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Abstract
The influence of weak disorder on the superconductivity in ordinarymetals can be formally described
by theAbrikosov-Gorkov diagrammatic approach. The vertex correction is ignored in this approach
because an inequality kF l?1, where kF is the Fermimomentum and lmean free path, is satisfied in
ordinarymetals with a large Fermi surface. In aDirac semimetal that has discrete Fermi points, this
inequalitymay break down even for arbitrarily weak disorder since k 0F  , and thus the vertex
correction could be important.We incorporate the vertex correction into the self-consistent equations
of the superconducting gap and the disorder scattering rate, and then apply the generalized approach
to study how s-wave superconductivity is affected by random chemical potential in two- and three-
dimensional Dirac semimetals, as well as two-dimensional semi-Dirac semimetal. In the clean limit,
superconductivity is formed only when the pairing interaction strength is greater than some critical
value in thesematerials. Adding random chemical potential to the systempromotes superconductivity
by generating a finite fermionic density of states at the Fermi level. In three-dimensional Dirac
semimetal, the critical attraction strength is reduced byweak disorder, but remains finite. In the other
two cases, superconductivity is induced by arbitrarily weak attraction. Including the vertex correction
does not change these qualitative results, and actually could further promote superconductivity in the
weak-attraction regime. Bilayer graphene is quite special in that its zero-energy density of states is
nonzero despite the existence of Fermi points. Due to this peculiar property, superconductivity is
always slightly suppressed by random chemical potential, and the impact of vertex correction is nearly
negligible.

1. Introduction

The advancemade in the fabrication of various types of semimetals (SMs) has stimulated a huge number of
researchworks in the past decade [1–16]. Graphene,made of one layer of carbon atoms on a honeycomb lattice,
is a typical two-dimensional (2D)Dirac SM (DSM) and has been extensively studied [1–4].Moreover, the gapless
surface electronic state of three-dimensional (3D) topological insulators can also be regarded as 2DDSM [5–7].
Recently, a stable 3DDSMstate that is protected by crystal symmetry was found inNa3Bi andCd3As2 [8–10]. In
addition,Weyl SM (WSM), inwhich the low-energy fermionic excitations display linear dispersion around pairs
of nodes with opposite chirality, was observed in TaAs, NbAs, TaP, andNbPby the angle-resolved
photoemission spectroscopy (ARPES) [10–14]. There also exist other types of SMs, such as 3Dnodal line SM
(NLSM) [15–18], 2D semi-DSM [19–46], 3D double-WSM [47–59], 3D triple-WSM [49, 53, 56–62], 3D
anisotropic-WSM [49, 63–65], and 3DLuttinger SM [66–70].

Most of these SMs share a common feature: the Fermi surface is composed of a number of zero-dimensional
points. This implies that the fermion density of states (DOS) vanishes at the Fermi level, which is different from
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conventionalmetals whoseDOS takes afinite value at the Fermi level. This difference is responsible formany
intriguing properties of SMmaterials that cannot occur in ordinarymetals.

Cooper pairing instability in 2DDSMhas attracted considerable interest in recent years [71–92]. It has been
proposed that phonon or plasmonmaymediate an effective attraction betweenDirac fermions [4, 72, 75]. For
an undoped 2DDSM, superconductivity can be realized onlywhen the net attraction is sufficiently strong
[71–92]. This is quite different from the conventionalmetal superconductors inwhich even an arbitrarily weak
attraction suffices to trigger Cooper pairing [93–95]. The difference is owing to the fact that the fermionDOS
vanishes at zero energy, namely ρ(0)=0. Cooper pairing instabilitymay be achieved in other SMs, including 2D
semi-DSM [43, 44], 3DDSM [96], 3DWSM [97, 98], 3DNLSM [17, 18], and 3DLuttinger SM [67, 69, 70]. In
thesematerials, there is also a threshold value for the strength of attraction.

In terms of industrial and commercial applications, the existence of a threshold for net attraction appears to
be a negative result because itmakes it difficult to realize intrinsic superconductivity in undopedDSMs.
However, from the perspective of theoretical study, it provides uswith a unique opportunity to investigate
various novel properties that do not exist in ordinarymetal superconductors. The critical value of attraction
defines a genuine quantum critical point (QCP) between the SMand superconducting (SC) phases at zero
temperature, and the system exhibits awealth of attractive quantum critical behaviors around suchQCP [69,
99–104]. For instance, an effective space-time supersymmetry was recently argued to emerge at thisQCP at low
energies [99–104].

An interesting problem is how superconductivity formed in variousDSMs is affected byweak disorder.
Among the possible disorders, random chemical potential ismost frequently encountered in realisticmaterials
[3, 105, 106]. In the case of conventionalmetal superconductors, Anderson theorem states that weak random
chemical potential does not alter the SC gapΔ and the critical temperatureTc if the pairing is s-wave [107–111].
This result can be obtained by the diagrammatic approach developed byAbrikosov andGorkov (AG) [111, 112].
For such result to be valid, an important precondition is that the low-energy fermionDOS is not sensitive to
weak disorder [110, 111].While this condition is satisfied in ordinarymetals with a large Fermi surface, it breaks
down inDSMs that have only isolated Fermi points. Renormalization group (RG) analysis showed that random
chemical potential is a relevant perturbation to 2DDSM [87, 92, 105, 113–115], thus arbitrarily weak disorder
eventuallyflows to the strong coupling regime and then drives the system to enter into a compressible diffusive
metal (CDM) state, in which disorder generates afinite scattering rateΓ. In addition, the fermions acquire a
finite zero-energyDOS ρ(0) that is a function ofΓ [87, 92, 105, 113–118]. It is obvious that the zero-energyDOS
of the 2DDSM is very sensitive toweak disorder, in stark contrast to the case of ordinarymetals. As a result, weak
random chemical potentialmight have significant influence onΔ andTc. The question is whether
superconductivity is enhanced or suppressed.

In a recent work [92], the influence of randomgauge potential and randommass on superconductivity in 2D
DSMwas studied by using the perturbative RGmethod. It was found there that the critical attraction for Cooper
pairing is increased by random gauge potential or randommass [92]. The strength parameter of randomgauge
potential can befixed at a small value, whereas the strength parameter of randommassflows to zero
logarithmically as the zero-energy limit is reached [92, 105, 113–115]. Therefore, the perturbative RG analysis is
reliable in these two cases.

If random chemical potential and pairing interaction are considered simultaneously, RG analysis revealed
[92] that both of the two strength parameters tend to diverge at some finite energy scale. This indicates that the
systembecomes unstable andwill be turned into a new phase. In such a strong coupling regime, the RGmethod
cannot be used to determinewhether the system enters into aCDMphase or a SC phase. To address this issue,
we need to analyze the possible generation of disorder scattering rateΓ and the possible generation of SC gapΔ.
These two processes strongly affect each other. Therefore, the quantitiesΓ andΔ should be calculated in a self-
consistent and unbiasedway.

Dyson-Schwinger equations (DSEs) provide a suitable framework to treat disorder scattering andCooper
pairing on an equal footing. The essence of this approach is to solve the self-consistently coupledDSEs forΓ and
Δ. In themost generic form,DSEs are complete and contain all the information about disorder scattering and
Cooper pairing. In practice, however, it is always necessary to properly truncate the complete set ofDSEs. The
original AGmethod and its generalization to be presented below in this work are actually two different
truncations of the complete set ofDSEs.

Nandkishore et al [87] investigated the effect of random chemical potential on s-wave superconductivity by
taking the surface state of 3D topological insulator as an example. After solving themean-field gap equation,
which is a simplified version of AGmethod, in combinationwith a RG analysis [87], they found that
superconductivity can be induced by arbitrarily weak attraction. Subsequently, Potirniche et al [88] analyzed the
interplay of superconductivity and randomchemical potential by considering aHubbardmodel defined on
honeycomb lattices with an on-site attractive couplingU bymeans of self-consistent Bogoliubov-deGennes
equationmethod [88]. In the clean limit, they argued that the system remains a SM ifU is smaller than certain

2

J. Phys. Commun. 3 (2019) 055006 J-RWang et al



critical valueUc, but becomes SCwhenU exceedsUc. Adding disorder to the clean system results in a
complicated behavior of superconductivity. In the strong coupling regimeU>Uc, disorder can suppress
superconductivity. In theweak coupling regimeU<Uc, weak disorder enhances superconductivity, but strong
disorder eventually destroys superconductivity.

In [92], the diagrammatic AGmethodwas applied to study the impact of random chemical potential on
superconductivity in the context of a 2DDSM, yielding results that are qualitatively consistent with those of
Nandkishore et al [87] and Potirniche et al [88]. However, here we emphasize that the applicability of the original
AGmethod to 2DDSM is actually questionable [87, 92], because it entirely neglects the vertex correction to the
fermion-disorder coupling. Such correctionwould be small if the inequality kF l?1, where kF is the Fermi
momentum and l themean free path, is satisfied. Since the disorder scattering rateΓ is inversely proportional to
l, the above inequality can be re-expressed as kF?Γ. In ordinarymetals with afinite Fermi surface, the Fermi
momentum is usually large and the scattering rate caused byweak disorder is small, thus this inequality is
generically satisfied.However, 2DDSMcontains only discrete Fermi points, whichmeans that k 0F  .
Additionally, random chemical potential is a relevant perturbation in 2DDSMand always induces afinite
disorder scattering rateΓ. In this case the inequality kF?Γ breaks down, so the vertex correctionmay be very
important. It is interesting to verify whether random chemical potential still promotes superconductivity after
including the vertex correction. To obtain a reliable relation between superconductivity and randomchemical
potential, one should go beyond the original AG approximation and study the role of vertex correction. This is
thefirstmotivation of this work.

We notice an important principle that the impact of random chemical potential in various SMs is closely
related to the dimensionality and the specific fermion dispersion. For example, weak random chemical potential
is irrelevant in a 3DDSM/WSM, but becomes relevant if its strength is sufficiently large. Accordingly, for a 3D
DSM, there is aQCPbetween the SM andCDMphases with varying disorder strength [106, 119–124]. This
behavior is apparently different from the case of 2DDSM,where an arbitrarily weak random chemical potential
leads to theCDM transition. For 2D semi-DSM [45, 46], inwhich the fermion dispersion is linear along one
direction and quadratic along the other direction, the CDMstate is achieved by an arbitrarily weak disorder,
analogous to 2DDSM. The secondmotivation of this work is to examinewhether the conclusion obtained
previously in the case of 2DDSM is applicable to other SMs.

Wewill show that arbitrarily weak attraction suffices to induce an s-wave superconductivity in 2DDSM
when randomchemical potential is present. If the attraction is weak, themagnitude of SC gap increases with
growing disorder strength, but begins to decrease when the disorder strength becomes large enough. For
relatively strong attraction, the SC gap is always suppressed by the increasing disorder strength.We include the
vertex correction into the self-consistent equations for the SC gap and the disorder scattering rate, and show that
the above behavior is not altered qualitatively by the vertex correction. In the case of weak attraction andweak
disorder, themagnitude of SC gap is further amplified once the vertex correction is incorporated.

The generalized AGmethod can be also applied to other SM systems to examinewhether or not the vertex
correction plays a vital role. Tomake our analysismore comprehensive, and also to examine how
superconductivity relies on the dimensionality and the energy dispersion of the fermion excitations, we then
study the fate of superconductivity in disordered 3DDSMand 2D semi-DSM,which both have a point-touching
band structure.

In the case of slightly disordered 3DDSM, the critical pairing interaction strength gc is smaller than that
obtained in the clean limit, but remains finite. Thus, there is still a SCQCP, at which interesting quantum critical
phenomenamight occur.When the 3DDSMcontains strong random chemical potential, the critical value gc
vanishes, and superconductivity is formed by arbitrarily weak pairing interaction. An apparent conclusion is that
superconductivity is promoted by random chemical potential in 3DDSM. In a 2D semi-DSM, the disorder effect
on superconductivity is very similar to 2DDSM: superconductivity occurs only when the pairing interaction
strength exceeds a threshold gc in the clean limit, but is triggered by arbitrarily weak attractionwhen random
chemical potential is introduced. In both of these two systems, including vertex correction results inmore
significant enhancement of SC gap in theweak-attraction regime.

Comparing to the above three SMs, the bilayer graphene is special in that its Fermi surface is composed of
discrete points but theDOS isfinite at the Fermi level.Wefind that s-wave superconductivity in bilayer graphene
is always slightly suppressed by random chemical potential, and that the vertex correction plays aminor role.
This result is qualitatively different from the other three kinds of SM. The difference stems from the fact that the
zero-energyDOS is nonzero only in bilayer graphene but vanishes otherwise.

The rest of paper is organized as follows. In section 2, we present themodelHamiltonian for 2DDSM,
analyze the influence of disorder on superconductivity bymeans of the AGmethod, and examine the role played
by the vertex correction. The disorder effect on superconductivity in 3DDSMand 2D semi-DSM is studied in
section 3 and section 4, respectively. In section 5, we apply the same approach to the case of bilayer graphene. In
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section 6, we give a remark on several related questions, including truncation ofDSEs, the effect of rare region,
andAnderson localization.We summarize ourmain results in section 7.

2. Superconductivity in 2DDirac semimetal

In this section, we consider the case of 2DDSMand study the impact of random chemical potential on
superconductivity bymeans of the AG approach and its proper generalization. The framework employed in this
section is quite general andwill be utilized in the following several sections to study the fate of superconductivity
in 3DDSM, 2D semi-DSM, and bilayer graphene.

2.1.ModelHamiltonian
Weconsider a single species ofmassless Dirac fermions that emerge, for instance, on the surface of a 3D
topological insulator. Following the notations adopted in [87], wewrite theHamiltonian in the form

H vk vk g i i , 1x y
k

k k
k q

k k q q0 1 2
,

2 2å åy ms s s y y s y y s y= - + + - - - -( ) ( ) ( )† † †

whereμ is the chemical potential and g is the coupling constant for the BCS-type attractive interaction. At afinite
μ, theDSMhas afinite Fermi surface, andmany of its low-energy properties are very similar to ordinarymetals.
In the following, we only consider themost interesting case of zero chemical potential,μ=0, corresponding to
undoped SM. The spinor field is defined as c c, T

k k ky =  ( ) , whose conjugate is c c,k k ky =  ( )† † † .Moreover,
σ1,2 are standard Paulimatrices, andσ0 is identitymatrix. The SC order parameter is defined as

g i . 2
k

k k2å y s yD = á ñ-( ) ( )

The system enters into a SC phasewhenΔ acquires a nonzero value.
Our analysis starts from the partition function

Z D d d Lx, exp , , 3
0

2ò ò òy y t y y= -
b⎛

⎝⎜
⎞
⎠⎟[ ] [ ] ( )† †

whereβ=1/T and the Lagrangian is related to theHamiltonianH via the Legendre transformation

L
d

H
k

2
. 4k k

2

2ò p
y y= ¶ +t( )

( )†

To express the action in amore compact form, it is convenient to introduce a four-componentNambu spinor:

, . 5T
k ky yY = -( ) ( )†

After decoupling the quartic attractive interaction bymeans ofHubbard-Stratonovich transformation, we can
re-write the partition function as

Z D d d Lx, , , exp , , , , 6
0

2* *ò ò òt= Y Y D D - Y Y D D
b⎛

⎝⎜
⎞
⎠⎟[ ] [ ] ( )† †

where L takes the form

L T G
g

. 7
k

k k k, ,
1

,

2

n

n n nåå= Y Y -
D

w
w w w

- ∣ ∣ ( )

In the above expression, we have defined a fermion propagator G G k,nk,n
wºw ( ) that is given by

G

i vk

vk i

i vk

vk i

0

0

0,

0

, 8

n

n

n

n

k,
1

n *
*

w
w

w
w

=

D
-D

-D
D

w
-

+

-

-

+

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
( )

where k±=kx±iky.Within theMatsubara formalism, the fermion frequency isωn=(2n+1)πTwith n
being integers. The above expression of partition function is consistent with [87].

2.2. Clean case
The SC gap equation can be derived by integrating over fermion fieldsΨ andΨ†. For this purpose, the partition
functions is furtherwritten as
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Z e e e , 9S G g

kn

n n nk k k x, ,
1

, ,

2

   ò ò  ò= Y Y = Y Y
w

bY Y - D
w w w t

- ( )† †
∣ ∣

†

where d d x
x, 0

2ò ò òtº
t

b
. Performing the functional integration overΨ andΨ† yields

Z G edet . 10g

k
k

4
,
1

n

n
x,

2

  òb=
w

w
- - D

t( ) ( )
∣ ∣

It is then easy to get

Z G
g

ln ln det . 11
k

k
x

4
,
1

,

2

n

n òåå b= -
D

w
w

t

-[ ( )] ∣ ∣ ( )

Through direct calculation, we obtain

G v kdet . 12nk,
1 2 2 2 2 2

n
w= + + Dw

- ( ∣ ∣ ) ( )

For a sample of volumeV, the free energy density is

f
F

V V
Z

V
v k

g

1
ln

1
ln . 13n

k

4 2 2 2 2 2
2

n

ååb b
b w= = - = - + + D +

D

w
[ ( ∣ ∣ ) ] ∣ ∣ ( )

Making variationwith respective to infinitesimal change of , 0
fD =d

dD
, wefinally obtain the gap equation:

T
d

v k g

k
2

2

1 1
. 14

n

2

2 2 2 2 2
n

òå p w + + D
=

w ( )
( )

Wehave already fixed the phase factor of the gap functionΔ, and in the followingwill takeΔ as a real variable. At
zero temperatureT=0, the gap equation becomes

d d

v k g

k
2

2 2

1 1
. 15

2

2 2 2 2 2ò
w
p p w + + D

=
( )

( )

Performing the integration ofω and k, we obtain
g

v
v

2
1, 16

2
2 2 2 2

p
L + D - D =( ) ( )

whereΛ is the cutoff of themomentum. SettingΔ=0 yields the critical coupling gc0=2π v/Λ. The gapΔ
acquires a nonzero value onlywhen g>gc0, and there is a SM-SCQCP at g=gc0 [72, 74, 77, 87, 92].

2.3. Analysis byAGmethodwithout vertex correction
In the presence of random chemical potential, the dynamics ofDirac fermions ismodified due to the disorder
scattering. Consequently, the fermion propagator can be expressed by thematrix

G

A i A vk A

A vk A i A

A A i A vk

A A vk A i

0

0

0,

0

, 17F

n

n

n

n

k,
1

1 2 3

2 1 3

3 1 2

3 2 1

n *
*

w
w

w
w

=

D
- D

- D
D

w
-

+

-

-

+

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
( ) ( )

whereAi≡Ai(ωn)with i=1, 2, 3 are the renormalization functions induced by the disorder scattering. The
propagatorsGωn, k

F and G k,nw are connectedwith each other through theDS

G G , 18F
nk k,

1
,
1

disn n
w= - Sw w

- -( ) ( ) ( )

where

n u
d

G
k

2
, 19n

F
kdis imp

2
2

2 ,nòw
p

S = w( )
( )

( )

where nimp is the impurity concentration and u is the strength of one single impurity. The Feynman diagram
used in the AG approach is shown infigure 1. In the case of random chemical potential, one can verify that
A2=1. If long-range correlated disorder [3] is considered,A2 would receive a non-trivial correction.Making
use of the factA2=1, the self-consistent equations become

A n u A
d

A v k A

k
1

2

1
, 20

n
1 imp

2
1

2

2
1
2 2 2 2

3
2 2ò p w

= +
+ + D( )

( )

A n u A
d

A v k A

k
1

2

1
. 21

n
3 imp

2
3

2

2
1
2 2 2 2

3
2 2ò p w

= +
+ + D( )

( )
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It is clear thatA1=A3=A. The gap equation becomes

gT
d A

A v k A

k
2

2
. 22

n

2

2 2 2 2 2 2 2
n

òå p w
D =

D
+ + Dw ( )

( )

Carrying out the integration overmomenta, we get two coupled equations
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1

4
ln 1 , 23

n
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2 2

2 2 2 2p w
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L
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⎛
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v
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2

2 2

2 2 2 2
n

åp w
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L
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Wenow take the zero temperature limit, namelyT=0, and thenmake the re-scaling transformations

v
ww

L
and

v
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L
, which leads us to

A A
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1
2
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1

, 25
2 2 2 2

g
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1
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2
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1
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w
w
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where
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. 27
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2

2
g

p
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Upon approaching theQCP, g gc , so the above equations are simplified to

A A
A

1
2

ln 1
1

, 28
2 2

g
w

= + +⎜ ⎟⎛
⎝

⎞
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g

g
d A

A
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1

2
ln 1

1
. 29c
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2 2òp
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w
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-¥
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⎝

⎞
⎠ ( )

Numerical results of equation (28) are shown infigures 2(a) and (b) by the solid lines. In the zero-energy
limit,ωA approaches to a constantΓ, which is the disorder scattering rate. Ifω decreases from the energy scale of
Γ,ωA approaches to a constant. Above the scale of A, 1G  . The asymptotic behavior ofA is approximately
described by

Figure 1. Feynman diagram for the fermion self-energy. Thin line represents the free fermion propagator, and thick line the full
fermion propagator. Dotted line represents disorder scattering. The vertex correction is neglected in the original AGmethod, which is
valid if kFl?1.

Figure 2. (a)Dependence ofA and (b)ωA onω at different values of γ for 2DDSM.Vertex correction is neglected for solid lines, but
incorporated for dashed lines. Here, we takeΔ=0, corresponding to non-SC phase.
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The integral appearing in equation (29) is divergent, which implies that g 0c  . Therefore, even an
arbitrarily weak attraction suffices to trigger Cooper pairing instability. In this regard, random chemical
potential tends to promote the formation of Cooper pairing, in agreement with the result ofNandkishore et al
[87]. The dependence of the gapΔ on g at different values of γ is displayed infigures 3(a) and (b) by the solid
lines.We present the relation betweenΔ and γwith different values of g infigures 4(a) and (b) by the solid lines.
Thefigures exhibit thatΔ is enhanced byweak disorder and then suppressed gradually by strong disorder if the
attraction is weak.However, for sufficiently large attraction, the gapΔ is suppressed by disordermonotonously.
These results are qualitatively the same as that obtained by Potirniche et al through using self-consistent BdG
equations [88].

Theω-dependence ofA(ω), obtained from the solutions of equations (25) and (26), are shown infigure 5(a).
The functionA(ω) always approaches to afinite value in the low energy regime, which is expected since the gapΔ
provides a cutoff. According tofigure 5(a), if the pairing interaction is relatively weak,A(ω) goes to a larger
constant value at low energies for smaller γ. If the pairing interaction is relatively strong, however,A(ω) takes a
larger constant value at low energies for larger γ.

2.4. BeyondAGapproximation
Weemphasize that the gap equation analysis of the disorder effects based on the original AG formalism is
actually problematic. The validity of AGmethod relies on a crucial assumption that kFl?1, which is equivalent
to kF?Γ sinceΓ∼1/l. This inequality is satisfied in an ordinarymetal inwhich the Fermimomentum is large
and the scattering rateΓ can bemade sufficiently small if random chemical potential is supposed to beweak
enough. For a 2DDSM, however, we know that kF=0. Additionally, even an arbitrarily weak random chemical

Figure 3.Dependence ofΔ on g at different values of impurity strength γ for 2DDSM.Vertex correction is neglected for solid lines,
but incorporated for dashed lines.

Figure 4.Dependence ofΔ on γ at different values of pairing interaction strength g for 2DDSM.Vertex correction is neglected for
solid lines, but incorporated for dashed lines.

7

J. Phys. Commun. 3 (2019) 055006 J-RWang et al



potential is able to drive 2DDSM to become aCDM [105, 113–118], which in turn generates a finiteΓ. Thus, the
above inequality certainly breaks down, and the vertex correction can no longer be regarded as unimportant.

To examinewhether the interesting conclusion reached by employing the original AG approximation is
robust, we need to incorporate the vertex correction explicitly in the self-consistent gap equations. The Feynman
diagram for fermion self-energy that contains the vertex correction is shown infigure 6.

The correction to the fermion-disorder coupling vertex is given by
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which can be further written as
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Using the transformation k q k+  , and employing the Feynman parameterization
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we convert the vertex correction into the form
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Figure 5.Dependence ofA onω at different values of g and γ for 2DDSM.Vertex correction is absent in (a) and present in (b).

Figure 6. Feynman diagram for the fermion self-energy in the presence of vertex correction. Notice that the dressed fermion
propagator is utilized in the vertex correction.
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We furthermake the replacement xk p q k+ - ( ) , and then obtain

n u dx
d

A v k A x x v

A x x v

A v k A x x v

p q
k

p q

p q

p q

, , 1
2

1

1

2 2 1

1
. 35

imp
2

0

1 2

2
1
2 2 2 2

3
2 2 2 2

1
2 2 2 2

1
2 2 2 2

3
2 2 2 2 2

ò òw
p w

w
w

X = +
+ + D + - -

-
+ - -

+ + D + - -

⎧⎨⎩
⎫⎬⎭

( )
( ) ( ) ( )

( ) ( )
[ ( ) ( ) ]

( )

One can verify thatΞ(ω, p,q) is the function of p q-∣ ∣, whichmeans p q p q, , ,w wX º X -( ) ( ∣ ∣). Performing
the integrations over k and x leads to the following vertex correction:
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where γ is defined in equation (27), and
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After including the vortex correction, the equations forA1 andA3 nowbecome
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Wenow employ the re-scaling transformations kk 
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where the gapΔ is still given by equation (26).
In the limit ofΔ=0, the system stays in the non-SC phase.We present theω-dependence ofA andωA in

figures 2(a) and (b) respectively by the dashed lines. Comparing the solid curves and dashed curves, we can
observe that the disorder scattering rateΓ ismade larger by the inclusion of the vertex correction. Katanin [118]
performed a functional RG analysis of this problem, and also found a larger scattering rateΓ and a larger ρ(0)
comparing to those obtained by using the self-consistent Born approximation (SCBA). Sinner andZiegler [124]
reported a 1/N-expansion study, which claims that higher order corrections lead to enhancement of disorder
scattering rate andDOS.

Nowwe consider the SC phase where 0D ¹ . The g-dependence of gapΔ is displayed infigures 3(a) and (b)
by the dashed lines. A clear result is that the zero-energy gapΔ is increasedwhen the vertex correction is taken
into account, whichmeans that including vertex correction leads to further promotion of superconductivity.
Dependence ofΔ on γwith different values of g is presented infigures 4(a) and (b) by the dashed lines.We can
find that the qualitative property of the disorder effect on superconductivity remains nearly the same after
including the vertex correction.

In the case of 0D ¹ , we show the dependence ofA(ω) onω in the presence of vertex correction in
figure 5(b). It is obvious thatA(ω) approaches to a smaller constant comparing to the one shown infigure 5(a).
The reason for this behavior is that the gapΔ becomes larger after including the vertex correction and thus leads
to a stronger suppression effect for the disorder scattering rate.

The energy andmomentumdependence of the vertex functionΞ(ω, k) are shown infigure 7. An apparent
fact is that the vertex correction is important at low energies and smallmomenta, and can be nearly ignored only
when the energy andmomentum are sufficiently large. As the pairing interaction gets stronger, the vertex
correction becomes less important [87].

The SM-SCQCP exists in a clean 2DDSM, but is eliminatedwhen the system contains weak random
chemical potential. Since there is always certain amount of impurity in thematerial, it seems extremely difficult
to realize and probe the predicted quantum critical phenomena at such aQCP.
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3. Superconductivity in 3DDirac semimetal

In this section, wewill investigate the fate of superconductivity formed byCooper pairing of 3DDirac fermions,
which could emerge at low energies at theQCPbetween a normal band insulator and a 3D topological insulator.
This type of 3DDSMhas been observed in TiBiSe2−xSx [125, 126] andBi2−xInxSe3 [127, 128] by fine tuning the
doping level. Theoretical works [129, 130] predicted that a crystal-symmetry protected 3DDSMmight be
realized in suchmaterials as A3Bi (A=Na, K, Rb) andCd3As2. Shortly after this prediction, ARPES and
quantum transportmeasurements have reported evidence of 3DDSM state inNa3Bi andCd3As2 [131–135].

Recent RG analysis revealed thatweak attraction is irrelevant in 3DDSM, and that only sufficiently strong
attraction can induce superconductivity [96] and there is also aQCP separating the SMand SCphases. In the
non-SC phase, the physical effect caused by the random chemical potential is a subject of considerable interest
[106, 119–123, 136, 137]. Recent studies based on SCBA, RG analysis, and exact numerical simulation all found
that there is aQCPbetween the SMandCDMphases by adjusting the strength of random chemical potential
[106, 119–123]. If the rare region effect is considered, it was found that arbitrarily weak disorder drives the
system to enter into theCDMphase [136, 137]. In this paper, we do not consider the rare region effect, and focus
on the fate of s-wave superconductivity.

Similar to 2DDSM, the 3DDSMhosts only discrete Fermi points, and thus the vertex correctionmay also be
important. In addition, the zero-energyDOS vanishes in both cases, andmight becomefinite if the system is
turned by random chemical potential into aCDM.Wenowparallel the analysis performed in the last section,
and include explicitly the vertex correction in the self-consistent equations forA andΔ. The disorder effect on
superconductivity can be analogously analyzed.

3.1. Clean case
Themean-fieldHamiltonian for 3DDSM is formally similar to that of 2DDSM, andwill be not explicitly given
here.We directly write down the the gap equation obtained in the clean limit:

Figure 7. (a)Dependence of the vertex function k,wX( ∣ ∣) on energy andmomentumwith γ=0.2 and γ=0.4 in (a) and (b)
respectively.Δ=0 is taken in (a) and (b). Dependence of k,wX( ∣ ∣) on energy andmomentumwith g=0.6 and g=2 in (c) and (d)
respectively. γ=0.2 is taken in (c) and (d).

10

J. Phys. Commun. 3 (2019) 055006 J-RWang et al



g
d d

v k

k
2

2 2
, 41

3

3 2 2 2 2ò ò
w
p p w

D =
D

+ + D( )
( )

where g is the strength parameter for pairing interaction. Integrating overmomenta results in

g

v
d

v

v
1

2

1
arctan , 42

3 2
2 2

2 2òp
w w

w
= L - + D

L

+ D-¥

+¥ ⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥ ( )

whereΛ is themomentum cutoff. The critical attraction strength can be determined by takingΔ=0, satisfying
the following equation:
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The critical value is gc0=4π2v/Λ2.

3.2. Analysis byAGmethodwithout vertex correction
Under the original AG approximation, the self-consistent equations forA andΔ are given by
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Before analyzing the disorder effect on superconductivity, it is necessary tofirst consider the impact of weak
disorder on the low-energy behavior of Dirac fermions in the non-SC phase. This is an interesting problem and
has been studied recently bymeans of several different approaches [106, 119–123, 136, 137].

In the limit ofΔ=0, the equation forA has the form

A A A
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The solutions for this equation are shown infigures 8(a) and (b) by the solid lines.Wefind thatA(ω) approaches
afinite value in the limit 0w  if γ is smaller than a critical value γc. In contrast, if γ>γc,A(ω) is divergent in
the limit 0w  , yet satisfying

Alim , 48w w  G( ) ( )
whereΓ takes afinite value. The constantΓ should be identified as the disorder scattering rate. Afinite DOS is
generated at the Fermi level, which tends to favor superconductivity. The dependence ofΓ on γ is depicted in

Figure 8. (a)Dependence ofA and (b)ωA onωwith different values of γ for 3DDSM.Vertex correction is neglected for solid lines, but
incorporated for dashed lines.Δ=0 is taken.
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figure 9(a), which clearly shows that γc=1.Making use of the approximation Aw w  G( ) , we rewrite
equation (47) in the form
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By settingΓ=0, wefind that γc=1. According to the results presented infigures 8(a) and (b), andfigures 9(a)
and (b), the systemundergoes a quantumphase transition from the SMphase to aCDMphase at γ=γc. This
result is consistent with previous studies based on perturbative RG [119, 120], functional RG [122], and direct
numerical calculation [121].We point out here that we do not consider the effects of rare region for simplicity
[87, 136, 137].

We then turn to solve the coupled equations (44) and (45), whichwill be used to analyze the impact of
disorder on superconductivity. As can be seen fromfigure 9(b), the critical value gc decreases as the disorder
parameter γ grows, indicating that superconductivity is promoted.More concretely, in the range 0<γ<1, gc
ismade smaller than gc0 but remainsfinite. Thus, there is still a SCQCP and it is possible to observe the
corresponding quantum critical phenomena. If γ>1, we take the limit 0D  for equation (45) and then
obtain an equation for gc:
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At low energies,A(ω) behaves as A w ~
w
G( )

∣ ∣
. Accordingly, the integral in equation (50) is divergent, indicating

that the critical value of attraction vanishes, i.e., g 0c  . It turns out that even arbitrarily weak attraction suffices
to formCooper pairs. The dependence ofΔ on g at different values of γ can be found infigures 10(a) and (b) by
the solid lines. The dependence ofΔ on γ at different values of g is shown infigures 11(a) and (b) by the solid
lines.We observe that the gapΔ displays a non-monotonic dependence on γ if g is relatively small:Δ is enhanced
byweak disorder but gets suppressed by sufficiently strong disorder. However, the gap is always suppressed
when g becomes relatively large. This behavior is qualitatively similar to 2DDSM.

The asymptotic behavior ofA(ω) for different values of g and γ is shown infigure 12(a).We canfind thatA
(ω) generally approach to some finite value determined by g and γ. In the SMphase,Δ is vanishing, andA(ω) is

Figure 9. (a, c)Dependence ofΓ on γ for 3DDSMwhere Alim 0 w wG = w ( ) . (b, d)Phase diagramof 3DDSMon the g-γ plane.
Vertex correction is absent in (a) and (b), and present in (c) and (d). The SC region is broadened after including the vertex correction.
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saturated tofinite value andωA(ω) vanishes in the lowest energy limit. In the SC phase, the nonzero gapΔ serves
as a cutoff and preventsA(ω) frombeing divergent in the lowest energy limit.

3.3. BeyondAGapproximation
Paralleling the analysis carried out in the case of 2DDSM,we now examine the role played by the vertex
correction. After including the vertex correction into the equations ofA andΔ, equation (44) becomes

Figure 10.Dependence ofΔ on g at different values of γ for 3DDSM.Vertex correction is neglected for solid lines, but incorporated
for dashed lines.

Figure 11.Dependence ofΔ on γ at different values of g for 3DDSM.Vertex correction is neglected for solid lines, but incorporated
for dashed lines.

Figure 12.Dependence ofA onω at different values of g and γ for 3DDSM.Vertex correction is absent in (a) and present in (b).
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but the gap equation (45) is not changed. Straightforward calculations lead us to the following expression for the
vertex functionΞ:
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First, we assume g=0 and analyze the influence of disorder in the normal phase of 3DDSM. The
dependence ofA(ω) andωA(ω) onω are displayed infigures 8(a) and (b) by the dashed lines.We can findA(ω) is
saturated to a finite value if γ is small.Whereas,A(ω) becomes divergent andωA(ω) approaches to afinite value
provided γ is large enough. These results are qualitatively the same as those obtained by ignoring the vertex
correction presented in figures 8(a) and (b) by the solid lines. However, themagnitude of γc becomes smaller as
the vertex correction is taken into account, which can be easily observed from figure 9.We notice that, a recent
functional RG analysis [122] incorporated the vertex correction and argued that the critical value of disorder
strength is smaller than that obtained by using the SCBA.Ominato andKoshino [123] also emphasized the
importance of the vertex correction in the estimate of disorder scattering rate.

Through numerical calculations of the equations (51), (52), and (45), we obtain the phase diagram shown in
figure 9(d). According to this phase diagram, gc becomes smaller as γ increases. Comparing figures 9(b) to (d), we
observe that the area of the SCphase is broadenedwhen the vertex correction is incorporated.

The dependence ofΔ on g is given in figures 10(a) and (b) by the dashed lines, and the dependence ofΔ on γ
infigures 11(a) and (b) by the dashed lines. The gapΔ is enhanced byweak disorder and suppressed by
sufficiently strong disorder when g is small, but is always suppressed by disorder if g takes a large value. These
results are qualitatively the same as those obtained by ignoring the vertex correction. From figure 10, we can find
that the enhancement effect of the SC gap induced byweak disorder for small g is evenmore significant when the
vertex correction is considered.

According tofigure 12,A(ω) is still saturated to certain finite constant. This is qualitatively the same as the
case of neglecting the vertex correction.Quantitatively,A(ω) does acquire certain amount ofmodification after
including the vertex correction.

The behavior of k,wX( ∣ ∣) is presented in figure 13. Infigures 13(a) and (b), we takeΔ=0 by assuming that
g=0. According tofigures 13(a) and (b),Ξ is amplifiedwhen γ becomes larger. Fromfigures 13(c) and (d), we
see that in the SC phase,Ξ decreases with growing g, indicating that the vertex correction becomes less important
once afinite gap is opened.

4. Superconductivity in 2D semi-Dirac semimetal

The dispersion for 2D semi-Dirac fermions is given by

E a k v k . 56x y
2 4 2 2=  + ( )

This dispersion is in between the fermion dispersions of ordinary 2Dmetal and 2DDSM, thus the corresponding
materials is usually called 2D semi-DSM. Such a type of fermionsmight emerge at theQCPbetween a 2DDSM
and a band insulator uponmerging two separateDirac points to a single one.

Generation of semi-Dirac fermions throughmerging pairs ofDirac points is theoretically predicted to exist
in deformed graphene [19–22], pressured organic compoundα-(BEDT-TTF)2I3 [21–23], few-layer black
phosphorus that is subject to a perpendicular electric field [24, 25] or doping [26], and also some artificial optical
lattices [27, 28]. Experimentally, themerging of Dirac points and the appearance of semi-Dirac fermionswere
observed in ultracold Fermi gas of 40K atoms arranged on a honeycomb lattice [29] andmicrowave cavities with
graphene-like structure [30]. Kim et al [31] realized semi-DSMs in few-layer black phosphorus at critical surface
dopingwith potassium.Moreover, robust semi-DSM state was predicted to emerge in TiO2/VO2nanostructure
under suitable conditions [32, 33]. It was suggested by first-principle calculations that semi-Dirac fermions are
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the low-energy excitations of the strained puckered arsenene [35, 36]. In addition, semi-DSM statemay also be
realized at theQCPbetween normal insulator and topological insulator, and theQCPbetween normal insulator
and 2DDSM in time-reversal invariant 2Dnoncentrosymmetric system [42].

Recently, Uchoa and Seo [43] studied the possibility of Cooper pairing in 2D semi-DSMbymaking amean
field analysis, and argued that s-wave superconductivity is favored. Close to theQCPbetween SMand SCphases,
they found that the anisotropy of quasiparticles leads to a novel smectic state of SC stripes. Roy and Foster [56]
investigated the influence of various short-range interactions on the low-energy behavior of 2D semi-DSMby
making a RG analysis, and also discovered an s-wave superconductivity. In the non-interacting limit, recent
SCBA [45] andRG [45, 46] studies showed that arbitrarily weak random chemical potential turns the 2D semi-
DSM into aCDMstate, analogous towhat happens in 2DDSM.

Like 2D and 3DDSMs, the 2D semi-DSMalso has a vanishing zero-energyDOS if the chemical potential is
tuned exactly at the touching points. Consequently, the original AG approximation is no longer valid. Inwhat
follows, wewill examine howweak random chemical potential affects the s-wave superconductivity in a 2D
semi-DSMbymeans of the AG approach and its generalization. Once again, wewill not give themean-field
Hamiltonian, and start our discussion directly from the gap equation.

4.1. Clean case
In the clean limit, the equation for the SC gap takes the form
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which can be further written as

g d k d k
a k v k

1
1 1

. 58x y

x y
2 2 4 2 2 2òp

=
+ + D

∣ ∣ ∣ ∣ ( )

Figure 13.Dependence of vertex function k,wX( ∣ ∣) on the energy andmomentumwith γ=0.2 and γ=1.5 in (a) and (b)
respectively for 3DDSM. In (a) and (b),Δ=0 is assumed.Dependence of vertex correction k,wX( ∣ ∣) on the energy andmomentum
with g=0.9 and g=2 in (c) and (d) respectively for 3DDSM. In (c) and (d), we choose γ=0.5.
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Adopting the transformations equations (60) and (61), the gap equation becomes
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whereΛE is a cutoff for the variable E. Taking the limit 0D  , we obtain the following critical value
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beyondwhich a nonzero SC gap is opened. This gc0 is theQCP that separates the SMand SCphases.

4.2. Analysis byAGmethodwithout vertex correction
Including the disorder scattering, the self-consistent equations obtained under the original AG approximation
are found to have the forms
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with J4=A2ω2+A2Δ2. The scaling transformations
E

ww
L

and
E
 DD

L
have been used.

By takingΔ=0, we obtain the solution ofA(ω) in the normal state, and show the results infigures 14(a) and
(b) by the solid lines.Wefind thatA(ω) is divergent in the lowest energy limit, andωA(ω) approaches to a
constant in 2D semi-DSM, similar to 2DDSM. In the limitΔ=0, the integrand in the equation (65) satisfies

A F , 0 68w w
w

µ
G( ) ( )

∣ ∣
( )

in the low energy regime. It is easy to see that the integration in the equation (65) is divergent, which in turn
means g g 0c c0  . Therefore, superconductivity is produced by arbitrarily weak pairing interaction once
random chemical potential is considered. Dependence ofΔ on gwith different values of γ is presented in
figures 15(a) and (b) by the solid lines, which clearly exhibits the promotion of superconductivity due toweak
random chemical potential if g is small.
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In the SC phasewith 0D ¹ , the dependence ofΔ on γ is depicted infigures 16(a) and (b) by the solid lines.
For small values of g, the gapΔ increases as γ is growing, and then starts to decrease with growing γwhen γ
becomes sufficiently large. For larger values of g,Δ decreasesmonotonously as γ increases.We thus can see that
the influence of random chemical potential on s-wave superconductivity in 2D semi-DSM is qualitatively the
same as 2DDSM.

Figure 14. (a)Dependence ofA and (b)ωA onωwith different values of γ for 2D semi-DSM.Vertex correction is neglected for solid
lines, but incorporated for dashed lines.Δ=0 is taken.

Figure 15.Dependence ofΔ on g at different values of impurity strength γ for 2D semi-DSM.Vertex correction is neglected for solid
lines, but incorporated for dashed lines.

Figure 16.Dependence ofΔ on γ at different values of g for 2D semi-DSM.Vertex correction is neglected for solid lines, but
incorporated for dashed lines.
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4.3. Analysis beyondAG approximation
In this subsection, wemove to examine the impact of the vertex correction. After including the vertex
correction, the equation forA is of the form

A A dk dk
k k
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where the vertex functionΞ is given by
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and alsomade the assumption that a vx y E
2L = L = L . The equation for the gapΔ is still given by equation (65).

After including the vertex correction, we solve the self-consistent equations, and show the dependence ofΔ
on g at different values of γ infigures 15(a) and (b) by the dashed lines. The relation betweenΔ and γ at different
values of g is displayed infigures 16(a) and (b) by the dashed lines.We observe from figures (15) and (16) that
including the vertex correction does not change the qualitative property of the influence of random chemical
potential on superconductivity in 2D semi-DSM, but it leads to obvious quantitative increase of the SC gap in
presence of weak attraction andweak disorder. All these results are similar to that obtained in the case of
2DDSM.

5. Superconductivity inBilayer graphene

In bilayer graphenewith Bernal AB stacking, inwhich two layers of carbon atoms are rotated by 60°, the Fermi
surface is also composed of discrete points [1, 4]. There are also other sorts of configuration of bilayer graphene,
such as AA stacking thatmatch the A sublattices of two layers.Here, we focus on bilayer graphenewith Bernal
configuration, which is themost frequently studied case. In such a system, the fermions display the following
dispersion [1, 4]

E a k , 722=  ∣ ∣ ( )

where a is a constant. For Bernal bilayer graphene, the Berry phase around the touching points is trivial, in
distinct tomonolayer graphene that exhibits a non-trivial Berry phase. This difference can be clearly observed in
quantumHall effect experiments [138]. Due to its special dispersion and dimensionality, the bilayer graphene
has a finite zero-energyDOS [4]: ρ(0)∝1/a. As a result, an infinitesimal short-range interaction is able to drive
some type of phase-transition instability [4, 139, 140].

5.1. Clean case
In the clean limit, the gap equation for s-wave superconductivity in bilayer graphene is given by
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where g is the strength parameter of pairing interaction. Performing the integrations of energy andmomenta, we
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whereΛ is the cutoff of themomentum. In the limit g0,D  approaches a critical value gc0 that satisfies
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It is obvious that g 0c0  , so arbitrarily weak attraction leads to superconductivity in bilayer graphene. This
behavior ismarkedly different from the aforementioned SMswith vanishingDOS at the Fermi level.

5.2. Analysis byAGmethodwithout vertex correction
In the absence of vertex correction, the self-consistent equations for the renormalization factorA(ω) and the SC
gapΔ can bewritten as
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and J4=A2ω2+A2Δ2. Here, g0 is chosen as the unit of attraction strength g.
Solving equations (76) and (77), we obtain the dependence ofΔ on g at different values of γ, which is shown

infigures 17(a) and (b) by the solid lines. The SC gapΔ is quantitatively suppressed by random chemical
potential. The relation betweenΔ and γ at different values of g is displayed infigure 18 by the solid lines. The gap
Δ is suppressedmonotonously by increasing γ, but the suppression effect is not significant. Thus, the s-wave
superconductivity seems to be robust against weak disorder in bilayer graphene. For bilayer graphene, there is
not any evidence of disorder-induced promotion of superconductivity, which occurs in 2DDSM, 3DDSM, and
2D semi-DSM. Such difference originates from the fact that the zero-energyDOS ρ(0) is nonzero in bilayer
graphene, but vanishes in the other three types of SM.

5.3. Analysis beyondAG approximation
After including the vertex correction, we re-write the self-consistent equations for the functionA and the vertex
Ξ as follows

Figure 17.Dependence ofΔ on g at different values of impurity strength γ for bilayer graphene. Vertex correction is neglected for
solid lines, but incorporated for dashed lines.
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The gap still satisfies the equation (77). Including the vertex correction, the relation betweenΔ and g for different
values of γ are shown infigures 17(a) and (b) by the dashed lines. The dependence ofΔ on γ for different values
of g is depicted infigure 18 by the dashed lines.We can find that vertex correction does not lead to qualitative
change of the results. Quantitatively, the suppression of gap by disorder becomes only slightly stronger once the
vertex correction is considered, which indicates that the vertex correction can be nearly neglected.

6. Remarks on related issues

In this section, we discuss several related issues.

6.1. Truncation ofDSEs
As analyzed in the Introduction, disorder scattering andCooper pairing can affect each other substantially, and
thus should be treated self-consistently. The non-perturbativeDSEs approach provides an ideal formalism for
such a self-consistent treatment. In the past several decades, this approach has beenwidely applied to investigate
the non-perturbative phenomenon of dynamical symmetry breaking in high-energy physics [141, 142], the
dynamical chiral symmetry breaking in three-dimensional quantum electrodynamic (QED3) [143–146]which is
effectivemodel in several important condensedmatter systems, the excitonic insulating transition in various SM
materials [41, 67, 147–156].Moreover, theDSEs approach has been applied to study the interplay of non-Fermi
liquid behavior and SCpairing in various strongly correlated systems [157–170]. Themost noticeable advantage
ofDSEs approach is that it provides a non-perturbative framework to quantitatively calculate various physical
quantities, such as the Landau damping rate, disorder scattering rate, and SC gap etc., by incorporating several
types of interactions in a self-consistentmanner.

In the [171], Zhang et al studied the impact of nonmagnetic short-range disorder on some ordered states by
solving a special set of self-consistent equations, which is similar to theAGmethod. Theirmain finding is that,
the fully gapped state is suppressed by disordermore significantly than the nematic state, and disordermay
induce a quantumphase transition between a fully gapped ordered state and a nematic state. Such resultsmight
account for the discrepancy between experiments of bilayer graphene. TheDSEsmethodwas also applied to
investigate the interplay of disorder scattering andCoulomb interaction in 3DDSM [156].

In the application ofDSEsmethod to the superconductivity in disordered systems, one needs to construct
and solve a set of non-linear integral equations for the gapΔ and disorder scattering rateΓ. In itsmost generic
form, theDSEs are exact and contain all the physical processes. However, solving the complete set ofDSEs is
impossible. In practice, it is always necessary to employ certain truncation, which is implemented by retaining
themost important contribution and discarding some higher order contributions. All the existingDSEs studies

Figure 18.Dependence ofΔ on γ at different values of g for bilayer graphene. Vertex correction is neglected for solid lines, but
incorporated for dashed lines.
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[41, 67, 141–170] adopt the following strategy: consider the lowest order truncation to capture the key physical
picture; include the higher order corrections step by step to examine the validity of the conclusion obtained by
the lowest order calculation. TheAGmethod [112] can be regarded as the lowest order truncation ofDSEs of
disorder scattering andCooper pairing. Under the original AG approximation, the fermion self-energy is
calculated at the leading order, with all vertex corrections entirely ignored.We emphasize here that, although the
AGmethod neglectsmost higher order corrections, it is non-perturbative in nature and can treat themutual
influence between disorder scattering andCooper pairing equally.When the AGmethod is applied to
disordered SMmaterials, the vertex correctionmay no longer be simply ignored. In this paper, wefind that,
including vertex correction does not alter the qualitative conclusion obtained by the original AGmethod, but
leads to considerable enhancement of SC gap size in 2DDSM, 3DDSM, and 2D semi-DSM inweak-attraction
regime.

To examine the validity of our conclusion, onemight endeavor to include even higher order corrections into
the self-consistent equations studied in this paper. This work is interesting, but out of the scope of the present
paper. Themain difficulty is that, the self-consistent DSEs become very complicated and are hard to solve
numerically. Herewe onlymake a brief remark on the possible influence of such corrections. From the results
presented in the last several sections, we can infer that the vertex correction becomes progressively less
important as the SC gap grows. For large SC gap, the vertex correction can be safely ignored. Actually, the SC gap
provides an infrared cutoff, which regularizes the infrared behavior and as such suppresses higher order
corrections.When the SC gap is not large, the higher order corrections omitted in our analysismightmore or
lessmodify our results quantitatively.We leave this project for future research.

Apart from including higher order corrections by brute force, our conclusion, which states that random
chemical potential promotes superconductivity in 2DDSM, 3DDSM, and 2D semi-DSM, could also be verified
by experiments. The SC gap can be detected in scanning tunnelingmicroscopy (STM)measurements. One
might prepare a series of different SMmaterials to test whether it is easier to achieve superconductivity inmore
disorderedmaterials.We expect that future experiments would be performed to clarify the reliability of our
conclusion.

6.2. Contribution of two special diagrams
Onemight think that the two Feynaman diagrams, shown infigure 19, should be taken into account in the
calculation of the corrections to fermion-disorder coupling.We now explain why these two diagrams are
neglected.

In ourwork, we consider only one type of disorder, namely random chemical potential. For 2DDSMand 3D
DSM that contain only one type of disorder, the contributions from these two Feynman diagrams cancel, which
is discussed in [120]. For 2D semi-DSMand bilayer graphene, these two diagrams can dynamically generate
other types of disorder, such as random gauge potential and randommass [45]. To simplify the problem,we
truncate theDSEs by neglecting the dynamically generated disorder. An important point is that random
chemical potential always dominates the dynamically generated randomgauge potential and randommass.
Including the dynamically generated disorders would further enhance random chemical potential and then
induce a largerDOS ρ(0) in the normal state. For 2D semi-DSM, according to our results, a larger disorder-
inducedDOS ρ(0)would lead to stronger enhancement superconductivity in presence of weak pairing
interaction. In the case of bilayer graphene that has a finite ρ(0) even in the clean limit, increasing the strength of
random chemical potential also does not change our basic conclusion that superconductivity is slightly
suppressed.

6.3. Rare region effect
In this article, we calculate themagnitude of SC gap, which can bemeasured by STMexperiments [172, 173].We
do not consider the rare region effect here. In [87], Nandkishore et al studied the enhancement of
superconductivity by the rare region effect of disorder in 2DDSM [87]. They showed that local

Figure 19.Two possible diagrams for the correction to fermion-disorder coupling.

21

J. Phys. Commun. 3 (2019) 055006 J-RWang et al



superconductivity is substantially enhanced in the regionswith stronger disorder and larger local DOS. In case
the Josephoson coupling between locally SC regions is strong enough to establish global phase coherence, the
systembecomes SC globally. After examining the rare region effect, they obtained an obviously larger value ofTc,
comparing to the one calculated by using themean-field analysis (AGmethod).

Nandkishore et al later studied the rare region effect in 3DDSM [136], and concluded that arbitrarily weak
random chemical potential can induce afinite ρ(0) due to rare region effect. They also considered the interplay
of random chemical potential and superconductivity in 3DDSM. Superconductivity is triggered onlywhen the
strength of attraction exceeds a threshold in the clean system.However, local pairing can be triggered in rare
regionswhere the local DOS is nonzero, which drives the system into a SC state once phase coherence between
the islands is established by Josephson coupling. These results suggest that superconductivity is promoted by
random chemical potential in 3DDSM,which is qualitatively consistent with our conclusion presented in
section 3.

6.4. The ratioΔ/Tc

HowRSP affects the ratioΔ/Tc is an interesting question. In this subsection, we show the results obtained byAG
method for 2DDSM. The results for other SMs could be calculated similarly. For 2DDSM, the self-consistent
equations forTc are given by
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The relation betweenTc and γ is displayed infigure 20(a). Comparing figure 20(a)with figure 11, we can find that
relation betweenTc and γhas similar characteristic with relation betweenΔ on γ. Dependence ofΔ/Tc on γ is
shown infigure 20(b). According tofigure 20(b),Δ/Tc increases with growing of γ.

6.5. Anderson localization
DSMshave obvious different behaviors under the influence of RSP comparingwith traditionalmetals. For 2D
contentionalmetals, arbitrarily weakRSP drives the system toAnderson insulator (AI) [174]. However, for 2D
DSMwith a singleDirac cone, the system is robust against Anderson localization under RSP [105, 175–177].

For 3D conventionalmetals, there are only two phases under the influence of RSP, namely CDMandAI
[174]. However, for 3DDSM, there are three phases under the influence of RSP, namely SM,CDM, andAI
[178, 179].We should notice that the critical value γc=1 is corresponding to theQCP fromSM toCDM
[119, 120, 178, 179]. The transition fromCDM toAI occurs at another critical value c

AIg which ismuch larger
than γc [178, 179]. In awide range value of γ around γc, the system is still in SMorCDMphase, but not AI phase.
Thus, in this case, thewave functions are not localized, but still extended. Then, our calculation is valid for awide
range of disorder strength around γc=1. If the disorder strength is very large, i.e. c

AIg g> , Anderson
localization appears, and our calculation becomes invalid.

Figure 20. (a)Dependence ofTc and (b)Δ/Tc on γ at different values of g for 2DDSM.
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7. Summary and conclusion

In summary, we have studied the influence of random chemical potential on the fate of s-wave
superconductivity in 2DDSMby using the AGdiagrammatic approach alongwith its proper generalization. It is
found that an arbitrarily weak attraction suffices to trigger Cooper pairing instability. In the case of weak
attraction, themagnitude of SC gapfirst increases with growing disorder strength and then decreases once the
disorder strength exceeds a critical value. For relatively strong attraction, the gap decreasesmonotonously as
disorder gets stronger. To obtain a quantitativelymore reliable result, we have gone beyond the original AG
approximation, and taken into account the vertex correction to the fermion-disorder coupling. Ourfinding is
that, including vertex correction does not change the qualitative behavior of superconductivity in 2DDSMwith
random chemical potential. However, for weak pairing interaction andweak disorder, the disorder-induced
enhancement of SC gap size becomesmore significant in the presence of vertex correction. Therefore, the
conclusion that superconductivity in 2DDSM is promoted by random chemical potential [87] is robust.

We then have applied the AGmethod and its generalization to investigate the fate of s-wave
superconductivity in other analogousmaterials, including 3DDSM, 2D semi-DSM, and bilayer graphene. For
3DDSM,we have found that the critical pairing interaction strength gc is reduced to a smaller value byweak
random chemical potential, and thus there is still aQCP separating the SMand SCphases. ThisQCPprovides an
ideal platform to study the rich quantum critical phenomena.Nevertheless, when randomchemical potential
becomes sufficiently strong, the critical value gc vanishes, and superconductivity is achieved nomatter howweak
the pairing interaction. In both cases, we see that superconductivity is promoted by random chemical potential.

For 2D semi-DSM, the disorder effect on the s-wave superconductivity is nearly the same as that of 2DDSM.
In particular, superconductivity can be induced by arbitrarily weak attraction if the system contains random
chemical potential.When the vertex correction is considered, the promotion of superconductivity by disorder in
theweak attraction regime also becomesmore obvious.However, the vertex correction does notmodify the
qualitative results obtained by using the original AG approximation.

Comparing to the above three types of SMs, the bilayer graphene is spectacular since its zero-energyDOS
takes a finite value at the Fermi level. As the disorder strength increases, themagnitude of the SC gap decreases,
yet at a very low speed. Apparently, such behavior is in sharp contrast to that of 2DDSM, 3DDSM, and 2D semi-
DSM,where the zero-energyDOS vanishes in the clean limit and acquires afinite value onlywhen the system
contains random chemical potential.

Recently, Ozfidan et al studied the influence ofmagnetic impurity on superconductivity in 2DDSMby using
the AGmethod [180], and found a gapless helical SC state. It would be interesting in the future to investigate
whether the vertex correctionmakes an important contribution to the physical effects ofmagnetic disorder on
superconductivity.
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