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Abstract

The problem of analyzing interconnectedness is one of today’s premier challenges in understanding
systemic risk. Connections can both stabilize networks and provide pathways for contagion. The
central problem in such networks is establishing global behavior from local interactions. Jiang-Lim-
Yao-Ye (Jiang et al 2011 Mathematical Programming 127 1 203-244) recently introduced the use of the
Hodge decomposition (see Lim 2020 SIAM Review 62 685715 for a review), a fundamental tool from
algebraic geometry, to construct global rankings from local interactions (see Barbarossa et al 2018
(2018 IEEE Data Science Workshop (DSW), IEEE) pp 51-5; Haruna and Fujiki 2016 Frontiers in Neural
Circuits 10 77; Jiaet al 2019 (Proc. of the XXV ACM SIGKDD International Conf. on Knowledge
Discovery & Data Mining, pp 761-71 for other applications). We apply this to a study of financial
networks, starting from the Eisenberg-Noe (Eisenberg and Noe 2001 Management Science 47
236-249) setup of liabilities and endowments, and construct a network of defaults. We then use
Jiang-Lim-Yao-Ye to construct a global ranking from the defaults, which yields one way of quantifying
‘systemic importance’.

1. Introduction

The global financial crisis of 2008 highlighted the importance of connectivity in understanding financial
stability. Although linkages can diffuse risk, they can also provide pathways for emergent behavior and
contagion. Network theory provides insight into how to think about the structure and stability of the financial
system.

The financial network is an inherently complex network. It is strongly heterogeneous [1]. As 0of 2019, there
are thirty Global Systemically Important Banks [2], and over 5000 FDIC-insured commercial banks and savings
institutions [3]. There is no large-scale statistical regularity over which to coarse-grain the system. Our goal is to
provide a data-driven way to rank nodes in a financial network from a standpoint of risk.

1.1. Related and prior work

After the financial collapse of 2008, there was a surge of interest in mathematical modelling of interconnected
financial networks and contagion [4]. A range of challenges have been addressed. From the standpoint of
network theory, instability and contagion in statistically regular graphs [5] can often be captured as long-range vs
short-range effects. However, these properties become much more complex in a strongly heterogeneous graph.
There are a number of theoretical analyses of how shocks can affect a generic financial system [6-8]. There are
also a number of efforts to understand and quantify pathways in which financial connectedness can lead to
significant effects [5, 9] and moreover to quantify financial robustness in succinct ways [10]. These statistical
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measures must be adapted with care in a statistically heterogeneous system [11]. Building on theories of financial
contagion, a number of related questions of optimal control of financial networks [12, 13] were proposed,
particularly in the presence of a central risk manager [14]. See also [15].

1.2. Contribution

We study the financial network as a data-driven ranking problem. In particular, we use the Eisenberg-Noe [16] model of
clearing to compare counterparties, both locally and globally. Eisenberg and Noe provide a global calculation which
combines endowments and liabilities to fairly clear a network and identify defaults. We then apply the methods of
Jiang-Lim-Yao-Ye [17] to a network of financial defaults as given by the Eisenberg-Noe clearing mechanism. The
insight of [ 17] is that the Hodge decomposition of algebraic geometry allows one to extract global comparisons from
local interactions; this gives an algorithmic way to distinguish between systemic defaults and a local collection of
interacting defaults. See Lim [ 18] for an overview of the role of the Hodge Laplacian in a wide variety of settings. Some
applications related to networks include work on learning theory [ 19, 20] and on diffusion processes and community
detection [21]; other applications range from video quality [23] to electron microscopy [24].

The results of this paper serve, essentially, as a case study. We have chosen to use a stylized and deterministic
mechanism for clearing a network. Firesales [25-27] may also occur, and randomness is often intrinsic in those
models. Another way to understand contagion is through sensitivity of the Eisenberg-Noe calculations [28, 29].
Our model is static, in contrast to [30], and we do not address priorities of claims [31].

We believe that a focus on relative ranking (rather than absolute quantification) of risk provides a useful
framework for intrinsically understanding and quantifying how intervention might be targeted towards groups
of financial counterparties, rather than individual ones.

Combining[16] and [17] provides a framework that unifies some of the complexities of financial networks.
Financial interactions are almost always based on leverage; a small amount of capital is used as collateral for a
larger trade. Leverage is intrinsic to Eisenberg-Noe. Secondly, both Eisenberg-Noe and Jiang-Lim-Yao-Ye
depend on global calculations which use local interactions as input data.

Our calculation is entirely deterministic. One way to interpret our results is that they capture average values
of liabilites, endowments, and defaults. In a followup paper, we will use variational equations to understand the
effect of perturbative noise.

1.3. Organization

In section 2 we review the Eisenberg-Noe clearing calculations. Section 3 provides an overview of simplicial
complexes and the algebro-geometric tool of Hodge theory, applied by Jiang-Lim-Yau-Ye in [17] to ranking
questions. In section 4 we combine these two tools, and examine the implications of this formulation on a
sample dataset from the Bank of International Settlements.

2. The Eisenberg-Noe algorithm

We begin with a short review of the Eisenberg-Noe (EN) algorithm for clearing liabilities in a trading network. A

. . . def . . ..
trading network consists of a collection A/ = {1, 2... N} of N counterparties, where N is some fixed positive
integer. Then-th counterparty has

+ AnendowmentE,,

+ Liabilities L, , (assumed to be nonnegative) to counterparty n'.

The first step is to compute a clearing matrix C, where C,, , is the amount which counterparty # pays
counterparty n’. The EN algorithm calculates C,, , as follows. First, compute an asset vector A, where A,, is the
sum of the margin account and the payments from the other counterparties. Hence

A, =E, + Z Cn’,n @.1n
n'eN

Next, make a vector Zof liabilities, where Z,, consists of the total liabilities of trader # to the other traders. In other
words,
def
fn ; Z Ln,n’ = (Ll)n
n’'eN
Fixa counterparty n.IfA,, > ¢, then counterparty » can pay all of its liabilities, and
Cn,n’ - Ln,n’- (22)
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Figure 1. Network of Liabilities and Endowments.
IfA, < ¢, then counterparty n pays its debts proportionally. Define
I {Lf if £, >0
0 ifg,=0.
IfA, < £,,then
Cow = AuLnw
Noting that we can rewrite (2.2) as
Ly = Lo,
we have that
Cow' = PyLw (2.3)
where

P, = An N\ €, where A = min.
Using (2.1) in this equation, and then using (2.3), we get that the payments satisfy
p, = (E + 3 C] Nt = [E + > pn,inf,n] Aty = [E + Iif,,,/pn/) At
n'eN n'eN n'eN
The payment vector p thus satisfies
p=E+Lp) e

The shortfall in payment from node n to ' is

def
Sn,n’ = Ln,n’ - Cn,n’ 2.4)

Our interest is the fopological connections stemming from the Eisenberg-Noe calculations.

Example 2.1. As a first example, we consider a loop with leakage. Let’s assume that we have four counterparties,
A, B, C, and D, with a circular loop of obligations between the first three, and a liability to the fourth
counterparty, external to the loop. Let

3 0 10 0 15
1 1o o0 100
E’l L*10000

1 0 0 0 0

In other words, B, Cand D have endowments of $1, while A has an endowment of $3. A has a liability of $10 to B,
which in turn has a liability of $10 to C, which in turn has a liability of $10 to A. Additionally, A has a liability of
$15 to D, which has no liabilities, as in figure 1.

Applying Eisenberg-Noe yields

0 10/3 0 5
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Figure 2. Defaults and Payments.
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which corresponds to a payment vector of

Figure 3. Shortfalls.

25/3

13/3

16/3|
0

p:

Here, the first three nodes have defaults to each other, and the loop’ defaults to the fourth, as in figure 2 and 3.

From a network perspective, counterparties A, B, and C might be left to sort things out among themselves
and, if necessary, inject capital directly into D% the default to D is external to this loop, which is somehow more
macroscopic. A ranking system which appropriately nets such loops of shortfalls would allow us to identify those
counterparties which are global. Quantitatively, the defaults between A, B, and Care 3.33,4.33, and 5.33; one
would expect the difference in rank between A, B, and Cto be at most 2. The language of algebraic topology [32]
provides a systematic way to formalize this structure.

Example 2.2. We next consider an example with 5 agents, labelled 1 through 5. Assume that we have a liability
matrix given by

0 616 00
0014 20
L=]100 0 00
00 0 00O
03 9 60

where L, - is the liability of agent n to agent #'; in other words agent 1 owes $6 to agent 2 (L; , = 6). Assume that
we also have an endowment vector

E=(Q11 411 6T (2.5)

where E,, is the endowment of agent #; for example, agent 1 has endowment $11.

4 . .
one might here frame an argument in terms of moral hazard.

4
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Figure 4. Liabilities and Endowments for Example 2.2.

4

Figure 5. Shortfalls.

Applying Eisenberg-Noe yields the clearing payment matrix

03800
00710
C=]00000
00O0O0O0
01320
and the default matrix
03800
00710
D=]0 0000
00O0O00O0
02640
See figures 4 and 5.

3. Simplicial complexes and Hodge theory

We return to example 2.1 and encode the shortfalls (figure 3) as directed edges, rounding down for simplicity.
We have a shortfall of $6 from A to B; write that as 6[A, B]. The other shortfalls are 5[B, C], 4[C, A]and 10

[A, D]. The shortfall of $6 from A to B—an unpaid debt of $6 from A to B—can also be thought of as an unpaid
credit of $6 from Bto A, so 6[A, B] = —6[B, A]. The space of all shortfalls in this network is the vector space V;

of 1-dimensional edges; i.e.,
def

Vi = {alA, B] + B[B, C] + vIC, Al + plA, Dl; o, B, 7, p € R}

we think of [A, B],[B, C), [C, A],and [A, D] as the basis of a V;; we have that V| >~ R*; V; is itself four-

dimensional.




10P Publishing

J. Phys. Commun. 5(2021) 015018 H Schenck etal

If we were to net these shortfalls, we would combine the shortfall coming into each node with the shortfall
going out. We can define an operator d; which maps the shortfalls into capital. Namely, 6, should map 6[A, B]
into $6 of unresolved assets for B, and $6 of unresolved debt for A. Write this as 6[B] — 6[A], where [A] refers to
unresolved assets (positive) and liabilities (negative) for A. Next, define netting vector space as

Vo < {alAl + BBl + [Cl + pIDl: o, B, % p € R}
and define
difalA, Bl + BB, C1 + v[C, A] + plA, D1}
= a[A] — a[B] + B[B] — BIC] + 7[C] — 7[A] + plA] — p[D]
=(a =B+ OIAl + (B — o)[B] + (v — DIC] — p[D].
Vjis a four-dimensional space consisting of 1-dimensional points; V; >~ R*. Then d, is linear and
di{[A, B] + [B, C] + [C, A]} = 05

in other words, perfect loops are in the null space of d;. This suggests that linear algebra can be used to extract
global information from pairwise comparisons.

Let’s now look try to think of circular loops of shortfalls a the range of yet another operator. Let [A, B, C]
represent a shortfall of $1 from A to B, a shortfall of $1 from Bto C, and a shortfall of $1 from Cto A (and
similarly 5[A, B, C] represents these defaults, but in the amount of $5). Enumerating all of the directions yields

[A) B, C] = _[A) C) B] = _[B) A) C] = [B) C’ A] = [C) A) B] = _[C) B, A]

We can interpret the vector space

V5 &f {ala, b, c]: o € R}

as the space of (2-dimensional) triangles in the graph, and define the linear operator
d,al[A, B, C] = alA, B] + a[B, C] + a[C, Al]
We note that V;, >~ R!; V, is one-dimensional. Thus
im(d,) C ker(d)) C Vi,

and the tools of chain complexes allow us to more precisely decompose V7 into linear subspaces. In the general
setup, these subspaces will allow us to extract a ranking of the counterparties.

We can think of [A, B, C]as an abstract object; its only value is that allows us to write circular loops of
shortfalls as the range of d,.

3.1. Simplicial complexes
We can encode the data of example 2.1 using the framework of simplicial complexes. For additional background,
see [33].

Definition 3.1. An abstract n-simplex o on aset Vofn + 1 vertices, is the collection of all subsets of V. An
orientation for a simplex o is the additional data of an ordering of each subset.

Example 2.1 consists of a pair of simplices: the two simplex {A, B, C}, and the one simplex {A, D}, as well as
all subsets

{{A, B, C}, {A, B}, {A, C}, {B, C}, {A}, {B}, {C}}  and  {{A, D}, {A}, {D}}.
One example of a choice of orientation is
oy} o {[A, B, C], [A, B], [A, C], [B, C], [A], [B], [C]} and oy &« {[A, D], [A], [D]}. 3.1

The introduction of orientation is natural in many physical contexts involving network flow.
Note that 0, and o, are joined at a common vertex [A].

Definition 3.2. An oriented simplicial complex 3 on a vertex set V'is a collection of of oriented simplexes such
that every element of Vis in at least one oriented simplex. The dimension of ¥ is the maximum dimension of all
simplices contained in 3.

Inexample 2.1, = o0, U 0, is an oriented simplicial complex, where o, and o, are asin (3.1).

Example 3.3. Next, consider the oriented simplicial complex in figure 6.

6
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Node 1 Node
Node 5

\ 4

Node 3

Figure 6. An oriented simplicial complex.

There are three 2-simplices

o0 211, 2,31, [1, 20, 2, 31, 1, 31, [1, (2], [3])

o ¥ (12,3, 51, [2, 31, [5, 21, [5, 31, [2], (3], [5])

o €12, 4,51, [2, 41, [5, 41, [5, 21, [21, [4], (5]}

def . . . .
andset Y = 02,0 U 02, U 03, and vector spaces with bases the oriented vertices, edges, and triangles:

Vo & Span{[11, [21, [3], [4], [5]}
Vi & span{[1, 21, [1, 31, [2, 3], 2, 4], [5, 21, [5, 3], [5, 41}
v, & Span{[1, 2, 31, [2, 3, 5], [2, 4, 51}. (3.2)

3.2. Homology
With the concept of an oriented simplicial complex in hand, we’re ready to set up the machinery that will allow
us to distinguish (in certain cases) between objects.

Definition 3.4. A chain complex C is a sequence of vector spaces V;and linear transformations d;:

disy d; di
Cioos — Vi1 =5 Vi =5 Vi =5 e

where im(d; ;) C ker(d;). The resulting quotient space
H;(C) = ker(d;) /im(d; 1)
is the ith homology of C.

In our case, we have

d d
GV, — Vi =5V, (3.3)

The main idea is to use an oriented simplicial complex to define a chain complex. The key point is to define the
boundary map:

Definition 3.5. For an oriented n-simplex [vy,...,,],
n
drl [VO)~ . -JVn] = Z (_ 1)I[VO)- . -31/’;;- . ~)Vn]'
i=0

So for example,
dy[vo, Vi, val = [v1, V2] — [vo, v2] + [v1, V2l

Next we define a chain complex, where the object V; has a basis consisting of the oriented i-simplices, modulo an
equivalence relation

ni~ (— 1O

if 7, and 7, have the same set of vertices, o is a permutation reordering 7, so it matches 71, and sgn is +1 if &
consists of an even number of transpositions, and — 1 otherwise. Although this seems opaque, in case of an edge,
it simply means that [vy, v;] = — [v}, ¥]. This makes sense if we consider the vertices as traders and the
orientation as default.
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Example 3.6. We carry this out for example 3.3. With the choice of oriented basis above,

a1, 2,3]1=1[1, 2] —[1, 3] + [2, 3]
d2[2) 3) 5] = [2) 3] - [2) 5] + [3, 5]
(2, 4,5]1=12,4] — [2,5] + [4, 5]

For example, notice that [5, 2] ~ — [2, 5]. Next, we find matrix representations of the d; with respect to the
ordered bases of the V;in 3.2, which are

1 0 O

-1 0 O

1 1 0
>0 0 1

o 1 1

0 —1 0

0O 0 -1

-1 -1 0 O O 0 O

1 0 -1 -1 1 0 O
d~l0o 1 1 0 0 1 0

o o0 o0 1 0 0 1

o o0 o0 0 -1 -1 -1

The first column of the matrix representation of d, captures the first line of (3.6). The first column of the matrix
representation of d; corresponds to d,[1, 2] = [2] — [1]. We can write the chain complex

1 0 0
“10 0
1 1 0 “1-10 0 0 0 0
0 0 1 1 0 -1-11 0 0
001 1 01 1 0 0 1 0
0 -1 0 000 0 1 0 0 1
0 i 0 0 “Upslo 0 0 0 st or s
A calculation shows that for this example, (3.3) becomes
dimH,(C) =0
dimH;(C) =0
dim Hy(C) =1

What information do the H;(C) encode? An easy exercise shows that dim H(C) is the number of connected
components of the underlying simplex ¥, and for i > 0, the dimension of H;(C) is essentially a count of the
number of i-dimensional holes in 3. We close with an example to illustrate this:

Example 3.7. Consider a hollow triangle, that is, the one-dimensional simplicial complex consisting of vertices
{[11, [2], [3]} and edges {[1, 2], [2, 3], [3, 1]}. With this choice of basis, the resulting chain complex is

0—R R — 0

For this example, dim H;(C) = 1 = dim H(C), which agrees with the intuition above: a hollow triangle is
topologically ~S", which has one connected component and a single one dimensional hole.

3.3. Hodge theory and Hodge decomposition

Hodge theory is a fundamental tool used to study a smooth manifold M, and we give a brief sketch of the general
theory below (when applied in the context of ranking, the manifold M is replaced, in some sense, with network
connectivity). For a smooth manifold M, the chain complex of interest has as the k-th term the sheaf Q5N of
differential k-forms on M, with differential d k
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Qk(M) ik) QM)

consisting of the exterior derivative. Since d k13% — 0 we obtain the De Rham cohomology H KQMD)) as
ker(d*) /im(d*~"). For an arbitrary chain complex, homology (and cohomology) are quotient spaces, so that
there is no canonical choice for a basis. If M is a compact oriented manifold with a smooth metric v, then it is
possible to define an adjoint operator d": Q%+1(M) — Qk(M) to d*. Hodge proved that in this case there is a
orthogonal decomposition, the Hodge decomposition:

QK (M) ~ im(d*—1) @ ker(L) @ im(d*),
where the L is the Laplacian
L = d¥od" + d*lod"~T"
and that ker(L) ~ H*(Q(M)). In the setting studied by Hodge, the underlying geometry gives additional
structure to the problem. This allows a canonical choice of generators for H kM), consisting of harmonic
forms; see Voisin [34] for details. We included the background above as a matter of general mathematical
interest. In the setting of ranking, we can avoid the heavy machinery, and work in the setting of real vector

spaces. This allows us to give an elementary proof of the Hodge decomposition, as in, for example, [22].
Let V, Whbe finite dimensional real vector spaces, and

A
V—sWw

alinear transformation. Vand Ware inner product spaces, with inner product the familiar dot product. Choose
bases so that A is a matrix. The adjoint operator A™ is defined via

(Av, w) = (v, A*w).
So in this setting, we have

(Av, w) = wl - Av = (AV)T - w = vT - ATw = (v, A*w).

Proposition 3.8. Let
d d,
NV—Vv—W
be a complex of vector spaces, with rank(V;) = a;. Then
V, =~ im(d)) @ im(dy)" @ ker(L), whereL = did" + d] d,.
Proof. Letrank(d;) = r;and dimker(d;) = k;. Choose bases so that

L, 0 00
dl = [O O]andd2 = [O Irz]

where 0 represents a zero matrix of the appropriate size. For example, since the matrix d, is
a, X a; = a, x (r; + ky), the top right zero in d; has r, rows and k; columns. Then we have that d,d,” and d; d,

arebotha, x a, matrices, with
I, 0 0 0
T r Ty _
did; = [O O]andd2 dy = [O Irz:l

Hence

I,
L=dd +dld=|o0
0
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The zero in the middle represents a square matrix of size

ky — n = dim(ker(d,) /im(d))),

yielding the Hodge decomposition. O

3.4. Hodge theory and ranking

In[17],Jiang-Lim-Yao-Ye introduced the use of Hodge theory in the study of rank aggregation. Theidea is as
follows: a collection of voters is asked to compare a group of alternatives (paradigm: Netflix problem). Voters
need not compare all alternatives, and are not constrained to respect transitivity. In particular, cyclic
rankingslikea > b > ¢ > d > aarepossible. In practice, often there are a myriad of alternatives, but each
voter only ranks a few. How can the data be aggregated in a coherent fashion to produce a global ranking?
The first step is to consolidate the votes into a weighted directed graph G. A directed graph is an oriented one
dimensional simplicial complex Ag; an assignment of weights to each edge corresponds to a choice of a
linear functional C,(Ag), hence an element of G (Ag)* = C'(Ag). The fundamental insight of Jiang-Lim-
Yao-Yeis that Hodge theory yields a way to rank the data. We paraphrase their main result below.

Theorem 3.1. [17] For a weighted directed graph G, let F be the two dimensional simplicial complex obtained by
filling any triangle whose edges are all in G. Then the decomposition

CY(Ag) ~ im(d™) @ im(d®) @ ker(L)

has the following interpretation

1. im(d") consists of locally inconsistent rankings: rankings v; > v; > vy > v;.
2. ker(L) consists of globally inconsistent rankings: rankings v; > v; > v > -+ > v,
3. im(d®) consists of consistent rankings: rankings with no cycle.

In particular, the consistent ranking which is the best approximation to G is obtained by orthogonal
projection onto im(d°). By duality, d° ~ d;*, and below we work with d,*.

Example 3.9. Consider the weighted, directed graph, with (oriented) edges as in example 3.3. The complex F is
obtained by adding in the triangles {[1, 2, 3], [2, 3, 5], [2, 4, 5]}. A calculation shows that ker(L) = 0, and
that im(d;*) has basis given by the columns of X. Note that 4;*: R*> — I, but is of rank four.

1000 [12] =3
1010 [13] =8
0010 (23] =7
X=10 0 0 1 |and weight vectord = |[24] =1
0100 [52] =2
0110 [53] =6
0101 (54] —

Pictured in Figure 7, the vector b closest to d in the column space of X is simply the projection of d onto the
subspace spanned by the columns of X; so is given by the formula

b= ((XT - X)"'X'd,

which in the case at hand yields the vector %(19, 11, 39,12)". Recall this is with respect to the basis given by the
columns of X, so the vector in R which best approximates d is %(19, 58, 39, 12, 11, 50, 23)T. This yields our

potential function, as follows: ignoring the factor of %, the vector (19, 58, 39, 12, 11, 50, 23)” represents edge
flows coming from a potential function. Initializing so S(0) = 0, the ranking choice is

10
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sﬁ =4
$8 S7 $6
\ d

Figure 7. Directed graph with weight vector d.

S(0)=0
S(1)=19
S(2) =58
S(3) =31
S(4)=8

Notice that v, has net default of 2 + 4 + 6 = 12 and defaults to three different creditors, whereas v, has net
defaultof 3 + 8 = 11 and defaults to two creditors. Nevertheless, in terms of global ranking, v, is of more
importance than v4. So while the example by and large agrees with our intuition, there are interesting subtleties.

An important aspect in assessing the accuracy of the ranking involves the distance between the default vector
dand the best approximation b. In the case athand, |d| ~ 13.4,|b| ~ 13.2,and |d — b| ~ 2.2, sothe
approximation is reasonably good.

Example 3.10. Consider the system in figure 8, where all agents have endowment $1, and liabilities of $20; note
that there are liabilities to and from external counterparties. Applying Eisenberg-Noe, the defaults are as in
figure9.

The Hodge decomposition can be applied to a clearing network to give a global ranking of the nodes inside.
To do this, following [ 17], we build a skew symmetric matrix whose entries reflect the directed edge weights.
Thus the default matrix is

S S — St (3.4)

the shortfall matrix of (2.4) for nand " in V. After obtaining the globally consistent component of a given edge
flow (gradient), following [ 17] we find the potential function, allowing us to rank the nodes. For figure 9, our
skew-symmetric default matrix is

0 15 0 0 —-16 0 0 0 0
—15 0 13 0 0 0 0 0 —19
0 —-13 0 15 0 —-18 15 0 0
0 0 =15 0 17 17 0 O 0
D=]| 16 0 0o —-17 0 0 0 0 0
0 0 18 —17 0 0 0 18 0
0 0 —-15 0 0 0 0 0 0
0 0 0 0 0 —18 0 O 0
0 19 0 0 0 0 0 0 0
With respect to the ordered, oriented bases

For/\, {[346]}

ForA; {[12], [51], [23], [92], [34], [63], [37], [45], [46], [68]}

ForA, {[11,...,[91}

11
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Figure 8. Liabilities.

Figure 9. Defaults.

the resulting chain complex is

In this case, the Laplacian is
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and ker(L) = (3, 3, 3, 0, 2, —1, 0, 3, —1, 0)T, which reflects the fact that our network has aloop of length
five. In particular,

dim(ker(L)) = 1 = dim(im(d,)), sodim(imd;) = 8.

Choosing as a basis for X = im(8°) the transpose of the first eight rows of d;, we find that after scaling

11 3 3 14 2 -1 0 3 -1 0
0 0 014 0 0 0 0 0 0
-3 31114 -2 1 0 -3 1 0
o owwavr | =5 =5 9 14 6 -3 0 -5 -3 0
XXX =1 8 § 614 4 20 6 —20
4 —41014 2 -8 0 -4 6 0
-3 31114 -2 1 14 -3 1 0
4 41014 2 -8 0 —4 6 14

Sinced = [15, 16, 13, 19, 15, 18, 15, 17, 17, 18], we find that
b = (X" X)"'XTd = [234, 266, 270, 128, 188, 192, 480, 444]

and multiplying against X shows the edge flows are [32, 46, 4, 266, — 142, 78, 210, 60, 64, 252]. Initializing
sos(1) = 0, wehave

[5(1),...,s(9)] = [0, 32, 36, —106, —46, —42, 246, 210, —234].

The extreme values agree with our intuition—the worst offender at —234 is node 9, and with values 210 and 246,
nodes 7 and 8 are owed the most. However, s(2) = 32 and s(3) = 36. Netting defaults shows that node 2 has a
surplus of 21, while node 3 has a surplus of 1, but the Hodge rank of node 3 is greater than that of node 2. This
will also occur with real data, as we’ll see in the next section.

4. Application of Hodge Decomposition to Clearing Networks
In this section, we analyze the liability network formed by twenty countries of the EU.

Example 4.1. We close by examining data from [18]” ; country codes are given in table 1. Liabilities are given in
tables 2—3. Countries in row # have liabilities towards countries in columns #’; for example Austria has a liability
towards Belgium of $3.13B (see table 9B, p. A74 of [18]). The ‘endowments’ are estimated by combining the balance
sheets of monetary financial institutions (MFI’s), using that information as a representative of the entire banking
sector of a country. The endowments were estimated as the sum of (OA standing for Outstanding Amounts)

+ Liabilities: OA: Deposits of EA Residents: MFI (International)

+ Liabilities: OA: Deposits of EA Residents: Others (International)

+ Liabilities: OA: Capital and Reserves (International)

« Liabilities: OA: External Liabilities (International)
minus

+ Liabilities: OA: Deposits of EA Residents: Others: Overnight (International)
+ Liabilities: OA: Deposits of EA Residents: Others: Agreed Maturity (International)
+ Liabilities: OA: Deposits of EA Residents: Others: Redeemable at Notice (International)

This is only a test case; we believe that this data is not complete. We might rank the counterparties of tables 2,
3 and 4 by dividing the sum of liabilities by the endowment (note that liabilities are broken into two displays
(tables 2 and 3) due to space constraints).

For example, Austria has a total 0of211.9 $B, and an endowment of 530.56 $B. Dividing, we get a score of .40.
Naively, a higher score means more debt per unit of endowment, and thus more risk. The results are in table 5.

> Thanks to Alysa Shcherbakova and Kevin Liu for help with this data.
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4.1. Default, liability, endowment data

Table 1. Country Codes.

AT Austria

BE Belgium

CcY Cyprus

DE Germany

DK Denmark

EE Estonia

FI Finland

FR France

ES Spain

GB United Kingdom

GR Greece

IE Ireland

IT Italy

LU Luxembourg

MT Malta

NL Netherlands

PT Portugal

SE Sweden

SK Slovakia

SI Slovenia
Table 2. Liabilities (in $B).

AT BE CY DE DK EE ES FI FR GB
AT 0.00 3.13 0.0 73.35 0.22 0.0 4.51 0.0 16.01 6.61
BE 1.59 0.00 0.0 27.88 0.52 0.0 5.58 0.0 221.66 19.03
CY 2.52 0.22 0.0 8.36 0.56 0.0 0.12 0.0 3.73 1.65
DE 45.04 13.56 0.0 0.00 4.38 0.0 54.18 0.0 198.30 187.77
DK 1.42 0.39 0.0 21.76 0.00 0.0 2.16 0.0 13.08 11.79
EE 0.08 0.01 0.0 0.45 0.20 0.0 0.01 0.0 0.04 0.05
ES 4.55 12.54 0.0 146.10 1.95 0.0 0.00 0.0 115.16 86.30
FI 1.04 0.63 0.0 15.81 36.60 0.0 1.85 0.0 7.20 6.66
FR 10.64 44.83 0.0 174.86 5.03 0.0 27.02 0.0 0.00 292.18
GB 17.12 26.66 0.0 458.79 45.24 0.0 394.01 0.0 214.98 0.00
GR 2.15 0.68 0.0 32.98 0.06 0.0 1.00 0.0 39.46 10.94
1IE 2.14 35.19 0.0 95.33 14.78 0.0 8.22 0.0 33.69 141.28
1T 18.13 12.32 0.0 133.95 0.31 0.0 29.94 0.0 329.55 60.10
LU 4.75 5.20 0.0 142.27 8.30 0.0 7.91 0.0 86.97 30.26
MT 1.03 0.00 0.0 2.58 0.01 0.0 0.29 0.0 1.01 0.00
NL 12.29 22.14 0.0 154.65 2.52 0.0 20.01 0.0 119.43 154.86
PT 1.02 1.25 0.0 30.21 0.14 0.0 78.00 0.0 21.82 21.21
SE 1.81 0.60 0.0 34.20 59.07 0.0 2.41 0.0 9.51 16.03
SK 30.85 7.80 0.0 3.78 0.00 0.0 0.15 0.0 2.93 0.93
SI 14.57 0.87 0.0 3.51 0.04 0.0 0.04 0.0 4.94 0.66
Table 3. Liabilities (in $B, continued).
GR IE IT LU MT NL PT SE SK SI

AT 0.16 0.42 97.09 0.0 0.0 8.75 0.16 1.65 0.0 0.0
BE 0.31 0.30 3.38 0.0 0.0 114.90 0.16 2.68 0.0 0.0
CY 19.01 0.00 1.52 0.0 0.0 1.66 0.19 1.29 0.0 0.0
DE 2.66 2.76 227.81 0.0 0.0 170.28 2.27 66.18 0.0 0.0
DK 0.19 0.75 1.92 0.0 0.0 4.29 0.20 190.79 0.0 0.0
EE 0.00 0.00 0.42 0.0 0.0 0.00 0.00 16.67 0.0 0.0
ES 0.29 4.69 26.94 0.0 0.0 0.00 21.62 3.77 0.0 0.0
FI 0.00 0.00 0.87 0.0 0.0 4.75 0.11 163.76 0.0 0.0
FR 1.69 5.06 40.31 0.0 0.0 74.99 6.68 9.02 0.0 0.0
GB 14.73 139.29 54.19 0.0 0.0 136.74 5.97 37.40 0.0 0.0
GR 0.00 0.15 2.30 0.0 0.0 3.23 8.08 0.29 0.0 0.0
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GR IE IT LU MT NL PT SE SK SI
IE 0.49 0.00 17.43 0.0 0.0 17.41 17.53 1.80 0.0 0.0
IT 0.44 1.29 0.00 0.0 0.0 34.56 2.11 1.01 0.0 0.0
LU 5.16 1.42 25.25 0.0 0.0 18.62 2.05 8.47 0.0 0.0
MT 0.44 0.00 1.02 0.0 0.0 0.85 1.14 0.12 0.0 0.0
NL 3.89 2.52 20.60 0.0 0.0 0.00 9.09 9.73 0.0 0.0
PT 0.05 0.52 3.19 0.0 0.0 4.67 0.00 0.22 0.0 0.0
SE 0.08 0.55 2.86 0.0 0.0 5.78 0.16 0.00 0.0 0.0
SK 0.00 0.00 18.38 0.0 0.0 1.58 0.08 0.17 0.0 0.0
SI 0.00 0.00 7.66 0.0 0.0 0.00 0.02 0.00 0.0 0.0

Table 4. Endowment (in $B).

AT 530.56
BE 595.45
CY 95.74

DE 3382.81
DK 472.20
EE 11.32

ES 1659.32
FI 302.83
FR 4529.39
GB 8291.37
GR 29291

IE 1162.82
IT 1905.13
LU 884.49
MT 51.95

NL 1045.77
PT 277.35
SE 537.39
SK 18.11

SI 26.20

Table 5. Liabilities/Endowment; here
higher value means more risk.

Country Liabilities/Endowment
FR 0.15
MT 0.16
GB 0.19
SE 0.25
ES 0.26
DE 0.29
1T 0.33
IE 0.33
GR 0.35
LU 0.39
AT 0.40
CY 0.43
NL 0.51
DK 0.53
PT 0.59
BE 0.67
FI 0.79
SI 1.23
EE 1.58
SK 3.68
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Applying Eisenberg-Noe yields the following defaults; the rows and columns are indexed in the order from table 1.

4.2. Clearing the Network

J. Phys. Commun. 5(2021) 015018
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Table 6. Hodge Rank.

Country Hodge Rank

AT 11.3
IT 7.8
SE 5.3
BE 4.7
GR 43
EE 4.3
DE 4.0
SI 4.0
FR 3.8
GB 3.0
ES 2.8
DK 2.8
PT 2.0
NL 1.1
SK 0.0

The rank of the zeroth homology is exactly the number of connected components of our network, so
dim(H,) = 6. Since

dim Hy = f(vertices) — rank(d)),

we see that d; has rank 14. In particular, when we run the Hodge rank algorithm, there will be only 15 countries
to rank. When we rank according to the Liabilities/Endowment ratio as in table 6, the 5 countries which are
inactive in terms of default have ranks ranging from 2 (MT) to 16 (FI). On the other hand, when using Hodge
rank, as isolated vertices, they are incomparable to the other components, so they do not appear in table 6. The
scores below have been translated and rounded off; this is unimportant for ranking.

What is noteworthy about this example is that while the biggest defaulter SK appears at the bottom, and the
biggest defaultee AT appears at the top, the expectation might be that since 12 countries have no defaults at all,
and 3 countries default in multiple directions, there would be a clear split, with the defaulting countries EE, SL,
SK the bottom three in the ranking, and the remaining 12 countries above. We next explore why this is not
the case.

4.3. Bipartite graphs

The graph in figure 10 is bipartite, with a clear division between defaulters and defaultees. In this section, we
consider default graphs that are bipartite. Example 4.2 below seems to confirm the intuition that a bipartite
default graph partitioning defaulters and defaultees will have a corresponding split in the Hodge rank. However,
example 4.3 shows that this intuition is incorrect, as is also illustrated by the previous example.

Example 4.2. Consider four parties, where node 1 defaults in amount 1 to nodes 3 and 4, and node 2 defaults in
amount 10 to nodes 3 and 4, asin Figure 11.

&
@

©
@

7
-

Figure 11. Directed defaults.
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Therefore, the default matrix is

0 0 1 1
0 0 10 10
-1 —-10 0 O
-1 —-10 0 O

With respect to a basis for the edges of B = {[13], [23], [14], [24]}, the d; matrix is

-1 0 -1 0
0 -1 0 -1
1 1 0 0
0 0 1 1

Therefore the default vector is [1,10,1,10]. Computing, we find the Hodge rank vector is [—1, —10, 0, 0], so that
the top ranked nodes are nodes 3 and 4, which are defaulted to in the same amount. Node 1 defaults in total
amount 2 and is ranked 3, and node 2 defaults in total amount 20, and is ranked last. This is in accordance with
our intuition.

Example 4.3. Our last example shows that the behavior in the Hodge ranks for example 4.1-that the defaulter EE
was ranked more highly than defaultee NL—is not an anomaly. Consider a bipartite default graph, where there
are 3 parties which are defaulters, and 3 parties which are defaultees. Node 1 defaults in amounts (2, 4) to nodes
4and 5, node 2 defaults in amounts (8, 16) to nodes 5 and 6, and node 3 defaults in amounts (32, 64) to nodes 6
and 4, as depicted in Figure 12. Hence, the default matrix is

0 0 0 2 40
0 0 0 0 8 16
0 0 0 64 0 32
-2 0 —-64 0 0 O
-4 -8 0 0 0 O
0 —-16 =32 0 0 O

With respect to a basis for the edges of B = {[14], [34], [15], [25], [26], [36]}, the d, matrix is

-10 -1 0 0 O
0 0 0 -1 -1 0
0 -1 0 0 0 -1
1 1.0 0 O O
0 0 1 1 0 O
0o 0 0 0 1 1

and the default vector with respect to Bis [2, 64, 4, 8, 16, 32]. Computing, we find the Hodge rank vector is
[9, 27, 57, 0, 12, 18].

Therefore, the Hodge rank of the nodes is as in Table 7. Node 1 appears second in the Hodge ranking, and yet is

one of the three nodes that defaults!

D—L=3®

@/ O

Figure 12. Directed defaults.
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Table 7. Hodge Rank and Default amount.

Node Hodge Rank Value Total Defaults

4 66
1 9 —6
5 12 12
6 18 48
2 27 —24
3 57 —96

4.4. Conclusions

In this paper, we have combined the Hodge decomposition introduced in [17] to extract global rankings from
local data with the Eisenberg-Noe algorithm for fair clearing of a trading network. The results can be surprising:
as illustrated by the Bank of International Settlements [18] data in §4, even when the default graph is bipartite,
with counterparties partitioned into distinct sets of defaulters and defaultees, the corresponding Hodge rank
may not rank all of the defaulting counterparties below the non-defaulting counterparties.
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