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Abstract
The problemof analyzing interconnectedness is one of today’s premier challenges in understanding
systemic risk. Connections can both stabilize networks and provide pathways for contagion. The
central problem in such networks is establishing global behavior from local interactions. Jiang-Lim-
Yao-Ye (Jiang et al 2011Mathematical Programming 127 1 203–244) recently introduced the use of the
Hodge decomposition (see Lim 2020 SIAMReview 62 685–715 for a review), a fundamental tool from
algebraic geometry, to construct global rankings from local interactions (see Barbarossa et al 2018
(2018 IEEEData ScienceWorkshop (DSW), IEEE) pp 51–5;Haruna and Fujiki 2016 Frontiers inNeural
Circuits 10 77; Jia et al 2019 (Proc. of the XXVACMSIGKDD International Conf. onKnowledge
Discovery&DataMining, pp 761–71 for other applications).We apply this to a study offinancial
networks, starting from the Eisenberg-Noe (Eisenberg andNoe 2001Management Science 47
236–249) setup of liabilities and endowments, and construct a network of defaults.We then use
Jiang-Lim-Yao-Ye to construct a global ranking from the defaults, which yields oneway of quantifying
‘systemic importance’.

1. Introduction

The globalfinancial crisis of 2008 highlighted the importance of connectivity in understanding financial
stability. Although linkages can diffuse risk, they can also provide pathways for emergent behavior and
contagion. Network theory provides insight into how to think about the structure and stability of the financial
system.

Thefinancial network is an inherently complex network. It is strongly heterogeneous [1]. As of 2019, there
are thirty Global Systemically Important Banks [2], and over 5000 FDIC-insured commercial banks and savings
institutions [3]. There is no large-scale statistical regularity over which to coarse-grain the system.Our goal is to
provide a data-drivenway to rank nodes in afinancial network from a standpoint of risk.

1.1. Related and priorwork
After thefinancial collapse of 2008, therewas a surge of interest inmathematicalmodelling of interconnected
financial networks and contagion [4]. A range of challenges have been addressed. From the standpoint of
network theory, instability and contagion in statistically regular graphs [5] can often be captured as long-range vs
short-range effects. However, these properties becomemuchmore complex in a strongly heterogeneous graph.
There are a number of theoretical analyses of how shocks can affect a genericfinancial system [6–8]. There are
also a number of efforts to understand and quantify pathways inwhich financial connectedness can lead to
significant effects [5, 9] andmoreover to quantify financial robustness in succinct ways [10]. These statistical

OPEN ACCESS

RECEIVED

2December 2020

ACCEPTED FOR PUBLICATION

8December 2020

PUBLISHED

29 January 2021

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 4.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2021TheAuthor(s). Published by IOPPublishing Ltd

https://doi.org/10.1088/2399-6528/abd1c2
https://orcid.org/0000-0001-9213-6471
https://orcid.org/0000-0001-9213-6471
mailto:hks0015@auburn.edu
mailto:sowers@math.uiuc.edu
mailto:ruisong2@math.uiuc.edu
https://crossmark.crossref.org/dialog/?doi=10.1088/2399-6528/abd1c2&domain=pdf&date_stamp=2021-01-29
https://crossmark.crossref.org/dialog/?doi=10.1088/2399-6528/abd1c2&domain=pdf&date_stamp=2021-01-29
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0


measuresmust be adaptedwith care in a statistically heterogeneous system [11]. Building on theories offinancial
contagion, a number of related questions of optimal control offinancial networks [12, 13]were proposed,
particularly in the presence of a central riskmanager [14]. See also [15].

1.2. Contribution
Westudy thefinancial network as adata-driven ranking problem. In particular,weuse theEisenberg-Noe [16]model of
clearing to compare counterparties, both locally and globally. Eisenberg andNoeprovide a global calculationwhich
combines endowments and liabilities to fairly clear a network and identify defaults.We then apply themethods of
Jiang-Lim-Yao-Ye [17] to anetworkoffinancial defaults as givenby theEisenberg-Noe clearingmechanism.The
insight of [17] is that theHodgedecompositionof algebraic geometry allowsone to extract global comparisons from
local interactions; this gives an algorithmicway todistinguishbetween systemicdefaults and a local collectionof
interacting defaults. See Lim [18] for anoverviewof the role of theHodgeLaplacian in awide variety of settings. Some
applications related tonetworks includeworkon learning theory [19, 20] andondiffusionprocesses and community
detection [21]; other applications range fromvideoquality [23] to electronmicroscopy [24].

The results of this paper serve, essentially, as a case study.We have chosen to use a stylized and deterministic
mechanism for clearing a network. Firesales [25–27]may also occur, and randomness is often intrinsic in those
models. Another way to understand contagion is through sensitivity of the Eisenberg-Noe calculations [28, 29].
Ourmodel is static, in contrast to [30], andwe do not address priorities of claims [31].

We believe that a focus on relative ranking (rather than absolute quantification) of risk provides a useful
framework for intrinsically understanding and quantifying how interventionmight be targeted towards groups
offinancial counterparties, rather than individual ones.

Combining [16] and [17] provides a framework that unifies some of the complexities offinancial networks.
Financial interactions are almost always based on leverage; a small amount of capital is used as collateral for a
larger trade. Leverage is intrinsic to Eisenberg-Noe. Secondly, both Eisenberg-Noe and Jiang-Lim-Yao-Ye
depend on global calculations which use local interactions as input data.

Our calculation is entirely deterministic. Oneway to interpret our results is that they capture average values
of liabilites, endowments, and defaults. In a followup paper, wewill use variational equations to understand the
effect of perturbative noise.

1.3.Organization
In section 2we review the Eisenberg-Noe clearing calculations. Section 3 provides an overview of simplicial
complexes and the algebro-geometric tool ofHodge theory, applied by Jiang-Lim-Yau-Ye in [17] to ranking
questions. In section 4we combine these two tools, and examine the implications of this formulation on a
sample dataset from the Bank of International Settlements.

2. The Eisenberg-Noe algorithm

Webeginwith a short review of the Eisenberg-Noe (EN) algorithm for clearing liabilities in a trading network. A

trading network consists of a collection = N1, 2 ...
def { }ofN counterparties, whereN is some fixed positive

integer. Then-th counterparty has

• An endowment En

• Liabilities ¢Ln n, (assumed to be nonnegative) to counterparty ¢n .

Thefirst step is to compute a clearingmatrix C, where ¢Cn n, is the amountwhich counterparty n pays
counterparty ¢n . The EN algorithm calculates ¢Cn n, as follows. First, compute an asset vectorA, whereAn is the
sumof themargin account and the payments from the other counterparties. Hence

å= +
¢Î

¢


A E C 2.1n n
n

n n, ( )

Next,make a vectorℓof liabilities, whereℓn consists of the total liabilities of trader n to the other traders. In other
words,

å= =
¢Î

¢


L L1 .n
n

n n n
def

,ℓ ( )

Fix a counterparty n. IfAn�ℓn, then counterparty n can pay all of its liabilities, and

=¢ ¢C L . 2.2n n n n, , ( )
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IfAn<ℓn, then counterparty n pays its debts proportionally. Define

=
>

=
¢

¢

L
if 0

0 if 0.
n n

L
n

n

,

n n

n

,⎪

⎪

⎧
⎨
⎩

ℓ

ℓ
˜ ℓ

IfAn<ℓn, then

=¢ ¢C A L .n n n n n, ,˜

Noting that we can rewrite (2.2) as

=¢ ¢L L ,n n n n n, ,ℓ ˜

wehave that

=¢ ¢C p L 2.3n n n n n, ,˜ ( )

where

=   =p A , where min.n n nℓ

Using (2.1) in this equation, and then using (2.3), we get that the payments satisfy

å å å= +  = +  = + 
¢Î

¢
¢Î

¢ ¢
¢Î

¢ ¢
  

p E C E p L E L pn n
n

n n n n
n

n n n n n
n

n n
T

n n, , ,

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ℓ ℓ ℓ˜ ˜

The payment vector p thus satisfies

= + p E L p .T ℓ( ˜ )

The shortfall in payment fromnode n to ¢n is

= -¢ ¢ ¢S L C 2.4n n n n n n,
def

, , ( )

Our interest is the topological connections stemming from the Eisenberg-Noe calculations.

Example 2.1.As afirst example, we consider a loopwith leakage. Let’s assume that we have four counterparties,
A,B,C, andD, with a circular loop of obligations between the first three, and a liability to the fourth
counterparty, external to the loop. Let

= =E L

3
1
1
1

0 10 0 15
0 0 10 0

10 0 0 0
0 0 0 0

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

In otherwords,B,C andD have endowments of $1, whileA has an endowment of $3.A has a liability of $10 toB,
which in turn has a liability of $10 toC, which in turn has a liability of $10 toA. Additionally,A has a liability of
$15 toD, which has no liabilities, as in figure 1.

Applying Eisenberg-Noe yields

=C

0 10 3 0 5

0 0 13 3 0

16 3 0 0 0
0 0 0 0

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

Figure 1.Network of Liabilities and Endowments.
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which corresponds to a payment vector of

=p

25 3

13 3

16 3
0

.

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

Here, thefirst three nodes have defaults to each other, and the ‘loop’ defaults to the fourth, as infigure 2 and 3.
From anetwork perspective, counterpartiesA,B, andCmight be left to sort things out among themselves

and, if necessary, inject capital directly intoD4; the default toD is external to this loop, which is somehowmore
macroscopic. A ranking systemwhich appropriately nets such loops of shortfalls would allowus to identify those
counterparties which are global. Quantitatively, the defaults betweenA,B, andC are 3.33, 4.33, and 5.33; one
would expect the difference in rank betweenA,B, andC to be atmost 2. The language of algebraic topology [32]
provides a systematic way to formalize this structure.

Example 2.2.Wenext consider an examplewith 5 agents, labelled 1 through 5. Assume thatwe have a liability
matrix given by

=L

0 6 16 0 0
0 0 14 2 0
0 0 0 0 0
0 0 0 0 0
0 3 9 6 0

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

where ¢Ln n, is the liability of agent n to agent ¢n ; in otherwords agent 1 owes $6 to agent 2 (L1,2=6). Assume that
we also have an endowment vector

=E 11 4 1 1 6 2.5T( ) ( )
where En is the endowment of agent n; for example, agent 1 has endowment $11.

Figure 2.Defaults and Payments.

Figure 3. Shortfalls.

4
onemight here frame an argument in terms ofmoral hazard.
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Applying Eisenberg-Noe yields the clearing paymentmatrix

=C

0 3 8 0 0
0 0 7 1 0
0 0 0 0 0
0 0 0 0 0
0 1 3 2 0

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

and the defaultmatrix

=D

0 3 8 0 0
0 0 7 1 0
0 0 0 0 0
0 0 0 0 0
0 2 6 4 0

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

See figures 4 and 5.

3. Simplicial complexes andHodge theory

We return to example 2.1 and encode the shortfalls (figure 3) as directed edges, rounding down for simplicity.
We have a shortfall of $6 fromA toB; write that as 6[A,B]. The other shortfalls are 5[B,C], 4[C,A] and 10
[A,D]. The shortfall of $6 fromA toB—an unpaid debt of $6 fromA toB—can also be thought of as an unpaid
credit of $6 fromB toA, so 6[A,B]=−6[B,A]. The space of all shortfalls in this network is the vector spaceV1

of 1-dimensional edges; i.e.,

a b g r a b g r= + + + Î V A B B C C A A D, , , , ; , , ,1
def { [ ] [ ] [ ] [ ] }

we think of [A,B], [B,C], [C,A], and [A,D] as the basis of aV1; we have that V ;1
4 V1 is itself four-

dimensional.

Figure 4. Liabilities and Endowments for Example 2.2.

Figure 5. Shortfalls.
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If wewere to net these shortfalls, wewould combine the shortfall coming into each nodewith the shortfall
going out.We can define an operator d1 whichmaps the shortfalls into capital. Namely, δ1 shouldmap 6[A,B]
into $6 of unresolved assets forB, and $6 of unresolved debt forA.Write this as 6[B]−6[A], where [A] refers to
unresolved assets (positive) and liabilities (negative) forA. Next, define netting vector space as

a b g r a b g r= + + + Î V A B C D : , , ,0
def { [ ] [ ] [ ] [ ] }

and define

a b g r
a a b b g g r r
a b d b a g b r

+ + +
= - + - + - + -
= - + + - + - -

d A B B C C A A D

A B B C C A A D

A B C D

, , , ,

.

1{ [ ] [ ] [ ] [ ]}
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

( )[ ] ( )[ ] ( )[ ] [ ]

V0 is a four-dimensional space consisting of 1-dimensional points; V1
4 . Then d1 is linear and

+ + =d A B B C C A, , , 0;1{[ ] [ ] [ ]}

in otherwords, perfect loops are in the null space of d1. This suggests that linear algebra can be used to extract
global information frompairwise comparisons.

Let’s now look try to think of circular loops of shortfalls a the range of yet another operator. Let [A,B,C]
represent a shortfall of $1 fromA toB, a shortfall of $1 fromB toC, and a shortfall of $1 fromC toA (and
similarly 5[A,B,C] represents these defaults, but in the amount of $5). Enumerating all of the directions yields

= - = - = = = -A B C A C B B A C B C A C A B C B A, , , , , , , , , , , , .[ ] [ ] [ ] [ ] [ ] [ ]

Wecan interpret the vector space

a a= Î V a b c, , :2
def { [ ] }

as the space of (2-dimensional) triangles in the graph, and define the linear operator

a a a a= + +d A B C A B B C C A, , , , , .2 [ ] [ ] [ ] [ ]

Wenote that V ;2
1 V2 is one-dimensional. Thus

Ì Ìd d Vim ker ,2 1 1( ) ( )
and the tools of chain complexes allow us tomore precisely decomposeV1 into linear subspaces. In the general
setup, these subspaces will allow us to extract a ranking of the counterparties.

We can think of [A,B,C] as an abstract object; its only value is that allows us towrite circular loops of
shortfalls as the range of d2.

3.1. Simplicial complexes
Wecan encode the data of example 2.1 using the framework of simplicial complexes. For additional background,
see [33].

Definition 3.1.An abstract n-simplexσ on a setV of n+1 vertices, is the collection of all subsets ofV. An
orientation for a simplexσ is the additional data of an ordering of each subset.

Example 2.1 consists of a pair of simplices: the two simplex {A,B,C}, and the one simplex {A,D}, as well as
all subsets

A B C A B A C B C A B C A D A D, , , , , , , , , , , and , , , .{{ } { } { } { } { } { } { }} {{ } { } { }}

One example of a choice of orientation is

s s= =A B C A B A C B C A B C A D A D, , , , , , , , , , , and , , , . 3.12
def

1
def{[ ] [ ] [ ] [ ] [ ] [ ] [ ]} {[ ] [ ] [ ]} ( )

The introduction of orientation is natural inmany physical contexts involving network flow.
Note thatσ2 andσ1 are joined at a common vertex [A].

Definition 3.2.Anoriented simplicial complexΣ on a vertex setV is a collection of of oriented simplexes such
that every element ofV is in at least one oriented simplex. The dimension ofΣ is themaximumdimension of all
simplices contained inΣ.

In example 2.1,Σ=σ1∪σ2 is an oriented simplicial complex, whereσ1 andσ2 are as in (3.1).

Example 3.3.Next, consider the oriented simplicial complex in figure 6.

6
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There are three 2-simplices

s

s

s

=

=

=

1, 2, 3 , 1, 2 , 2, 3 , 1, 3 , 1 , 2 , 3

2, 3, 5 , 2, 3 , 5, 2 , 5, 3 , 2 , 3 , 5

2, 4, 5 , 2, 4 , 5, 4 , 5, 2 , 2 , 4 , 5

a

b

c

2,
def

2,
def

2,
def

{[ ] [ ] [ ] [ ] [ ] [ ] [ ]}

{[ ] [ ] [ ] [ ] [ ] [ ] [ ]}

{[ ] [ ] [ ] [ ] [ ] [ ] [ ]}

and set È Ès s sS = a b c
def

2, 2, 2, , and vector spaceswith bases the oriented vertices, edges, and triangles:

=

=

=

V

V

V

Span 1 , 2 , 3 , 4 , 5

Span 1, 2 , 1, 3 , 2, 3 , 2, 4 , 5, 2 , 5, 3 , 5, 4

Span 1, 2, 3 , 2, 3, 5 , 2, 4, 5 . 3.2

0
def

1
def

2
def

{[ ] [ ] [ ] [ ] [ ]}

{[ ] [ ] [ ] [ ] [ ] [ ] [ ]}

{[ ] [ ] [ ]} ( )

3.2.Homology
With the concept of an oriented simplicial complex in hand, we’re ready to set up themachinery thatwill allow
us to distinguish (in certain cases) between objects.

Definition 3.4.A chain complex  is a sequence of vector spacesVi and linear transformations di:

+ -
+ -

 V V V: ,i
d

i
d

i
d

1 1
i i i1 1⟶ ⟶ ⟶ ⟶ 

where Í+d dim keri i1( ) ( ). The resulting quotient space

= +H d dker imi i i 1( ) ( ) ( )

is the ith homology of  .

In our case, we have

 V V V: . 3.3
d d

2 1 0
2 1⟶ ⟶ ( )

Themain idea is to use an oriented simplicial complex to define a chain complex. The key point is to define the
boundarymap:

Definition 3.5. For an oriented n-simplex [v0,K,vn],

å¼ = - ¼ ¼
=

d v v v v v, , 1 , , , , .n n
i

n
i

i n0
0

0[ ] ( ) [ ]

So for example,

= - +d v v v v v v v v v, , , , ,2 0 1 2 1 2 0 2 1 2[ ] [ ] [ ] [ ]

Nextwe define a chain complex, where the objectVi has a basis consisting of the oriented i-simplices,modulo an
equivalence relation

t t~ - s11
sgn

2( ) ( )

if τ1 and τ2 have the same set of vertices,σ is a permutation reordering τ2 so itmatches τ1, and sgn is+1 ifσ
consists of an even number of transpositions, and−1 otherwise. Although this seems opaque, in case of an edge,
it simplymeans that [v0,v1]=−[v1,v0]. Thismakes sense if we consider the vertices as traders and the
orientation as default.

Figure 6.Anoriented simplicial complex.
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Example 3.6.Wecarry this out for example 3.3.With the choice of oriented basis above,

= - +
= - +
= - +

d
d
d

1, 2, 3 1, 2 1, 3 2, 3
2, 3, 5 2, 3 2, 5 3, 5
2, 4, 5 2, 4 2, 5 4, 5

2

2

2

[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]

For example, notice that [5,2];−[2,5]. Next, wefindmatrix representations of the diwith respect to the
ordered bases of theVi in 3.2, which are

-

-
-

- -
- -

- - -

d

d

1 0 0
1 0 0

1 1 0
0 0 1
0 1 1
0 1 0
0 0 1

1 1 0 0 0 0 0
1 0 1 1 1 0 0
0 1 1 0 0 1 0
0 0 0 1 0 0 1
0 0 0 0 1 1 1

2

1

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟





Thefirst columnof thematrix representation of d2 captures the first line of (3.6). Thefirst columnof thematrix
representation of d1 corresponds to d1[1,2]=[2]−[1].We canwrite the chain complex

----- -------

-

-
-

- -
- -

- - -
  0 03

1 0 0
1 0 0

1 1 0
0 0 1
0 1 1
0 1 0
0 0 1 7

1 1 0 0 0 0 0
1 0 1 1 1 0 0
0 1 1 0 0 1 0
0 0 0 1 0 0 1
0 0 0 0 1 1 1 5

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
⟶ ⟶ ⟶ ⟶

A calculation shows that for this example, (3.3) becomes

=
=
=







H

H

H

dim 0

dim 0

dim 1

2

1

0

( )
( )
( )

What information do the Hi ( ) encode? An easy exercise shows that Hdim 0( ) is the number of connected
components of the underlying simplexΣ, and for i>0, the dimension of Hi ( ) is essentially a count of the
number of i-dimensional holes inΣ.We close with an example to illustrate this:

Example 3.7.Consider a hollow triangle, that is, the one-dimensional simplicial complex consisting of vertices
{[1],[2],[3]} and edges {[1,2],[2,3],[3,1]}.With this choice of basis, the resulting chain complex is

------

-
-

-
 0 03

1 0 1
1 1 0
0 1 1 3

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⟶ ⟶ ⟶

For this example, = = H Hdim 1 dim1 0( ) ( ), which agrees with the intuition above: a hollow triangle is
topologically;S1, which has one connected component and a single one dimensional hole.

3.3.Hodge theory andHodge decomposition
Hodge theory is a fundamental tool used to study a smoothmanifoldM, andwe give a brief sketch of the general
theory below (when applied in the context of ranking, themanifoldM is replaced, in some sense, with network
connectivity). For a smoothmanifoldM, the chain complex of interest has as the k-th term the sheafΩk(M) of
differential k-forms onM, with differential d k

8
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W W +M Mk
d

k 1
k

( ) ⟶ ( )

consisting of the exterior derivative. Since d k+1d k=0we obtain theDeRham cohomologyHk(Ω(M)) as
-d dker imk k 1( ) ( ). For an arbitrary chain complex, homology (and cohomology) are quotient spaces, so that

there is no canonical choice for a basis. IfM is a compact orientedmanifoldwith a smoothmetric ν, then it is
possible to define an adjoint operator W  W+d M M:k k k1* ( ) ( ) to d k. Hodge proved that in this case there is a
orthogonal decomposition, theHodge decomposition:

W Å Å-M d L dim ker im ,k k k1 *( ) ( ) ( ) ( )

where the L is the Laplacian

= + - -L d d d d .k k k k1 1* *◦ ◦

and that WL H Mker k( ) ( ( )) . In the setting studied byHodge, the underlying geometry gives additional
structure to the problem. This allows a canonical choice of generators forHk(Ω(M)), consisting of harmonic
forms; see Voisin [34] for details.We included the background above as amatter of generalmathematical
interest. In the setting of ranking, we can avoid the heavymachinery, andwork in the setting of real vector
spaces. This allows us to give an elementary proof of theHodge decomposition, as in, for example, [22].

LetV,W befinite dimensional real vector spaces, and

V W
A

⟶

a linear transformation.V andW are inner product spaces, with inner product the familiar dot product. Choose
bases so thatA is amatrix. The adjoint operatorA* is defined via

á ñ = á ñA Av w v w, , .*

So in this setting, we have

á ñ = = = = á ñA A A A Av w w v v w v w v w, , .T T T T *· ( ) · ·

Proposition 3.8. Let

V V V
d d

1 2 3
1 2⟶ ⟶

be a complex of vector spaces, with rank(Vi)=ai. Then

Å Å = +V d d L L d d d dim im ker , where .T T T
2 1 2 1 1 2 2( ) ( ) ( )

Proof. Let rank(di)=ri and =d kdimker i i( ) . Choose bases so that

= =d
I

d I
0

0 0
and

0 0
0

r

r
1 2

1

2

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

where 0 represents a zeromatrix of the appropriate size. For example, since thematrix d1 is
a2×a1=a2×(r1+k1), the top right zero in d1 has r1 rows and k1 columns. Thenwe have that d dT

1 1 and d dT
2 2

are both a2×a2matrices, with

= =d d
I

d d I
0

0 0
and

0 0
0

T r T

r
1 1 2 2

1

2

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

Hence

= + =L d d d d
I

I

0 0

0 0 0
0 0

T T
r

r

1 1 2 2

1

2

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥
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The zero in themiddle represents a squarematrix of size

- =k r d ddim ker im ,2 1 2 1( ( ) ( ))

yielding theHodge decomposition. ,

3.4.Hodge theory and ranking
In [17], Jiang-Lim-Yao-Ye introduced the use of Hodge theory in the study of rank aggregation. The idea is as
follows: a collection of voters is asked to compare a group of alternatives (paradigm: Netflix problem). Voters
need not compare all alternatives, and are not constrained to respect transitivity. In particular, cyclic
rankings like a>b>c>d>a are possible. In practice, often there are amyriad of alternatives, but each
voter only ranks a few. How can the data be aggregated in a coherent fashion to produce a global ranking?
The first step is to consolidate the votes into a weighted directed graphG. A directed graph is an oriented one
dimensional simplicial complexΔG; an assignment of weights to each edge corresponds to a choice of a
linear functionalC1(ΔG), hence an element of D = DC CG G1

1*( ) ( ). The fundamental insight of Jiang-Lim-
Yao-Ye is that Hodge theory yields a way to rank the data.We paraphrase their main result below.

Theorem3.1. [17] For aweighted directed graphG, let FG be the two dimensional simplicial complex obtained by
filling any triangle whose edges are all inG. Then the decomposition

D Å ÅC d d Lim im kerG
1 1 0*( ) ( ) ( ) ( )

has the following interpretation

1. dim 1*( ) consists of locally inconsistent rankings: rankings vi>vj>vk>vi.

2. Lker( ) consists of globally inconsistent rankings: rankings vi>vj>vk>L>vi.

3. dim 0( ) consists of consistent rankings: rankings with no cycle.

In particular, the consistent rankingwhich is the best approximation toG is obtained by orthogonal
projection onto dim 0( ). By duality, ~d d0

1*, and belowweworkwith d1*.

Example 3.9.Consider theweighted, directed graph, with (oriented) edges as in example 3.3. The complex FG is
obtained by adding in the triangles {[1,2,3],[2,3,5],[2,4,5]}. A calculation shows that =Lker 0( ) , and
that dim 1*( ) has basis given by the columns ofX. Note that  d :1

5 7* , but is of rank four.

= =

=
=
=
=
=
=
=

X d

1 0 0 0
1 0 1 0
0 0 1 0
0 0 0 1
0 1 0 0
0 1 1 0
0 1 0 1

and weight vector

12 3
13 8
23 7
24 1
52 2
53 6
54 4

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

Pictured in Figure 7, the vector b closest tod in the column space ofX is simply the projection ofd onto the
subspace spanned by the columns ofX, so is given by the formula

= -X X Xb d,T T1(( · )

which in the case at hand yields the vector 19,11, 39,12 T1

7
( ) . Recall this is with respect to the basis given by the

columns ofX, so the vector in 7 which best approximates d is 19, 58, 39, 12, 11, 50, 23 T1

7
( ) . This yields our

potential function, as follows: ignoring the factor of 1

7
, the vector (19,58,39,12,11,50,23)T represents edge

flows coming from a potential function. Initializing so S(0)=0, the ranking choice is
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=
=
=
=
=

S
S
S
S
S

0 0
1 19
2 58
3 31
4 8

( )
( )
( )
( )
( )

Notice that v4 has net default of 2+4+6=12 and defaults to three different creditors, whereas v0 has net
default of 3+8=11 and defaults to two creditors. Nevertheless, in terms of global ranking, v0 is ofmore
importance than v4. Sowhile the example by and large agrees with our intuition, there are interesting subtleties.

An important aspect in assessing the accuracy of the ranking involves the distance between the default vector
d and the best approximation b. In the case at hand, |d|;13.4, |b|;13.2, and |d−b|;2.2, so the
approximation is reasonably good.

Example 3.10.Consider the system infigure 8, where all agents have endowment $1, and liabilities of $20;note
that there are liabilities to and from external counterparties. Applying Eisenberg-Noe, the defaults are as in
figure 9.

TheHodge decomposition can be applied to a clearing network to give a global ranking of the nodes inside.
To do this, following [17], we build a skew symmetricmatrix whose entries reflect the directed edgeweights.
Thus the defaultmatrix is

= -¢ ¢ ¢S S S 3.4n n n n n n,
skew def

, , ( )

the shortfallmatrix of (2.4) for n and ¢n in  . After obtaining the globally consistent component of a given edge
flow (gradient), following [17]we find the potential function, allowing us to rank the nodes. For figure 9, our
skew-symmetric defaultmatrix is

=

-
- -

- -
-

-
-

-
-

D

0 15 0 0 16 0 0 0 0
15 0 13 0 0 0 0 0 19
0 13 0 15 0 18 15 0 0
0 0 15 0 17 17 0 0 0

16 0 0 17 0 0 0 0 0
0 0 18 17 0 0 0 18 0
0 0 15 0 0 0 0 0 0
0 0 0 0 0 18 0 0 0
0 19 0 0 0 0 0 0 0

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟

With respect to the ordered, oriented bases

D
D
D ¼

For 346

For 12 , 51 , 23 , 92 , 34 , 63 , 37 , 45 , 46 , 68

For 1 , , 9

2

1

0

{[ ]}
{[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]}

{[ ] [ ]}

Figure 7.Directed graphwithweight vector d.

11

J. Phys. Commun. 5 (2021) 015018 HSchenck et al



the resulting chain complex is

---------

-
-

- -
- -

-
- -

-
  0 01

0
0
0
0
1
1
0
0
1
0 10

1 1 0 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0
0 0 1 0 1 1 1 0 0 0
0 0 0 0 1 0 0 1 1 0
0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 1 1
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0 9

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⟶ ⟶ ⟶ ⟶

In this case, the Laplacian is

=

- -
- -
- - - -

-
- -

-
- -

- -
-

-

L

2 1 1 1 0 0 0 0 0 0
1 2 0 0 0 0 0 1 0 0
1 0 2 1 1 1 1 0 0 0

1 0 1 2 0 0 0 0 0 0
0 0 1 0 3 0 1 1 0 0
0 0 1 0 0 3 1 0 0 1
0 0 1 0 1 1 2 0 0 0
0 1 0 0 1 0 0 2 1 0
0 0 0 0 0 0 0 1 3 1
0 0 0 0 0 1 0 0 1 2

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

Figure 8. Liabilities.

Figure 9.Defaults.
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and = - -Lker 3, 3, 3, 0, 2, 1, 0, 3, 1, 0 T( ) ( ) , which reflects the fact that our network has a loop of length
five. In particular,

= = =L d ddim ker 1 dim im , so dim im 8.2 0*( ( )) ( ( )) ( )

Choosing as a basis for d=X im 0( ) the transpose of thefirst eight rows of d1, wefind that after scaling

=

- - -

- - - -
- - - - -
- - - -
- - - -
- - - -
- - - -

-X X X

11 3 3 14 2 1 0 3 1 0
0 0 0 14 0 0 0 0 0 0
3 3 11 14 2 1 0 3 1 0
5 5 9 14 6 3 0 5 3 0
8 8 6 14 4 2 0 6 2 0
4 4 10 14 2 8 0 4 6 0
3 3 11 14 2 1 14 3 1 0
4 4 10 14 2 8 0 4 6 14

T T1

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟

( · )

Since d=[15,16,13,19,15,18,15,17,17,18], wefind that

= =-X X Xb d 234, 266, 270, 128, 188, 192, 480, 444T T1(( · ) [ ]

andmultiplying againstX shows the edge flows are [32,46,4,266,−142,78,210,60,64,252]. Initializing
so s(1)=0, we have

¼ = - - - -s s1 , , 9 0, 32, 36, 106, 46, 42, 246, 210, 234 .[ ( ) ( )] [ ]

The extreme values agree with our intuition–theworst offender at−234 is node 9, andwith values 210 and 246,
nodes 7 and 8 are owed themost. However, s(2)=32 and s(3)=36.Netting defaults shows that node 2 has a
surplus of 21, while node 3 has a surplus of 1, but theHodge rank of node 3 is greater than that of node 2. This
will also occurwith real data, as we’ll see in the next section.

4. Application ofHodgeDecomposition toClearingNetworks

In this section, we analyze the liability network formed by twenty countries of the EU.

Example 4.1.Weclose by examiningdata from [18]5 ; country codes are given in table 1. Liabilities are given in
tables 2–3.Countries in rownhave liabilities towards countries in columns ¢n ; for exampleAustria has a liability
towardsBelgiumof $3.13B (see table 9B, p. A74of [18]). The ‘endowments’ are estimatedby combining the balance
sheets ofmonetaryfinancial institutions (MFI’s), using that information as a representative of the entire banking
sector of a country. The endowmentswere estimated as the sumof (OAstanding forOutstandingAmounts)

• Liabilities: OA:Deposits of EAResidents:MFI (International)

• Liabilities: OA:Deposits of EAResidents: Others (International)

• Liabilities: OA: Capital andReserves (International)

• Liabilities: OA: External Liabilities (International)

minus

• Liabilities: OA:Deposits of EAResidents: Others: Overnight (International)

• Liabilities: OA:Deposits of EAResidents: Others: AgreedMaturity (International)

• Liabilities: OA:Deposits of EAResidents: Others: Redeemable atNotice (International)

This is only a test case; we believe that this data is not complete.Wemight rank the counterparties of tables 2,
3 and 4 by dividing the sumof liabilities by the endowment (note that liabilities are broken into two displays
(tables 2 and 3) due to space constraints).

For example, Austria has a total of 211.9 $B, and an endowment of 530.56 $B. Dividing, we get a score of .40.
Naively, a higher scoremeansmore debt per unit of endowment, and thusmore risk. The results are in table 5.

5
Thanks to Alysa Shcherbakova andKevin Liu for help with this data.
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4.1.Default, liability, endowment data

Table 1.CountryCodes.

AT Austria

BE Belgium

CY Cyprus

DE Germany

DK Denmark

EE Estonia

FI Finland

FR France

ES Spain

GB UnitedKingdom

GR Greece

IE Ireland

IT Italy

LU Luxembourg

MT Malta

NL Netherlands

PT Portugal

SE Sweden

SK Slovakia

SI Slovenia

Table 2. Liabilities (in $B).

AT BE CY DE DK EE ES FI FR GB

AT 0.00 3.13 0.0 73.35 0.22 0.0 4.51 0.0 16.01 6.61

BE 1.59 0.00 0.0 27.88 0.52 0.0 5.58 0.0 221.66 19.03

CY 2.52 0.22 0.0 8.36 0.56 0.0 0.12 0.0 3.73 1.65

DE 45.04 13.56 0.0 0.00 4.38 0.0 54.18 0.0 198.30 187.77

DK 1.42 0.39 0.0 21.76 0.00 0.0 2.16 0.0 13.08 11.79

EE 0.08 0.01 0.0 0.45 0.20 0.0 0.01 0.0 0.04 0.05

ES 4.55 12.54 0.0 146.10 1.95 0.0 0.00 0.0 115.16 86.30

FI 1.04 0.63 0.0 15.81 36.60 0.0 1.85 0.0 7.20 6.66

FR 10.64 44.83 0.0 174.86 5.03 0.0 27.02 0.0 0.00 292.18

GB 17.12 26.66 0.0 458.79 45.24 0.0 394.01 0.0 214.98 0.00

GR 2.15 0.68 0.0 32.98 0.06 0.0 1.00 0.0 39.46 10.94

IE 2.14 35.19 0.0 95.33 14.78 0.0 8.22 0.0 33.69 141.28

IT 18.13 12.32 0.0 133.95 0.31 0.0 29.94 0.0 329.55 60.10

LU 4.75 5.20 0.0 142.27 8.30 0.0 7.91 0.0 86.97 30.26

MT 1.03 0.00 0.0 2.58 0.01 0.0 0.29 0.0 1.01 0.00

NL 12.29 22.14 0.0 154.65 2.52 0.0 20.01 0.0 119.43 154.86

PT 1.02 1.25 0.0 30.21 0.14 0.0 78.00 0.0 21.82 21.21

SE 1.81 0.60 0.0 34.20 59.07 0.0 2.41 0.0 9.51 16.03

SK 30.85 7.80 0.0 3.78 0.00 0.0 0.15 0.0 2.93 0.93

SI 14.57 0.87 0.0 3.51 0.04 0.0 0.04 0.0 4.94 0.66

Table 3. Liabilities (in $B, continued).

GR IE IT LU MT NL PT SE SK SI

AT 0.16 0.42 97.09 0.0 0.0 8.75 0.16 1.65 0.0 0.0

BE 0.31 0.30 3.38 0.0 0.0 114.90 0.16 2.68 0.0 0.0

CY 19.01 0.00 1.52 0.0 0.0 1.66 0.19 1.29 0.0 0.0

DE 2.66 2.76 227.81 0.0 0.0 170.28 2.27 66.18 0.0 0.0

DK 0.19 0.75 1.92 0.0 0.0 4.29 0.20 190.79 0.0 0.0

EE 0.00 0.00 0.42 0.0 0.0 0.00 0.00 16.67 0.0 0.0

ES 0.29 4.69 26.94 0.0 0.0 0.00 21.62 3.77 0.0 0.0

FI 0.00 0.00 0.87 0.0 0.0 4.75 0.11 163.76 0.0 0.0

FR 1.69 5.06 40.31 0.0 0.0 74.99 6.68 9.02 0.0 0.0

GB 14.73 139.29 54.19 0.0 0.0 136.74 5.97 37.40 0.0 0.0

GR 0.00 0.15 2.30 0.0 0.0 3.23 8.08 0.29 0.0 0.0
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Table 3. (Continued.)

GR IE IT LU MT NL PT SE SK SI

IE 0.49 0.00 17.43 0.0 0.0 17.41 17.53 1.80 0.0 0.0

IT 0.44 1.29 0.00 0.0 0.0 34.56 2.11 1.01 0.0 0.0

LU 5.16 1.42 25.25 0.0 0.0 18.62 2.05 8.47 0.0 0.0

MT 0.44 0.00 1.02 0.0 0.0 0.85 1.14 0.12 0.0 0.0

NL 3.89 2.52 20.60 0.0 0.0 0.00 9.09 9.73 0.0 0.0

PT 0.05 0.52 3.19 0.0 0.0 4.67 0.00 0.22 0.0 0.0

SE 0.08 0.55 2.86 0.0 0.0 5.78 0.16 0.00 0.0 0.0

SK 0.00 0.00 18.38 0.0 0.0 1.58 0.08 0.17 0.0 0.0

SI 0.00 0.00 7.66 0.0 0.0 0.00 0.02 0.00 0.0 0.0

Table 4.Endowment (in $B).

AT 530.56

BE 595.45

CY 95.74

DE 3382.81

DK 472.20

EE 11.32

ES 1659.32

FI 302.83

FR 4529.39

GB 8291.37

GR 292.91

IE 1162.82

IT 1905.13

LU 884.49

MT 51.95

NL 1045.77

PT 277.35

SE 537.39

SK 18.11

SI 26.20

Table 5. Liabilities/Endowment; here
higher valuemeansmore risk.

Country Liabilities/Endowment

FR 0.15

MT 0.16

GB 0.19

SE 0.25

ES 0.26

DE 0.29

IT 0.33

IE 0.33

GR 0.35

LU 0.39

AT 0.40

CY 0.43

NL 0.51

DK 0.53

PT 0.59

BE 0.67

FI 0.79

SI 1.23

EE 1.58

SK 3.68
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4.2. Clearing theNetwork
ApplyingEisenberg-Noe yields the followingdefaults; the rows and columns are indexed in theorder from table 1.

- - -
- - -

- - -
- - -

- - -

- - -
- - -
-

- - -

-
- -

- -

0 0 0 0 0 29 0 0 0 0 0 0 0 0 0 0 0 0 22464 2754
0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 5680 165
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 165 0 0 0 0 0 0 0 0 0 0 0 0 2751 663
0 0 0 0 0 73 0 0 0 0 0 0 0 0 0 0 0 0 3 7
29 5 0 165 73 0 4 0 14 17 1 0 156 0 0 0 0 6144 0 0
0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 112 7
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 2137 934
0 0 0 0 0 17 0 0 0 0 0 0 0 0 0 0 0 0 678 125
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 156 0 0 0 0 0 0 0 0 0 0 0 0 13386 1447
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1147 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 55 5
0 0 0 0 0 6144 0 0 0 0 0 0 0 0 0 0 0 0 126 0

22 464 5680 0 2751 3 0 112 0 2137 678 0 0 13386 0 0 1147 55 126 0 0
2754 165 0 663 7 0 7 0 934 125 0 0 1447 0 0 0 5 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

In the skew-symmetric defaultmatrix, column 6 (EE) defaults to rows {1,2,4,5,7,9,10,11,13,18};
these defaults correspond to thefirst 10 columns of the d1matrix below. The default graph infigure 10 indicates
the orientation, from the defaulter to the defaultee. There are several interesting points tomake: five countries
(CY, FI, IE, LU,MT, corresponding to nodes 3, 8, 12, 14, 15) are inactive, in the sense that they default to no
other country, and no other country defaults to them.

The corresponding d1 differential is

=

- - - - - - - - - -

- - - - - - - - - - -
- - - - - - - - -

d

1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

1

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

Figure 10.Directed defaults.
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The rank of the zeroth homology is exactly the number of connected components of our network, so
=Hdim 60( ) . Since

= -H vertices ddim rank ,0 1( ) ( )

we see that d1 has rank 14. In particular, whenwe run theHodge rank algorithm, therewill be only 15 countries
to rank.Whenwe rank according to the Liabilities/Endowment ratio as in table 6, the 5 countries which are
inactive in terms of default have ranks ranging from2 (MT) to 16 (FI). On the other hand, when usingHodge
rank, as isolated vertices, they are incomparable to the other components, so they do not appear in table 6. The
scores belowhave been translated and rounded off; this is unimportant for ranking.

What is noteworthy about this example is that while the biggest defaulter SK appears at the bottom, and the
biggest defaultee AT appears at the top, the expectationmight be that since 12 countries have no defaults at all,
and 3 countries default inmultiple directions, therewould be a clear split, with the defaulting countries EE, SL,
SK the bottom three in the ranking, and the remaining 12 countries above.We next explore why this is not
the case.

4.3. Bipartite graphs
The graph infigure 10 is bipartite, with a clear division between defaulters and defaultees. In this section, we
consider default graphs that are bipartite. Example 4.2 below seems to confirm the intuition that a bipartite
default graph partitioning defaulters and defaultees will have a corresponding split in theHodge rank.However,
example 4.3 shows that this intuition is incorrect, as is also illustrated by the previous example.

Example 4.2.Consider four parties, where node 1 defaults in amount 1 to nodes 3 and 4, and node 2 defaults in
amount 10 to nodes 3 and 4, as in Figure 11.

Table 6.Hodge Rank.

Country Hodge Rank

AT 11.3

IT 7.8

SE 5.3

BE 4.7

GR 4.3

EE 4.3

DE 4.0

SI 4.0

FR 3.8

GB 3.0

ES 2.8

DK 2.8

PT 2.0

NL 1.1

SK 0.0

Figure 11.Directed defaults.
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Therefore, the defaultmatrix is

- -
- -

0 0 1 1
0 0 10 10
1 10 0 0
1 10 0 0

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

With respect to a basis for the edges ofB={[13],[23],[14],[24]}, the d1matrix is

- -
- -

1 0 1 0
0 1 0 1
1 1 0 0
0 0 1 1

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

Therefore the default vector is [1,10,1,10]. Computing, we find theHodge rank vector is [−1,−10, 0, 0], so that
the top ranked nodes are nodes 3 and 4, which are defaulted to in the same amount. Node 1 defaults in total
amount 2 and is ranked 3, and node 2 defaults in total amount 20, and is ranked last. This is in accordancewith
our intuition.

Example 4.3.Our last example shows that the behavior in theHodge ranks for example 4.1–that the defaulter EE
was rankedmore highly than defaulteeNL–is not an anomaly. Consider a bipartite default graph, where there
are 3 parties which are defaulters, and 3 parties which are defaultees. Node 1 defaults in amounts (2,4) to nodes
4 and 5, node 2 defaults in amounts (8,16) to nodes 5 and 6, and node 3 defaults in amounts (32,64) to nodes 6
and 4, as depicted in Figure 12.Hence, the defaultmatrix is

- -
- -

- -

0 0 0 2 4 0
0 0 0 0 8 16
0 0 0 64 0 32
2 0 64 0 0 0
4 8 0 0 0 0

0 16 32 0 0 0

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥

With respect to a basis for the edges ofB={[14],[34],[15],[25],[26],[36]}, the d1matrix is

- -
- -

- -

1 0 1 0 0 0
0 0 0 1 1 0
0 1 0 0 0 1
1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥

and the default vector with respect toB is [2,64,4,8,16,32]. Computing, wefind theHodge rank vector is

9, 27, 57, 0, 12, 18 .[ ]

Therefore, theHodge rank of the nodes is as in Table 7.Node 1 appears second in theHodge ranking, and yet is
one of the three nodes that defaults!

Figure 12.Directed defaults.
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4.4. Conclusions
In this paper, we have combined theHodge decomposition introduced in [17] to extract global rankings from
local data with the Eisenberg-Noe algorithm for fair clearing of a trading network. The results can be surprising:
as illustrated by the Bank of International Settlements [18] data in §4, evenwhen the default graph is bipartite,
with counterparties partitioned into distinct sets of defaulters and defaultees, the correspondingHodge rank
may not rank all of the defaulting counterparties below the non-defaulting counterparties.
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