-b) but for the AABW cell evolutions. The black line denotes the AABW cell time
series in reanalysis products (averaged value of SPEAR_ECDA and SPEAR_atm_sst_restore reanalysis).

consideration. According to Ding et al (2019), we improve this disadvantage of Model-Analogs by using the
ensemble mean of SPEAR_LO large ensemble (LE) simulations (Delworth et al 2020) to estimate the externally
forced signals (see supplementary information). Prior to searching for model-analogs in a long control
simulation, we remove the externally forced signal from the reanalysis products. The predicted forced trend
component from LE simulations is then added back to the final hindcasts. Figures 3(k)—(o) show the SST
prediction skills at various lead times after adding the externally forced component. Apparently, including the
external radiative forcings largely improves the SST prediction skill of the Model-Analogs hindcasts within
30°S-50°S.

5. Discussion and summary

In the present study, we use Model-Analogs method to assess the decadal SST prediction skill over the SO. South
0f 50°S, the model analog hindcasts (constructed from observation-constrained reanalysis and SPEAR_LO
control simulation) show comparable skills with the initialized retrospective decadal hindcasts. As the lead time
becomes longer, the SST skill over the Weddell Sea using Model-Analogs is even higher. The high SST skill in
both hindcasts primarily arises from the successful capture of SO deep convection states. This deep ocean
memory and the associated decadal predictability are also clearly seen from the perfect model context using
Model-Analogs. Within 30°S-50°S latitudinal band, the model analog hindcasts show low skill due to the
absence of external forcing. When we include the externally forced secular trend estimated from LE simulations,
the model analog hindcasts and initialized decadal hindcasts show identical skills. These results are very exciting,
since we can make forecasts only based on observation constrained reanalysis and model control simulation,
without running expensive assimilation initialized prediction model. The Model-Analogs method therefore
provides a baseline for prediction skills when developing future decadal forecast systems.

The decadal predictability source of SO SST in SPEAR model and reanalysis is largely associated with the SO
deep convection (or the AABW cell) states. Due to sparse SO observations in both space and time, it is difficult to
evaluate the exact strength and variability of this AABW cell. Purkey and Johnson (2012) and (2013) suggested a
global-scale slowdown of the AABW cell during 19792012 in observation. It seems that this weakening trend is
consistent with what we have seen in SPEAR reanalysis. It is also not clear if the SO deep convection oscillates in
the real world. Some studies suggested the SO low-frequency variability has likely occurred in the past climate
(e.g., Cook et al 2000, Le Quesne et al 2009) but is not sure if it exists in the current and future climates (Zhang
etal2022a). The SPEAR_LO is a ‘convecting’ model, which offer a glimpse into the potential decadal
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predictability over the SO in the presence of low-frequency convection variability. Zhang et al 2021 suggested
that the SPEAR_LO may overestimate the amplitude of low frequency convection variability relative to
observations. Here, we also take a control simulation from SPEAR_MED that has a weaker convection
variability compared to SPEAR_LO (Zhang et al 2022a) as library data to search for analogs. We find the SST
prediction skill over the SO indeed decreases due to a weaker persistence of convection in SPEAR_MED (figures
S3,4). Thus, it remains unclear to what extent the SO convection variability can imprint on the SST
predictability in the real world. Note also that we choose reanalysis products as our initial Model-Analogs states.
These reanalysis datasets come from the same model family and resolution of our decadal hindcasts, and
therefore biases are likely to be common between our model-analogs and these systems, although
SPEAR_ECDA reanalysis employed the bias correction scheme. It is important to apply the Model-Analogs
technique to other models, reanalysis products and compare them with the initialized decadal hindcasts from
different model centers in the future.

As mentioned in the methods section, we chose four variables including both surface and subsurface ocean
variables to define analogs. Because these variables control ocean stratification over the SO which is critical to the
deep-water formation and thus determines the long memory of deep ocean. When we only use SST to define
analog or add atmosphere variable (e.g., low frequency sea level pressure), the SO SST skill using Model-Analogs
technique largely decreases and is worse than the initialized hindcasts (Supplementary figure S5). This suggests
that the subsurface ocean is a necessary condition for the high decadal prediction skill over the SO.

Thus, we also call for improved and sustained measurements of the SO, particularly over the subsurface
ocean, using new technologies, which could produce better target states for Model-Analogs and better
initialization for future prediction system.

Acknowledgments

We thank Sonya Legg and Tony Rosati for their extremely valuable suggestions and comments on our paper as
GFDL internal reviewers. The work of T.L.D, X.Y and F.Z is supported as a base activity of NOAA’s Geophysical
Fluid Dynamics Laboratory. L.Z, F.L and Y.M are supported through UCAR or Princeton University under
block funding from NOAA/GFDL or JAMSTEC.

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOI: 10.5281/
zen0do.7562575.

Data and code availability

The Japanese 55-year Reanalysis JRA-55 is available at https: //jra.kishou.go.jp /JRA-55/index_en.html. The
ERSSTV5 is available at https: / /www.ncei.noaa.gov/products/extended-reconstructed-sst. The data for figures
are available online at https://zenodo.org/record /7562575#.Y87b9S1h1pQ. The source code of ocean
component MOM6 of SPEAR_LO model is available at https: //github.com /NOAA-GFDL/MOM6.

Competing interests

The authors declare no competing interests.

ORCIDiDs

Liping Zhang © https://orcid.org/0000-0003-1122-8927

References

Adcroft A et al 2019 The GFDL global ocean and sea ice model OM4.0: model description and simulation features J. Adv. Model. Earth
Syst. 11

Armour K C, Marshall ], Scott ], Donohoe A and Newsom E R 2016 Southern Ocean warming delayed by circumpolar upwelling and
equatorward transport Nat Geosc. 9 549-55

Boer GJ 2004 Long time-scale potential predictability in an ensemble of coupled climate models Climate Dyn. 23 29-44

Boer GJ 2011 Decadal potential predictability of twenty-first century climate Climate Dyn. 36 1119-33



https://doi.org/10.5281/zenodo.7562575
https://doi.org/10.5281/zenodo.7562575
https://jra.kishou.go.jp/JRA-55/index_en.html
https://www.ncei.noaa.gov/products/extended-reconstructed-sst
https://zenodo.org/record/7562575#.Y87b9S1h1pQ
https://github.com/NOAA-GFDL/MOM6
https://orcid.org/0000-0003-1122-8927
https://orcid.org/0000-0003-1122-8927
https://orcid.org/0000-0003-1122-8927
https://orcid.org/0000-0003-1122-8927
https://doi.org/10.1029/2019MS001726
https://doi.org/10.1038/ngeo2731
https://doi.org/10.1038/ngeo2731
https://doi.org/10.1038/ngeo2731
https://doi.org/10.1007/s00382-004-0419-8
https://doi.org/10.1007/s00382-004-0419-8
https://doi.org/10.1007/s00382-004-0419-8
https://doi.org/10.1007/s00382-010-0747-9
https://doi.org/10.1007/s00382-010-0747-9
https://doi.org/10.1007/s00382-010-0747-9

10P Publishing

Environ. Res. Commun. 5(2023) 021002 W Letters

Cook ER, Buckley BM, D’Arrigo R D and Peterson M ] 2000 Warm-season temperatures since 1600 BC reconstructed from Tasmanian tree
rings and their relationship to large-scale sea surface temperature anomalies Climate Dyn. 16 79-91

DelSole T and Tippett M K 2009a Average predictability time: I. Theory J. Afmnos. Sci. 66 1172-87

DelSole T and Tippett M K 2009b Average predictability time: IT. Seamless diagnosis of predictability on multiple time scales J. Atmos. Sci. 66
1188-204

Delworth T L et al2006 GFDL’s CM2 global coupled climate models: I. Formulation and simulation characteristics J. Climate 19 643—74

Delworth T L et al 2020 SPEAR-the next generation GFDL modeling system for seasonal to multidecadal prediction and projection
J. Advances in Modeling Earth Systems 12 ¢2019MS001895

Ding H, Newman M, Alexander M A and Wittenberg A T 2018 Skillful climate forecasts of the tropical Indo-Pacific Ocean using model-
analogs J. Clim. 31 5437-59

Ding H, Newman M, Alexander M A and Wittenberg A T 2019 Diagnosing secular variations in retrospective ENSO seasonal forecast skill
using CMIP5 model-analogs Geophys. Res. Lett. 46 1721-30

Huang B et al 2017 Extended reconstructed sea surface temperature, Version 5 (ERSSTv5): upgrades, validations, and intercomparisons
J. Clim. 30 8179-205

Kobayashi S eral 2015 The JRA-55 reanalysis: general specifications and basic characteristics J. Meteorological Society of Japan 93 5-48

Liu W, LuJ, Xie S-P and Fedorov A 2018 Southern Ocean heat uptake, re-distribution, and storage in a warming climate: The role of
meridional overturning circulation J. Climate 31 472743

LuFetal 2020 GFDL’s SPEAR seasonal prediction system: initialization and ocean tendency adjustment (OTA) for coupled model
predictions J. Advances in Modeling Earth Systems 12

Lumpkin R and Speer K 2007 Global ocean meridional overturning Phys. Oceanogr. 37 2550—62

Marshall ], Scott ] R, Armour K C, Campin J-M, Kelley M and Romanou A 2015 The ocean’s role in the transient response of climate to
abrupt greenhouse gas forcing Climate Dyn. 44 2287-99

Marshall J and Speer K 2012 Closure of the meridional overturning circulation through Southern Ocean upwelling Nat. Geosci. 5 171-80

Meehl G A et al 2019 Sustained Ocean changes contributed to sudden antarctic sea ice retreat in late 2016 Nat. Commun. 10 14

Meehl G A and Teng H 2012 Case studies for initialized decadal hindcasts and predictions for the Pacific region Geophys. Res. Lett. 39 1.22705

Mochizuki T et al 2010 Pacific decadal oscillation hindcasts relevant to near-term climate prediction Proc. Natl Acad. Sci. 107 18337

Msadek R et al 2014 Predicting a decadal shift in North Atlantic climate variability using the GFDL forecast system J. Climate 27 6472-96

Purkey S G and Johnson G C 2012 Global contraction of antarctic bottom water between the 1980s and 2000s J. Climate 25 5830—44

Purkey S G and Johnson G C 2013 Antarctic bottom water warming and freshening: contributions to sea level rise, ocean freshwater budgets,
and global heat gain J. Clim. 26 6105-22

Le Quesne C, Acufia C, Boninsegna ] A, Rivera A and Barichivich ] 2009 Long-term glacier variations in the central Andes of Argentina and
Chile, inferred from historical records and tree-ring reconstructed precipitation Palaeogeogr. Palaeoclimatol. Palaeoecol. 281 334—44

RobsonJ 1, Sutton R T and Smith D M 2012 Initialized decadal predictions of the rapid warming of the North Atlantic Ocean in the mid
1990s Geophys. Res. Lett. 39 L19713

Russell J L, Dixon D W, Gnanadesikan A, Stouffer R J and Toggweiler ] R 2006 The Southern Hemisphere westerlies in a warming world:
Propping open the door to the deep ocean J. Climate 19 6382—-90

Sigman D M and Boyle E A 2000 Glacial/interglacial variations in atmospheric carbon dioxide Nature 407 859—69

Smith D M 2019 Robust skill of decadal climate predictions npj Climate and Atmospheric Science 2 13

Smith D M et al 2020 North Atlantic climate far more predictable than models imply Nature 583

Wang G 2019 Compounding tropical and stratospheric forcing of the record low Antarctic sea-ice in 2016 Nat. Commun. 10 13

Yang X 2013 A predictable AMO-like pattern in the GFDL fully coupled ensemble initialized and decadal forecasting system J. Climate 26
65061

Yang X, Delworth T L, Zeng F, Zhang L, Cooke W F, Harrison M J, Rosati A, Underwood S D, Compo G P and McColl C2021 On the
development of GFDL’s decadal prediction system: initialization approaches and retrospective forecast assessment Journal of
Advances in Modeling Earth Systems 13 1-30

Yeager S G, Danabasoglu G, Rosenbloom N, Strand W, Bates S, Meehl G et al 2018 Predicting near-term changes in the Earth system: A large
ensemble of initialized decadal prediction simulations using the Community Earth System Model Bulletin of the American
Meteorological Society 99 186786

Yeager S G, Karspeck A, Danabasoglu G, Tribbia ] and Teng H 2012 A decadal prediction case study: Late twentieth-century North Atlantic
Ocean heat content J. Climate 25 5173-89

Zhang L et al 2022a Roles of meridional overturning in subpolar Southern Ocean SST trends: insights from ensemble simulations J. Clim. 35
1577-96

Zhang L, Delworth T L, Cooke W F, Goosse H, Bushuk M, Morioka Y and Yang X 2021 The dependence of internal multidecadal variability
in the Southern Ocean on the ocean background mean state J. Clim. 34 106180

Zhang L, Delworth T L, Cooke W F and Yang X 2019 Natural variability of Southern Ocean convection as a driver of observed climate trends
Nat. Clim. Change 9 59-65

Zhang L, Delworth T L and Jia L 2017a Diagnosis of decadal predictability of southern ocean sea surface temperature in the GFDL CM2.1
model J. Climate 30 630928

Zhang L, Delworth T L, Yang X, Gudgel R G, Jia L, Vecchi G A and Zeng F 2017b Estimating decadal predictability for the Southern Ocean
using the GFDLCM2.1 model J. Climate 30 5187-203

Zhang L, Delworth T L, Yang X, Zeng F, Lu F, Morioka Y and Bushuk M 2022b The relative role of the subsurface Southern Ocean in driving
negative Antarctic Sea ice extent anomalies in 2016-2021 Communications Earth & Environment 3 302

Zhao M et al2018a The GFDL global atmosphere and land model AM4.0/LM4.0: 1. Simulation characteristics with prescribed SSTs J. Adv.
Model. Earth Syst. 10 691-734

Zhao M et al2018b The GFDL global atmosphere and land model AM4.0/LM4.0: 2. Model description, sensitivity studies, and tuning
strategies J. Adv. Model. Earth Syst. 10 735-69



https://doi.org/10.1007/s003820050006
https://doi.org/10.1007/s003820050006
https://doi.org/10.1007/s003820050006
https://doi.org/10.1175/2008JAS2868.1
https://doi.org/10.1175/2008JAS2868.1
https://doi.org/10.1175/2008JAS2868.1
https://doi.org/10.1175/2008JAS2869.1
https://doi.org/10.1175/2008JAS2869.1
https://doi.org/10.1175/2008JAS2869.1
https://doi.org/10.1175/2008JAS2869.1
https://doi.org/10.1175/JCLI3629.1
https://doi.org/10.1175/JCLI3629.1
https://doi.org/10.1175/JCLI3629.1
https://doi.org/10.1029/2019MS001895
https://doi.org/10.1175/JCLI-D-17-0661.1
https://doi.org/10.1175/JCLI-D-17-0661.1
https://doi.org/10.1175/JCLI-D-17-0661.1
https://doi.org/10.1029/2018GL080598
https://doi.org/10.1029/2018GL080598
https://doi.org/10.1029/2018GL080598
https://doi.org/10.1175/JCLI-D-16-0836.1
https://doi.org/10.1175/JCLI-D-16-0836.1
https://doi.org/10.1175/JCLI-D-16-0836.1
https://doi.org/10.2151/jmsj.2015-001
https://doi.org/10.2151/jmsj.2015-001
https://doi.org/10.2151/jmsj.2015-001
https://doi.org/10.1175/JCLI-D-17-0761.1
https://doi.org/10.1175/JCLI-D-17-0761.1
https://doi.org/10.1175/JCLI-D-17-0761.1
https://doi.org/10.1029/2020MS002149
https://doi.org/10.1175/JPO3130.1
https://doi.org/10.1175/JPO3130.1
https://doi.org/10.1175/JPO3130.1
https://doi.org/10.1007/s00382-014-2308-0
https://doi.org/10.1007/s00382-014-2308-0
https://doi.org/10.1007/s00382-014-2308-0
https://doi.org/10.1038/ngeo1391
https://doi.org/10.1038/ngeo1391
https://doi.org/10.1038/ngeo1391
https://doi.org/10.1038/s41467-018-07865-9
https://doi.org/10.1029/2012GL053423
https://doi.org/10.1073/pnas.0906531107
https://doi.org/10.1073/pnas.0906531107
https://doi.org/10.1073/pnas.0906531107
https://doi.org/10.1175/JCLI-D-13-00476.1
https://doi.org/10.1175/JCLI-D-13-00476.1
https://doi.org/10.1175/JCLI-D-13-00476.1
https://doi.org/10.1175/JCLI-D-11-00612.1
https://doi.org/10.1175/JCLI-D-11-00612.1
https://doi.org/10.1175/JCLI-D-11-00612.1
https://doi.org/10.1175/JCLI-D-12-00834.1
https://doi.org/10.1175/JCLI-D-12-00834.1
https://doi.org/10.1175/JCLI-D-12-00834.1
https://doi.org/10.1016/j.palaeo.2008.01.039
https://doi.org/10.1016/j.palaeo.2008.01.039
https://doi.org/10.1016/j.palaeo.2008.01.039
https://doi.org/10.1029/2012GL053370
https://doi.org/10.1175/JCLI3984.1
https://doi.org/10.1175/JCLI3984.1
https://doi.org/10.1175/JCLI3984.1
https://doi.org/10.1038/35038000
https://doi.org/10.1038/35038000
https://doi.org/10.1038/35038000
https://doi.org/10.1038/s41612-019-0071-y
https://doi.org/10.1038/s41586-020-2525-0796-800
https://doi.org/10.1038/s41467-018-07689-7
https://doi.org/10.1175/JCLI-D-12-00231.1
https://doi.org/10.1175/JCLI-D-12-00231.1
https://doi.org/10.1175/JCLI-D-12-00231.1
https://doi.org/10.1175/JCLI-D-12-00231.1
https://doi.org/10.1029/2021MS002529
https://doi.org/10.1029/2021MS002529
https://doi.org/10.1029/2021MS002529
https://doi.org/10.1175/BAMS-D-17-0098.1
https://doi.org/10.1175/BAMS-D-17-0098.1
https://doi.org/10.1175/BAMS-D-17-0098.1
https://doi.org/10.1175/JCLI-D-11-00595.1
https://doi.org/10.1175/JCLI-D-11-00595.1
https://doi.org/10.1175/JCLI-D-11-00595.1
https://doi.org/10.1175/JCLI-D-21-0466.11577-1596
https://doi.org/10.1175/JCLI-D-21-0466.11577-1596
https://doi.org/10.1175/JCLI-D-21-0466.11577-1596
https://doi.org/10.1175/JCLI-D-21-0466.11577-1596
https://doi.org/10.1175/JCLI-D-20-0049.11061-1080
https://doi.org/10.1175/JCLI-D-20-0049.11061-1080
https://doi.org/10.1175/JCLI-D-20-0049.11061-1080
https://doi.org/10.1038/s41558-018-0350-3
https://doi.org/10.1038/s41558-018-0350-3
https://doi.org/10.1038/s41558-018-0350-3
https://doi.org/10.1175/JCLI-D-16-0537.1
https://doi.org/10.1175/JCLI-D-16-0537.1
https://doi.org/10.1175/JCLI-D-16-0537.1
https://doi.org/10.1175/JCLI-D-16-0840.1
https://doi.org/10.1175/JCLI-D-16-0840.1
https://doi.org/10.1175/JCLI-D-16-0840.1
https://doi.org/10.1038/s43247-022-00624-1
https://doi.org/10.1002/2017MS001208
https://doi.org/10.1002/2017MS001208
https://doi.org/10.1002/2017MS001208
https://doi.org/10.1002/2017MS001209
https://doi.org/10.1002/2017MS001209
https://doi.org/10.1002/2017MS001209

	1. Introduction
	2. Methods and models
	3. Perfect model predictability using model-analogs
	4. Retrospective prediction using Model-Analogs versus using initialization
	5. Discussion and summary
	Acknowledgments
	Data availability statement
	Data and code availability
	Competing interests
	References



