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Abstract

Two conventional methods for evaluating interparticle magnetic interactions are applied to magnetic
nanoparticle assemblies with various interparticle distances that are controlled by a silica coating.
According to Weiss temperatures derived from superparamagnetic response analysis, the mean values of
the interparticle magnetic interactions are relatively small and seem to be independent of the interparticle
distance. The interaction fields in the first-order reversal curve diagram for narrow interparticle distances
are widely distributed. However, the interaction fields disappear when the interparticle distance is
sufficiently large. Analysis of these two contrasting results indicates that ferromagnetic-like and
antiferromagnetic-like magnetic couplings coexist and cancel each other, as in atomic spin glasses.

1. Introduction

Recently, magnetic nanoparticles have attracted significant attention for their excellent potential for applications in
magnetic recording sensors [ 1, 2], magnetic refrigeration [3], and biomedical applications [4]. However, many
issues remain to be solved regarding the design of magnetic nanoparticle assemblies for each application. In
particular, there is little consensus regarding the effects of dipole interactions between nanoparticles, even though
they are expected to induce useful cooperative magnetic responses [5, 6]. For single-domain magnetic

nanoparticles with superspins i (=(7/6) d*My), the typical magnitude of dipolar interactions can be expressed
HoH?
2mr3”

between nanoparticles. In other words, the amplitude of interactions can be controlled by varying r. Therefore,
many efforts have been made to prepare nanoparticles with various r values by changing the particle number
density or controlling the nonmagnetic layer thickness t between nanoparticles [7—13]. However, little attention
has been devoted to the experimental evaluation of actual interparticle interaction strengths in such samples. In
studies on randomly assembled nanoparticles, mixtures of ferromagnetic-like and antiferromagnetic-like
interparticle interactions are assumed. Based on this assumption, superspin glasses have been intensively discussed
in terms of their intriguing collective phenomena for decades, similar to atomic spin glasses. However, the mixture
of interparticle interactions has never been experimentally confirmed [5—-13]. In this study, two conventional
evaluation methods, namely first-order reversal curve (FORC) analysis [ 14—16], which is often employed in applied
magnetics, and Curie-Weiss law fitting, which is used in fundamental magnetism, were applied to nonmagnetic-
layer thickness-controlled magnetic nanoparticle assemblies. The actual probability distributions of
ferromagnetic-like and antiferromagnetic-like interparticle interaction strengths were investigated.

as where d is the diameter of the nanoparticle, M, is the spontaneous magnetisation, and ris the distance

2. Experiments

Magnetite nanoparticles were synthesised as follows. First, 11.0 mmol of goethite (FeO(OH)) was dissolved in
31.7 ml of 1-octadecene. Next, 14.1 ml of oleic acid was added and the solution was heated at 393 K for 1 h and at
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Figure 1. TEM images of magnetite nanoparticles in samples A0, A7, A14,and A21.

590 K for 2 h. The resulting black powder was washed several times to remove excess surfactants and solvents.
X-ray diffractometry revealed that the powder had a spinel-type structure. Magnetometry indicated that M, at
2.0 Kis 53 Am?/kg. This magnitude of M, is roughly consistent with the values previously reported for iron
oxide magnetic nanoparticles [17, 18], although it is smaller than the values obtained for bulk magnetite or
maghemite. This study aimed to evaluate interparticle interactions, so the origin of the relatively small M, value
is left unexplored for following studies.

Next, coating with a silica shell [ 19] was conducted as follows. Igepal CO-520 was dispersed in cyclohexane
and sonicated. Then, the powder synthesised above was added to the solution under continuous stirring.
Subsequently, 1.6, 1.6, and 3.2 ml of ammonium hydroxide and 1.12, 2.24, and 4.43 ml of tetraethyl orthosilicate
were added to generate three different shell thicknesses. Transmission electron microscopy (TEM) revealed that
the magnetite cores with an average diameter d of 7.8 nm were well coated with silica shells with thicknesses t of
6.5,13.7,and 20.8 nm for samples A7, A14, and A21, respectively, as shown in figure 1. The nanoparticles before
silica coating in sample A0 have a surfactant layer with + = 1 — 2 nm. Therefore, we succeeded in controlling
the interparticle distance.

The magnetisation M of all samples was measured under the following thermal and field conidtions using a
superconducting quantum interference device magnetometer (MPMS, Quantum Design). Zero-field-cooled
magnetisation Mg was measured under heating in a magnetic field H of 0.8 kA m ™" after zero-field cooling to
2.0 K, whereas field-cooled magnetisation My was measured under cooling in a magnetic field Hof 0.8 kKA m™".
The measurements of FORC were performed as follows. From a positive saturation state at an H values of 0.8
MA/m, Hwas decreased to a reversal field H,. A partial hysteresis curve M(H, H,) was then measured as H
increased from H, back to saturation. This measurement procedure was repeated for several different H, values.

3. Results and discussion

Figure 2 presents the temperature dependencies of Mz and Myc. As the temperature T'increases, Mypc first
increases, then peaks at T}, and finally decreases. Mg is almost the same as Mg in the high-temperature range
of T>> T, whereas Mgc branches off from Mzpcat T < T, These results have been conventionally interpreted
as follows. The system is equilibrated by the thermal fluctuation of yrat T>> T,,. In contrast, magnetic hysteresis
occurs based on the suppression of fluctuationsat T' < T,,. The boundary temperature indicated by T,,,, which is
the so-called blocking temperature or freezing temperature, is reduced with an increasing coating thickness t, as
shown in the inset in figure 2. This type of variation in T, with a changing t has been attributed to the effects of
interparticle magnetic interactions because the magnetic properties of individual nanoparticles should be
invariant with ¢ [5-10]. However, previous studies have not contained experimental evaluations of interparticle
interaction strengths. Therefore, detailed discussion remains difficult. For this reason, two evaluation methods
of FORC analysis and Curie-Weiss law fitting were applied in this study.

In the paramagnetic phases of atomic spin systems, the magnetisation at small H values is given by the Curie-
Weiss law as follows:

g Mo

- H, (D
3ks(T — T,) 3ks(T — Toy)

where 7 is the number density of magnetic moments i, kg is the Boltzmann constant, T, is the Weiss
temperature, and M; is the saturation magnetisation. Figure 3 presents the temperature dependence of M,/M,
where the magnitude of M at 0.4 MA/m and 2.0 K is assumed to be M. One can see that M/M is approximately
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Figure 2. Temperature dependencies of Mygc and Mg normalised by M. The inset shows the variation in T;,, and T, for various
nonmagnetic silica-layer thicknesses t.
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Figure 3. Temperature dependencies of the reciprocals of Mzgc and Mgc normalised by M; for (a) samples AO and A21, and (b)
samples A7 and A14.

proportional to T'in the anhysteretic regime at T>> T,,,. Based on the slopes of the fitting lines, the magnitudes of
1 can be roughly estimated tobe 7 x 10> s for AOand A21,and 8 x 10° g for A7 and A14. These values
correspond to the total magnetic moments contained in each iron oxide nanoparticle with a size of 8 nm atan
M, of 53 Am* kgfl. This size is consistent with the diameters observed via TEM. Therefore, we can confirm that
collinearly aligned spins in each nanoparticle thermally fluctuate in the form of superspins p. In contrast, the
values of T, estimated from the T-axis intercepts are less than 10 K and are almost independent of £, as shown in
the inset in figure 2. In the molecular field approximation, T, is expressed as cvo M 11/ 3kg. Therefore, oM can
be estimated to be less than 5 kA m ™", regardless of t, where o is the molecular field coefficient. The magnitude
and t-dependence of T, contrast with those of T,,,. Therefore, one may doubt the explanation above that the
elevation of T, is caused by interparticle interactions.

We turn to FORC analysis to resolve this conflict. To avoid the influence of thermal fluctuations, the FORC
curves at 2.0 K, which is much lower than T,,,, were examined, where each nanoparticle with a switching field of
Hy,, was assumed to be under a constant interaction field of H,,. In this case, the reversal of magnetisation occurs
at(—Hg, + Hy)or (+Hy, + H,). Therefore, the distributions of these fields, FORC diagrams, can be obtained
as p(Hgy, Hy) = M%%, where Hy,, = (H — H,)/2and H, = (H + H,)/2. Figure 4 presents the FORC
diagrams of the samples. One can see that H,, for A0 is widely distributed across the range of tens of kA /m. This
result indicates the existence of significant interparticle interactions, although their details cannot be analysed
based solely on FORC diagrams because positive and negative values of H, are not associated with ferromagnetic
and antiferromagnetic natures, respectively. As tincreases, the width of the distribution of H,, narrows and
eventually becomes negligible compared to the experimental resolution of § kA m ™" at t = 20.8 nm for A21.
This result is reasonable because dipolar interactions weaken at larger distances, as stated above.
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Figure 4. FORC diagrams of samples (a) A0, (b) A7, (c) A14, and (d) A21 at 2.0 K, where the contour maps show the probability
distributions of the switching field of H,, and interaction field of H,,.

At this stage, it should be noted that the width of the H,, distribution is much larger than the molecular field
aM; estimated from T, for AO. It should also be noted that the molecular field represents the mean value of all
magnetic couplings. Therefore, we can say that ferromagnetic-like and antiferromagnetic-like couplings coexist
in almost equal quantities and cancel each other because the average magnetic interaction estimated from the
Weiss temperature is much smaller than the distribution width oflocal interaction fields in the FORC diagrams.
This result is consistent with a simple theoretical consideration. The dipolar magnetic field operatesin a
ferromagnetic-like manner on the neighbouring g in the axial direction of the source p, whereas it operates in
an antiferromagnetic-like manner on g in the equatorial direction. The faraway dipolar fields from a distant p
are cancelled by demagnetising fields when the shape of the boundary between a neighbouring and distant ¢ is
set to be the same as the outward form of the powder sample. This interpretation based on small molecular fields
is supported by the additional information acquired from the observed FORC diagrams, which lack wishbone-
shaped ridges caused by the molecular fields from a distant g [15], as shown in figure 4.

The actual phenomena may be relatively complicated because the width of the distribution of H,, is evidently

larger than the dipolar field from the single nearest neighboring g. This field was calculated to be 13.5,1.4, 0.3,
No,“'2

2713
H, is cooperatively generated by multiple nanoparticles. This interpretation agrees with the spin-glass model,

where the competition of ferromagnetic and antiferromagnetic interactions causes cooperative freezing of
thermal fluctuations at the temperature corresponding not to T, but to the distribution width of coupling
strengths between different g4 [20]. We cannot discuss the nature of such superspin-glass-like behaviour further
from the perspective of FORC diagrams because cooperative phenomena are entirely beyond the scope of
application of the Preisach model [14, 15]. However, the coexistence of ferromagnetic and antiferromagnetic
interactions is experimentally confirmed by currently comparing the results based on two conventional
evaluation methods. This information is vital for advancing the study of superspin glasses.

and 0.1 kA/m for A0, A7, A14, and A21, respectively, using the aforementioned equation of =*=.. In other words,

4. Summary and prospects

Two conventional methods for evaluating interparticle magnetic interactions were applied to interparticle-distance-
controlled magnetic nanoparticle assemblies. According to the Weiss temperatures of the superparamagnetic
responses, the mean values of the interparticle magnetic interactions were relatively low compared to the blocking
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temperature and seemed to be independent of the interparticle distance. In contrast, the interaction fields in the
FORC diagrams were widely distributed for samples with narrow interparticle distances. However, the width of the
interaction field distribution narrows with an increase in the non-magnetic layer thickness. Therefore, when
comparing the small value of the mean field to larger local field effects, we can say that ferromagnetic-like and
antiferromagnetic-like magnetic couplings are mixed in approximately equal quantities in nanoparticle assemblies,
similar to atomic spin glasses. It should be noted that this evaluation could not be performed using only one of the two
methods. For example, interparticle interactions may be misinterpreted as weak in all samples if only the Weiss
temperature is considered. As demonstrated in this study, the complementary use of two methods is essential for
characterising the magnetic interactions in nanoparticle assemblies.
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