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Abstract
The four dimensional spacetime continuum, asfirst conceived byMinkowski, has become the
dominant frameworkwithinwhich to describe physical laws. In this paper, we showhow this four-
dimensional structure is a natural property of physical three-dimensional space, ifmodeledwith
Clifford geometric algebra C 3Rℓ ( ).We find thatMinkowski spacetime can be embeddedwithin a
larger eight dimensional structure. This then allows a generalisation of the invariant interval and the
Lorentz transformations. Also, with this geometric oriented approach thefixed speed of light, the laws
of special relativity and a generalised formofMaxwell’s equations, arise naturally from the intrinsic
properties of the algebra without recourse to physical arguments.We alsofindnew insights into the
nature of time, which can be described as two-dimensional. Some philosophical implications of this
approach as it relates to the foundations of physical theories are also discussed.

1. Introduction

Einstein’s seminal paper of 1905 [1] inaugurated a newunderstanding of space and time, which included the
properties of time dilation and length contraction.Minkowski subsequently showed that these exotic
phenomena could be interpreted as simply the intrinsic properties of a four-dimensional spacetime continuum,
with an invariantmixedmetric distance ds2= dt2− dx2. It is found that the Lorentz transformationswill hold
this interval invariant and produce the various spacetime effects. Lorentz invariance, which has nowbeen
extremelywell experimentally verified, has become a default requirement for all valid physical laws. The
foundational nature of theMinkowskimetric and Lorentz invariance, hencemotivates thework in this paper, to
more fully understand its origin and possible generalisations. Note, that we are not attempting a generalisation
ofMinkowski spacetime to include gravity. However,Minkowski spacetime retains validity within general
relativity (GR), as the curved spacetimemanifold is asymptoticallyMinkowskian at each point. Also, the
Minkowskimetric is actually a solution of Einstein’sfield equations, describing themetric for gravity free
spacetime, which is generalised as the FriedmannLemait̂reRobertsonWalker (FLRW)metric. To give a stronger
physical basis, it has been proposed by various authors [2] thatMinkowski spacetime, as well as gravity, arises as
an effective description ofmicroscopic degrees of freedom, as in emergent gravity, loop quantum gravity or
string theory, for example. Itmight also be possible to derive the Lorentz invariant structure directly from the
properties of the quantum vacuum. This paper also supports an underlying physical basis toMinkowski
spacetime, as a result of the interaction of the four distinct physical elements, represented by scalars, vectors,
pseudovectors and pseudoscalars. Nevertheless, it is reasonable to assume thatMinkowski spacetimewill
ultimately break down at the Planck scale.

As a way tomotivate our approach, one of themost fundamental aspects of the physical world is the
existence of three degrees of spatial freedom. Indeed, the three dimensions of space are assumed by default in
Minkowski spacetime. This idea is indeed supported by the observation of precisely five regular solids [3, 4],
which only occurs with exactly three spatial dimensions, as well as the inverse square laws of gravity and
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electromagnetism, which have been experimentally verified to high precision [5]. Therefore, it is natural to
adopt the formalismofClifford geometric algebra (GA) of three dimensions C 3Rℓ ( ) in order to describe
spacetime. Previous examples of approaches usingGA, or Clifford algebramore generally [6], include: (i)
spacetime algebra (STA) [7] and (ii) the algebra of physical space (APS) [8]. Here, STA posits four basis vectors to
represent three spatial and one time dimension. On the other hand, APSworks solely with three spatial basis
vectors, and represents time separately as a scalar variable. Both of these approaches can successfully reproduce
the results of special Relativity (SR). The distinction between these approaches, is that theMinkowskimixed
metric is assumed by default, whereas our approach attempts to derive this frommore fundamental principles.

With our approach, we adopt as a foundational postulate that three-dimensional physical space is
represented by theClifford algebra C 3Rℓ ( ). From this point of view, we find that time and theMinkowski
metric are naturally emergent properties.While recovering standard results as special cases, wefind that
spacetime generalises to eight dimensions. Also, while recovering the Lorentz transformations, we find amore
general class of transformations, allowing us to predict new kinematical effects.

2.DerivingMinkowski spacetime from C 3Rℓ ( )

Webeginwith our foundational hypothesis, that spacetime is represented by theClifford algebra C 3Rℓ ( ), being
an eight-dimensional graded algebra 3 2 3 3 3Å Å ÅR R R R⋀ ⋀ . To clarify the notation, C 3Rℓ ( ) can be
expressed using standard three-vectors as amultivector

x nM a j jb, 1= + + + ( )

where x= x1e1+ x2e2+ x3e3 a vector, jn= n1e2e3+ n2e3e1+ n3e1e2 a bivector, where
n= n1e1+ n2e2+ n3e3, and j= e1e2e3 trivector, with a, b, x1, x2, x3, n1, n2, n3 real scalars [9, 10].We have used as
a basis for three dimensional Clifford algebra C 3Rℓ ( ), the three unit elements e1, e2, e3, having a unit square
e e e 11

2
2
2

3
2= = = , and are anticommuting, with e1e2=− e2e1, e1e3=− e3e1 and e2e3=− e3e2. The four types

of elements within C 3Rℓ ( ) can be used to describe four distinct physical quantities typically represented as
scalars, polar vectors, axial vectors (or pseudovectors) and pseudoscalars, respectively. The eight-dimensional
multivector in equation (1) is isomorphic to the complexified quaternions [11, 12] and closely related to the
octonions [13–17], which have also been used previously tomodel spacetime.

2.1. Key properties of geometric algebra
Thefirst key property of GA is that no new products need to be defined, such as the dot and cross products, as all
products revert to the foundational process of the distribution ofmultiplication over addition, that is, the
standard process of expanding brackets, refer Appendix A. Secondly, the three basis vectors in C 3Rℓ ( ) can
produce the bivectors e1e2, e1e3, e2e3 and a trivector e1e2e3. The bivectors naturally represent such physical
phenomena asmagnetic fields, allowing a unified electromagnetic field variableE+ jB, for example. Thirdly, the
trivector quantity j= e1e2e3, is isomorphic to the unit imaginary i, thus allowing us to naturally incorporate
complex valued functions. Further, as an aid to visualisation, the four algebraic elements of scalars, vectors,
bivector and trivectors represent the four common geometrical entities of points, lines, areas and volumes,
respectively.

2.2. Finding the invariants
Due to the close connections between invariants and the laws ofNature, we now explore the invariants in the
space of C 3Rℓ ( ) described by equation (1), after applying themost general transformation rules.

Definition 1 (Clifford conjugation).WedefineClifford conjugation of amultivectorM as

x nM a j jb. 2= - - +¯ ( )

Clifford conjugation is an involution that is an anti-automorphism, so that for a product MN of two
multivectors M N C, 3Î Rℓ ( ), MN NM= ¯ ¯ .

Definition 2 (Multivector amplitude).Wedefine the amplitude squared of amultivectorM throughClifford
conjugation, giving the bilinear form

x n x nM MM a b j ab2 32 2 2 2 2= = - + - + -∣ ∣ ¯ ( · ) ( )

forming a complex-like numberÎ, and thus commutingwith the rest of the algebra.

We refer to this as a ‘complex-like’number because, as already noted, the trivector j is analogous to the unit
imaginary and all other quantities are real scalars. The square root is therefore well defined from complex

number theory and sowe can define themultivector amplitude as M M 2=∣ ∣ ∣ ∣ . This is essentially a norm,

2
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although in our case, itmay be complex. The amplitude squared has the property

M M M M M M M M M M M M . 41 2
2

1 2 2 1 1 1 2 2 1
2

2
2= = =∣ ∣ ¯ ¯ ¯ ¯ ∣ ∣ ∣ ∣ ( )

Wecan therefore write a norm relation

M M M M , 51 2 1 2=∣ ∣ ∣ ∣∣ ∣ ( )

provided that the appropriate branch is usedwhen finding the complex square roots.

2.3. The group transformations

Definition 3 (Bilinearmultivector transformation).Wedefine a general bilinear transformation on a
multivectorMas

M KML, 6¢ = ( )

where M K L C, , 3Î Rℓ ( ).We thenfind the transformedmultivector amplitude

M KML KML KMLLMK K L M , 72 2 2 2¢ = = =∣ ∣ ¯ ¯ ¯ ∣ ∣ ∣ ∣ ∣ ∣ ( )

wherewe have used the anti-involution property of Clifford conjugation and the important commuting
property of the amplitude.Hence, providedwe specify a unitary condition |K|2|L|2= 1 for these transforma-
tions, then the amplitude |M|will be invariant.Without loss of generality, it is then convenient to impose the
condition |K|2= |L|2=± 1. The transformation in equation (6) is then themost general bilinear transformation
that preserves themultivector amplitude and so produces an invariant distance over the space. The selection of
the involution of Clifford conjugation is not arbitrary, as it is the only involution producing a commuting
complex-like number allowing these invariants to form, according to equation (6).

If we focus on the special case |K|2= |L|2=+ 1 that describes transformations that are continuouswith the
identity. Then, using the power series expansion of the exponential function, themultivectorK can bewritten in
an exponential form [7, 18]

K e , 8p qc j jd= + + + ( )

provided |K|≠ 0, where c d, Î R and p q, 3Î R . Therefore, wefind

KK e e e e e . 9p q p qc j jd c j jd c jd c jd2 2 2 2= = =+ + + - - + +¯ ( )

The unitary condition |K|2= 1 then requires c= 0, d= nπ, n an integer. HenceK= ep+jqejnπ=± ep+jq.
Hence, as the bilinear product KK̄ will be unaffected, we can simply set n= d= 0. Then, writing L= er+js, with
r s, 3Î R , wefinally produce the general transformation operation

M Me e , 10p q r sj j¢ = + + ( )

whichwill leave themultivector amplitude invariant. The four three-vectors p, q, r, s illustrate that the set of
transformations is a twelve dimensionalmanifold, thus generalizing the conventional six dimensional Lorentz
group, consisting of boosts and rotations. For comparison, the conventional Lorentz transformations can be
written as

M Me e . 11p q p qj j¢ = - - - + ( )

Aswe can see, by comparing equation (11) and equation (10), due to the expanded spacetime arenawe are
able to double the size of the conventional Lorentz group. This obviously has a variety of significant
consequences, such as new effects on space and time, whichwe nowwish to explore further. This also provides a
generalised view of the key property of Lorentz invariance.

Now that we have identified MM̄ as invariant under the set of transformations in equation (10), it is now
relevant to look for other invariant expressions following from this.

2.4. An invariantmultivector dot product
Since MM̄ is invariant, then A B A B+ +( )( )must also be invariant, where A B C, 3Î Rℓ ( ).We have

A B A B AA BB AB BA. 12+ + = + + +( )( ) ¯ ¯ ¯ ¯ ( )

Hence, as AA BB,¯ ¯ are known to be invariant, thenwe can define amultivector dot product with the final two
terms

A B AB BA B A
1

2
. 13= + =· ¯ ( ¯ ¯ ) · ¯ ( )

This is also an invariant, being in the formof a complex-like number. The invariant dot product thus
provides amechanism to combine twodistinctmultivectors, as in the electromagnetic Lagrangian A J· ¯, for
example.

3
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2.5.Multivectors formed by a product defined asfields
Now,multivectors formed from a product of twomultivectors AB¯ transform as

A B KALKBL LAKKBL LABL. 14¢ ¢ = = =¯ ¯ ¯ ¯ ¯ ¯ ( )

Hencemultivectors formed as a product F AB= ¯ form a distinct class ofmultivectors with a distinct
transformation law

F LFL. 15¢ = ¯ ( )

Wewill refer to such quantities as ‘fields’, as wefind this transformation applies to the electromagnetic field,
for example.Wefind that the product of twofields F F LF LLF L L F F L1 2 1 2 1 2¢ ¢ = =¯ ¯ ¯ ( ) , also transforms as afield.

Hence, physical quantities that are produced as a product F AB= ¯ , are found to obey the conventional
Lorentz transformations of equation (11). This being the case for the conventional electromagnetic field, for
example, and hencewe do not predict any novel behaviour for this case. It also appears to be confirmation of our
generalised approach thatwe have nevertheless produced the correct transformation for the electromagnetic
field.However, we do expect novel behaviour from the spacetime background, as well as the electromagnetic
potential, for example, as theywill be subject to themore general transformations in equation (10). This leads to
the expectation ofmagneticmonopoles, as we show in section 3.7.

2.6. Reproducing the conventional Lorentz group
Now, if we represent spacetime by themultivector in equation (1), then simple rotations of this space are
described by the special case of equation (10)

M Me e , 16w wj j2 2¢ = - ( )

whichwill produce a rotation of θ= ||w|| radians about the axisw.Wherewewrite the Pythagorean length of

a vectorw, by the unbolded symbol ww w w w2
1
2

2
2

3
2= = + + .

A further special case of equation (10) is found by selecting the vector exponent, whichwill correspond to
conventional Lorentz boosts. That is

M Me e , 17v v2 2¢ = f f- - ( )ˆ ˆ

wheref is defined through vtanhf = where v= ||v||.We can rearrange vtanhf = to give coshf g= and

vsinhf g= . Hence v ve cosh sinh 1v f f g= - = -f- ˆ ( )ˆ , where v1 1 2g = - . In special relativity, the
vector v is identifiedwith the relative velocity vector between frameswhereas for rotations it is identifiedwith the
rotation axis.

If we now consider the effect of a Lorentz boost on the generalized eight-dimensional spacetime coordinate
M= a+ x∥+ x⊥+ jn∥+ jn⊥+ jb, wherewe split the spatial coordinate into components perpendicular and
parallel to the boost direction v̂ , thenwe find from equation (17) that

x x n n

x v x n v n

M a j j bj

a vx a j b j j b vn

e e e e

, 18

v v v v

g g g g
¢ = + + + + +
= - + - + + - + + -

f f f f- -
^

-
^

-

^ ^

 

   ( ) ( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ

which now shows the transformation of the eight-dimensionalmultivector subject to the conventional Lorentz
boost operation.We can see that the plane jn∥ orthogonal to the boost direction v is expanded by the γ factor to
jγn∥. This implies that the bivectors do not refer to quantities such as angularmomentumof extended bodies—
as the parallel components are in fact unchanged by such boosts—butmust refer to axial vector-type quantities
such as spin or themagnetic field. In fact, the bivector and trivector components jn+ jb= j(b+ n) are
transformed the same as a four-vector and indeed have the same transformational properties as the spin four-
vector.

We can also see that the conventional Lorentz boost transformation splits themultivector space into two
disjoint four dimensional subspaces 3ÅR R and 2 3 3 3ÅR R⋀ ⋀ represented by a+ x and jn+ jb respectively.
Thefirst four-vector a+ x can be identified as conventional spacetime if we identify the scalar awith the time t
and the second four-vector nj b+( ) as four-spin. Thus equation (1)describes a unified formulation of
spacetime that incorporates spin. The fact that the conventional boost operation, shown in equation (18),
effectively splits themultivector into two independent four-vector spaces also illustrates why the four-vector
notation is generally sufficient. However, if wewish to include themore general transformations, thenwewill
require the eight dimensionalmultivector. Note that equation (10) combines the boost and rotation operations
into a single operator and represents the relativistic effect called Thomas rotation [19].

Hence, we canwrite a generalised spacetime eventX, in differential form, as

x ndX dt d jd jdb, 19= + + + ( )

where the special case dX= dt+ dx is isomorphic to the conventionalMinkowski four vector dX= [dt, dx].
Referring to equation (3) this therefore has amplitude

4
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x n x ndX dt d d db j dtdb d d2 . 202 2 2 2 2= - + - + -∣ ∣ ( · ) ( )

In general, the invariant interval is therefore a complex-like number, as it now contains an additional
imaginary term.Hence, based on the requirement for themost general invariant quantity in C 3Rℓ ( )we see that
theMinkowski line element dt2− dx2 has naturally arisen, as well as a generalisation. The origin of the
Minkowskimetric therefore appears to be the operation of Clifford conjugation acting on physical space, as
modelled by C 3Rℓ ( ). Clifford conjugation, shown in equation (2), which reverses the linearmotion and spin
directions, thus appears equivalent to a time reversal on the space. That is, velocities and spins are reversed
whereas scalars and helicity are unchanged.Hence, spacetime combinedwith its time reversed copy dXdX̄ , is
what appears to create theMinkowski spacetime structure.

We nowwish to explore some of the immediate consequences of the generalised spacetimemetric in
equation (20).

3. Results

3.1. Proper time is two dimensional
For the generalmetric in equation (20), in order to change to a comoving frame (in order tomeasure its proper
time), we not only need to co-move but also co-rotate with the frame. This nevertheless leaves two quantities, the
scalar time and the helicity. The helicity describes a formof twisting of spacetime at each point (like thewringing
of a towel). Hence, time becomes intrinsically two-dimensional, with a distinct geometrical nature, combining
scalar and pseudoscalar aspects. That is we couldwrite the proper time as dτ= dt+ jdb. Recently, this idea of
more than one time dimensions has been given validity by experiment, with two-dimensional time being created
within a quantum computer [20]. Also previous theoretical work on two time dimensions has shown it to be a
physicallymeaningful hypothesis [21].

Now, as wefind the concepts of time and space emerging naturally from C 3Rℓ ( ), we can seek to gain a
greater insight into their underlying properties. The invariant distance dt2− dx2 effectivelymeans that each
observer will see a spherically expanding light shell of radius |x|= t. Hence, due to the spherical symmetry for all
observers, a single number t, can describe its radius. In comparison, we require three dimensions of space in
C 3Rℓ ( ). Hence, this provides an explanation forwhy time appears one dimensional whereas space is three
dimensional andwhy it is possible to freelymove in the space dimensions but not in the time dimension, which
naturally describes a spherical outward expansion froma point. Also, we notice in equation (20), that an
additional non-squared time factor dtdb arises in the imaginary component, which breaks the normal symmetry
in the time direction, thus also giving an arrow to time, which is lacking in theMinkowskimetric.

3.1.1. Reducing the proper time along aworldline
The true time elapsed for a travelling observer, is typically given by the proper time dτ2= dt2− dx2. From
equation (20), we can see that by setting the spin term dn= 0, we can reduce this proper time by increasing the
helicity, giving

xd dt d db jdtdb2 . 212 2 2 2t = - - + ( )

Hence, the scalar time elapsed is now dt2− dx2− db2, indicating that it can be reduced by increasing the
helicity b.We can see that the two time dimensions interact as dt2− db2, allowing a reduction in the proper time,
using the second time dimension, b.We also note that the proper time distance has an imaginary component,
which needs to be interpreted.

This shows that the twin paradox can be generalised, and that the elapsed time of the travelling twin can
perhaps be reduced beyondwhat is derived in SR. This is not the only interpretation of the effect since conditions
other than dn= 0 can set the initial conditions.

3.2. Velocitymultivector
Themagnitude of the invariant interval in equation (20), is commonly defined equal to dτ2, which defines the
proper time. Dividing through by this invariant, from equation (19), we produce the velocitymultivector

x n

v w

V
dX

d

dt

d

d

dt

dt

d
j
d

dt

dt

d
j
db

dt

dt

d
j jh1 , 22

t t t t t
g

= = + + +

= + + +( ) ( )

where v xd

dt
= , w nd

dt
= and h db

dt
= . Aswe defined |dX|2= dτ2 thenwe have V 1dX

d
2

2

2= =
t

∣ ∣ ∣ ∣ , a dimensionless
number. Therefore
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v w v wV h j h1 2 1 232 2 2 2 2g= - + - + - =∣ ∣ ( ( · )) ( )

and hence

v w v w

dt

d h j h

1

1 2
. 24

2 2 2
g

t
= =

- + - + -( ( · ))
( )

This then generalises the time dilation factor to account for spinw and helicity h.
Now, the conventional special relativistic

v

1

1 2
g =

-
, becomes imaginary if v> 1, and so is generally

regarded as unphysical. However, for the general velocitymultivector in equation (22), there is no difficulty with
an imaginary gamma factor, as it simply implies that the linearmotion v is converted into spinningmotion jw
(and vice versa). Hence, this expanded eight-dimensional framework is able to describe superluminal particles
[22, 23], in a naturalmanner.

Also, as |V|2= 1, then it is naturally expressed in exponential form

v w

v w
V

j

j
e cosh sinh . 25

2

v w

v w

j

j 2 f f= = +
+

+

f +

+

( )
( )( )

The exponential form shows that a change in eight-velocity involves a hyperbolic rotation of themultivector
in eight dimensions. Hence, the eight-velocity takes a dual role, of representing velocity as well as acting as an
operator to change frames, according to equation (10).

Now, as |V|2= 1 is constant, then differentiating, wefind V V V 0d

d

dV

d

dV

d
2 = + =

t t t
∣ ∣ ¯ ¯

, using the product

rule of differentiation. So, defining A dV

d
=

t
for an accelerationmultivector, we thus produce an orthogonality

condition for the velocity and accelerationmultivectors as AV VA 0+ =¯ ¯ or A V 0=· ¯ , a generalisation of the
conventional four-vector orthogonality result for eight-vectors.

We note thatwe are not addressing accelerating frames in this paper, and this possible extension does need to
be treated carefully [24]. Nevertheless, we believe this newderivation in the context of inertial frames, which
attempts to reveal the deeper origins ofMinkowski spacetime is of sufficient importance to describe on its own
merit. The extension to accelerating frames is an open question for futurework.

3.3. The gradient
For amultivectorM(t, x1, x2, x3, n1, n2, n3, b), varying over its eight dimensions, we define the gradient:

Definition 4 (Eight gradient).Wedefine the gradient operator

t
je

n
je

n
je

n
j

b
, 261

1
2

2
3

3

¶ =
¶
¶

+  +
¶
¶

+
¶
¶

+
¶
¶

+
¶
¶

( )

where e e e
x x x1 2 3

1 2 3
 = + +¶

¶
¶
¶

¶
¶

, is the regular three-gradient.

We thus have the special case of the four-gradient varying just over the time and space dimensions, with

t
e

x
e

y
e

z
271 2 3¶ =

¶
¶

+
¶
¶

+
¶
¶

+
¶
¶

( )

giving

t x y z
, 28

2

2

2

2

2

2

2

2
¶¶ =

¶
¶

-
¶
¶

-
¶
¶

-
¶
¶

¯ ( )

the standardwave operator.

3.4. Elementary equations
Now, the product of amultivector with a fieldXFwill transform the same as a generalmultivector. That is
X F KXLLFL K XF L¢ ¢ = =¯ ( ) . Hence, we canwrite an invariant equationXF= Y, whereX,Y transform as
multivectors, defined in equation (10), and F BA= ¯ transforms as afield.

Now, given a quantity derived from the gradient of amultivector potentialA as F A= ¶̄ , this then being a
product of twomultivectors,matches our definition of a field. SelectingX= ∂, F A= ¶̄ andY= J, we produce
the general formofMaxwell’s equations [10, 25],∂F= J, where J represents the sources.Wefind that this is a
generalisation ofMaxwell’s equations, as fully populating the source termover themultivector J, will include
magneticmonopole sources, as shown inAppendix A.

6

J. Phys. Commun. 7 (2023) 065001 JMChappell et al



Thefield transformation F LFL¢ = ¯ or

E B E Bj je e , 29r s r sj j+ ¢ = +- - +( ) ( ) ( )

turns out to be the standard transformation for the electromagnetic field [10]. Hence, our generalized
transformation for spacetime shown in equation (10) leavesMaxwell’s equations invariant as well as retaining
the conventional field transformation. Indeed, the Lorentz transformations were originally developed as the
transformations that leaveMaxwell’s equations invariant [26], andwe therefore have found amore general class
of such transformations, as shown in equation (10).

As an extension, another elementary equationwe couldwrite is∂F= YF*, whereY, F are eight vectors, which
is equivalent to theDirac equation. The eight-dimensionalmultivector F, naturally corresponding with the
eight-dimensional Dirac spinor. This description alsomakes it explicit that the source freeMaxwell equation
∂F= 0 is isomorphic to themassless Dirac equation.

3.5. Cartesian rotations in 4D
If we consider the transformation

M Me e , 30v wj j2 2¢ = ( )

wherewe have used twodistinct rotation axes v andw. It can be shown, for themultivector given in
equation (1), that this operation acts separately on two four-dimensional subspaces t+ jn and x+ jb, with each
of the two rotations being isomorphic to a rotation in a four-dimensional Cartesian space. This transformation,
even though it preserves the invariant distance, is not able to be included in the standard Lorentz group as it lies
outside the conventional four-vector representation.

We can see that this transformation canmove space and time quantities into or out of the spin terms in the
multivector. This can be further explored formodeling physical processes that involve various space and time
dilations.

3.6. Lightlike particles
Lightlike particles satisfy the condition dt2− dx2= 0. If we now also enforce a null condition |dX|2= 0, using
the generalizedmetric in equation (20), and consider a light speed particle with dt2− dx2= 0, then from
equation (20), we require db2= dn2 or db=± ||dn|| and dbdt− dx · dn= 0. By combining these two results we
produce the condition dx · dn=± ||dn||t. Dividing through by ||dn|| gives x nd dt= · ˆ , where n̂ is the unit
vector in the direction ofn and so is a relation describing Einstein’s light cone. Now, dx has itsminimumvalue of
dtwhen it is parallel to n̂ and so this relation enforces a space-like condition.We thenfind the general condition
for null lightlike particles to be

v n c, 31= · ˆ ( )

where for clarity we introduce the speed of light. Hence, due to the nature of the dot product, we can see that it is
only satisfied by a velocity ||v||= c, parallel to the spin axis n̂. That is, based on the eight-dimensional structure
of C 3Rℓ ( ) alone, wefind that a null particle, if traveling at the speed of light c, is required to have its spin axis
parallel to its direction ofmotion, exactly as observed for electromagnetic radiation. This result, though, being
derived here using purely algebraic arguments from C 3Rℓ ( ).

3.6.1. General null particles
More generally, if we do not explicitly enforce a light velocity for null particles, but only the requirement that
|dX|2= 0, thenwe have the equation

v w v wh j h0 1 2 . 322 2 2= - + - + -( · ) ( )

We require h= v ·w in order to zero the imaginary component, and sowe have

v w v w v w v w0 1 1 cos , 332 2 2 2 2 2 2 2q= - + - = - + -( · ) ( )

which gives

v
w

w
c

1

1 cos
. 34

2

2 2q
= 

+
+

∣∣ ∣∣ ( )

We recover the previous result, that a particlemust travel at the speed of light if its spin axis is parallel to its
velocity, that is with θ= 0.However, if we can generate radiation, with the spin axis orthogonal to its

propagation direction, wewould achieve a velocity of v w1 2= +∣∣ ∣∣ , which therefore indicates the possibility
of superluminal light propagation [27]. This orthogonal property has nowbeen observed in nearfield
electromagnetic radiation [22, 23, 28], but wewould also predict that this radiationwill be superluminal, based
on equation (34). As this radiation is in the evanescent near field and non-propagating it needs specific
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experimental testing, some of which indeed appear to show faster than light transmission [29]. This formalism
could therefore have application in areas where faster than light propagation appears to occur, such as in
quantum tunneling, for example.

Superluminal propagation is a debated topic, but it is generally recognised in phase waves and has also been
theoretically predicted and observed in quantum tunneling [30]. There is ongoing scientific debate regarding the
nature of this superluminal behavior and onwhether it extends to superluminal signaling and the affect on
causality [30, 31].We are careful to describe here in this paper a specific formofwave generation that we predict
would be superluminal. It is possible, that this is not generated inNature, and so there is no conflict with current
experiments.

3.7.Magneticmonopoles
For an electromagnetic four-potentialf+ A, subject to the generalised transformations in equation (10), will
create terms across thewholemultivector, as A Mj jf y¢ + ¢ + ¢ + ¢, where Mj ¢will represent amagnetic
monopole current potential and jy¢ is amagneticmonopole source.Hence, the generalised transformations
appear to indicate the possible existence ofmagneticmonopoles.

While freemagneticmonopoles have not yet been experimentally detected, their emergent properties have
been observed in spin icematerials [32].

4. The action

The Lorentz invariant distance provides a suitable action integral

S dX , 35ò= ∣ ∣ ( )

where the distance |dX| is given by the amplitude of the spacetimemultivector, given by equation (3). That is, we
are following the standard procedure of extremizing the proper time in order tofind the geodesics. Now, as
shownpreviously, with the assumption of a proper time in a rest framewe have |dX|= dτ and sowe have the
spacetime distance

x ndX t b d , 362 2 2 2 2 2t= - + -   ∣ ∣ ( ) ( )

wherewe define t dt

d
=

t
 , x xd

d
=

t
 , n nd

d
=

t
 and b db

d
=

t
 .We can thenwrite the action as S ddX

dò t=
t

∣ ∣ that implies
a Lagrangian

 x n
dX

d
V t b 1, 372 2 2 2

t
= = = - + - =   ∣ ∣ ∣ ∣ ( )

wherewe now extremize S dò t= .

Aswe have no explicit coordinate dependence, 
t

¶
¶ 
, 

x

¶
¶ 
, 

n

¶
¶ 

and 
b

¶
¶ 

are constants of themotion. Using the

Euler–Lagrange equation [33] for t

 d

d t t
0 38

t
¶
¶

=
¶
¶

=


( )

thus giving the conserved quantity




t
t E. 391¶

¶
= =-


 ( )

Wehavewritten the conserved quantity E aswe expect it to relate to energy byNoether’s theorem. Indeed,
because t dt dt g= = and  11 =- , wefind equating real components thatE= γ. The second conserved
quantity will be p= γv.

The bivector componentwill produce the conservation of relativistic angularmomentum s= γw as
expected and the fourth conserved quantity will be




b
b H, 401¶

¶
= =-


 ( )

that returns the helicity H b hg= = .
Thus themultivector invariant interval in equation (35), encodes the four fundamental conservation laws for

inertial particles [34].
Aswell as unifying four conservation laws, it also indicates that spin and helicity (aswell as energy and

momentum) are intrinsic to spacetime. The conservation ofmomentumobviously being a restatement of
Newton’sfirst law.
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4.1. Electromagnetic Lagrangian
Wenoted that the electromagnetic field is naturally definedwithin this formalism as F A= ¶̄ , as opposed to the
conventional F= ∂ ∧ A. This formwas first proposed by Fermi as an alternative electromagnetic Lagrangian
[35]. The advantage of using the definition F A= ¶̄ , is that

A

A
A

A

E B

F
t

t t
j , 41

⎛
⎝

⎞
⎠
f

f
f

=
¶
¶

-  -

=
¶
¶

+  -  -
¶
¶

+  

= + +ℓ

( )

·

( )

where E A

t
f= - - ¶

¶
, jB=∇∧ A= j∇× A and A

t
= + f¶

¶
ℓ · . This thus automatically gives the correct

field definitions aswell as the Lorenz gaugeℓ. In order to recover the standard electromagnetic field F= E+ jB
weneed to adopt the Lorenz gaugewithℓ= 0. The Lorenz gauge produces a Lorentz invariant formof
electromagnetism, enforcing causality and charge conservation, which is generally assumed to be a requirement
of a physical theory.

Now,withℓ= 0, we find FF F2= -¯ . Specifically

E B E B E B E BF jc jc j2 . 422 2 2= + + = - +( )( ) · ( )

Therefore, we canwrite an electromagnetic field Lagrangian

 F A J A A J
1

2

1

2
. 432 2= + = ¶ +· ¯ ( ¯ ) · ¯ ( )

Varying with respect toA producesMaxwell’s equations A F J¶¶ = ¶ =¯ . This formof the
electromagnetic Lagrangian has the advantage of producing a symmetric energymomentum tensor and
conserved spin [35].

4.2. Particle in an electromagneticfield
We found the Lagrangian for inertial particles in equation (37), of  V= ∣ ∣, being the dimensionlessmagnitude
of the eight velocity. The simplest extension of this Lagrangian, whilemaintaining invariance could possibly be
 V U= +∣ ∣, where themultivectorU conceptually represents a ‘flow’ in the background spacetime,
perturbing particle inertialmotionV.We can also add the known invariant ofV A· ¯ to the Lagrangian.We thus
produce a generalised Lagrangian

 V U A V
1

2
. 442= + +∣ ∣ · ¯ ( )

Note that we are permitted to use either  V U= +∣ ∣or  V U1

2
2= +∣ ∣ , because if a Lagrangian 

satisfies the Euler–Lagrange equations, then in general any function F ( ) of the Lagrangian also satisfies the
Euler–Lagrange equations.We can also recognize A V· ¯ as being in the formof the conventional classical
electromagnetic Lagrangian.

The term V U1

2
2+∣ ∣ including an additional deflection from inertialmotion and its physical consequences

is an open question for future work.

5. Conclusion

WeproduceMinkowski spacetime as an emergent property of physical space, whenmodeled by theClifford
algebra C 3Rℓ ( ), shown in equation (19). The interaction of the four algebraic elements in C 3Rℓ ( ) of scalars,
polar vectors, axial vectors and helicity, which represent four types of physical quantities, produce the
Minkowskimetric. These four quantities, also geometrically represent points, lines, areas and volumes, thus
giving a new geometric basis toMinkowski spacetime. Also, as C 3Rℓ ( ) has eight degrees of freedom,we
naturally produce a generalised eight dimensional spacetime arena.Wefind that the additional four degrees of
freedomdescribe the properties of spin and helicity.

Einstein developed special relativity from first principles, based on the relativity of uniformmotion and the
fixed speed of light, which then led to theMinkowskimetric. In distinctionwith our approach, wefind that the
Minkowski spacetime structure, including the fixed speed of light, arises naturally from the principles of
geometry, when described by C 3Rℓ ( ).

Einstein acknowledged that SRwas a theory of principle (based on two axioms) rather than a constructive
theoryworking fromfirst principles.With the assumption of C 3Rℓ ( ) as a basis for spacetime, we have thus
provided amore constructive approach to SR.
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Our generalised invariant interval of equation (20) gives a set of allowable transformation equations, which
coincidewith the conventional Lorentz transformations as special cases.We also show that the transformations
in equation (10) are amore general class yet still holdMaxwell’s equations invariant. This allows us to predict a
formof electromagnetic radiation that is superluminal, provided its spin axis is not parallel with its propagation
direction. Themaximum speed being reachedwhen its spin axis is orthogonal to the propagation direction, as
shown in equation (34).We also found the generalisedmetric canmodify the proper time on aworldline,
leading to a possible generalisation of the twin paradox, for example.

There is a philosophical question regarding the independent reality of spacetime [36]. This paper, adds to
this debate, as it ascribes the localMinkowskian behaviour of the gravitational field, as derived from the
fundamental interaction of the four geometrically distinct elements—energy,momentum, spin and helicity, as
described by C 3Rℓ ( ). The gravitationalmetric is now a function of coordinates themselves, which allows one to
use coordinates in a neo-Kantian formalmanner and themetric tensor to satisfy logical empiricism.

A further consequence of this derivation is that time becomes represented as the scalar component of the
multivector. This interpretation thus obviates the need for an additional fourth Euclidean-type dimension to
describe time, as it already exists within C 3Rℓ ( ). The invariant interval is in general a complex like number, and
hence the proper time is also complex, and thus two-dimensional [21, 37, 38].

The structure of C 3Rℓ ( ) thus provides an explanation for the origin ofMinkowski spacetime aswell as a
coherent framework for special relativistic physics. This produces a generalised invariant interval in
equation (20), generalised Lorentz transformations andMaxwell’s equations, directly from the properties of the
algebra of C 3Rℓ ( ). The generalised framework also predicts a range of newphysical effects, including the
possibility of super-luminal light propagation. This theory proposing that localMinkowskian spacetime is an
inherent property of three-dimensional physical space, also informs theKantian and logical empiricist debate on
the nature of spacetime.
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AppendixA.Maxwell’s equations

It is known, that usingClifford geometric algebra,Maxwell’s four equations can bewrittenwith the single
equation [10, 25]

t
F J, A1⎛

⎝
⎞
⎠

r
¶
¶

+  = - ( )

where the electromagnetic field is represented as F= E+ jB and e e e
x y z1 2 3 = + +¶

¶
¶
¶

¶
¶
and the four-current

J= ρ− J. Expanding this expression and equating the scalar, vector, bivector and pseudoscalar parts, wefind the
fourMaxwell equations.

The electromagnetic field can be derived from a potentialA as F A= ¶̄ or

A

A
A

A

E B

F
t

t t
j , A2

⎛
⎝

⎞
⎠
f

f
f

=
¶
¶

-  -

=
¶
¶

+  -  -
¶
¶

+  

= + +ℓ

( )

·

( )

where E A

t
f= - - ¶

¶
, jB=∇∧ A= j∇× A and A

t
= + f¶

¶
ℓ · , the Lorenz gauge.
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Appendix B. Themultivector products

InClifford geometric algebrawe form the space ofmultivectors 3 2 3 3 3Å Å ÅR R R R⋀ ⋀ , an eight-
dimensional real vector space denoted by C 3Rℓ ( ). This thus consists of the sumof a scalar, vector, bivector and
trivector. Defining vectors v= v1e1+ v2e2+ v3e3 andu= u1e1+ u2e2+ u3e3, where v v,i i Î R, wefind their
algebraic product using the distributive law ofmultiplication over addition as

uv

u v u v
u v u v

e u e u e u e v e v e v
u v u v u v u v v u e e

u v u v e e u v v u e e

j
,
, B1

1 1 2 2 3 3 1 1 2 2 3 3

1 1 2 2 3 3 2 3 2 3 2 3

1 3 3 1 1 3 1 2 1 2 1 2

= + + + +
= + + + -

+ - + -
= + 
= + ´

( )( )
( )

( ) ( )
·
· ( )

which produces a sumof symmetric and antisymmetric products.Wefind the unifying result that the algebraic
productuv produces a complex-like number combining the dot and cross products u · v+ ju× v.
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