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Abstract

The bulk-boundary correspondence is crucial to topological insulators. It associates the existence of
boundary states (with zero energy and possessing chiral or helical properties) with the topological
numbers defined in bulk. In recent years, topology has been extended to non-hermitian systems,
opening a new research area called non-hermitian topological insulator. In this paper, however, we
will illustrate that the bulk-boundary correspondence does not hold in these new models. This is
because a prerequisite condition: ‘the boundaries cannot alter most of the bulk states, so as to the
topological numbers defined on them’ does not hold any longer. This cuts out the correspondence
between the topological numbers and the boundary states. We will illustrate that, as approaching the
open boundary condition by eliminating the strength of the hopping between the two ends of a chain,
anew series of exceptional points must be passed through and the topological structure of the
spectrum in the complex plane has been changed. This makes the spectrum topology different for the
chains with and without boundaries. We also discuss that such exotic behavior does not emerge when
the open boundary is replaced by a domain-wall. So the index theorem can be applied to the systems
with domain-walls but cannot be further used to those with open boundaries.

1. Indroduction

In quantum mechanics with hermitian Hamiltonian, the degeneracy of the energy levels is the source of the
topological order, e.g., the nonzero (first kind of) Chern number is generated by the effective magnetic
monopoles at the degenerate points in a parameter space [1]. In the last decade, some authors try to spread these
ideas to the models with non-hermitian(NH) Hamiltonian [2—8]. Besides the topological phase that is smoothly
extended from the hermitian cases [5, 9], the NH models can possess new topological phases stemming from a
new kind of degenerate points, the exceptional points (EPs) [10—-18].

The discussions on the NH Hamiltonian started more than half a century ago and a special kind of NH
models, P7 -symmetric models, has been studied both theoretically and experimentally [13—15, 19-52]. EPs are
the special points in a parameter space where the NH matrix ceases to be diagonalizable because of the
coalescences of the eigenvalues and eigenstates. These properties can be illustrated by the following 2 x 2 Jordan

block reading as
0 1
H= . . 1
(roe"k 0) M

The EP atry = 01is the point where the two eigenvalues coalesce to 0 and the right eigenstates (left eigenstates)
coalesce to (1, O)T (0, 1). As there is only one eigenstate, the Jordan block cannot be diagonalized any more at the
EP. An EP can induce a square root singularity so that there are multiple square root branches in the parameter
space around it. It can be illustrated by encircling the EP by varying k from 0 to 27 in the above matrix. The two
eigenvalues read

© 2018 The Author(s). Published by IOP Publishing Ltd
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Figure 1. (a) The alternation of eigenvalues when ¢ is varying 27 continuously in equation (3). As the translational symmetry is present
in the case of ¢ = n2m, the spectrum can be branched into E.;.. Here the blue and red points represent the eigenvalues in these two
branches, respectively. (b) For a typical hermitian Hamiltonian with two bands, inserting one quantum flux in the loop is equivalent to
moving k by % in the Brillouin zone. So the alternation of eigenvalues by varying ¢ occurs within each band and is different from that
in the NH case.

E; = e, )

Due to the two branches in the complex plane induced by the square root, the eigenvalues that continuously
varying with k will come back to their original values after 47 instead of a 27 period for the matrix itself. This fact
leads to the studies of NH topological insulators [7, 8].

In the previous comment [53], we question whether it is necessary to connect the square root branches with
fractional winding number in a topological language [7, 8]. In this article, we further prove that there is no bulk-
boundary correspondence in several NH models. In these models, the zero energy boundary states (ZEBSs) are
created by the open boundary condition that is just at an EP of the Hamiltonian (as the open boundary condition
is at the EP r = 0 of Hamiltonian (3)), or is exponentially close to an EP (as the open boundary condition atr = 0
which is exponentially closetoan EP atr, ~ e~ aN of Hamiltonian (7)). This is different from the ZEBSs that are
protected by the chiral symmetry in the traditional hermitian topological insulators. As the open boundary is
accompanying with EP while a domain-wall does not, the index theorem presented in [8] can only be applied to
the systems with domain-wall but cannot be further extended to the systems with open boundary condition
(OBC). Besides that, many exotic properties emerge, i.e., all bulk states are changed from extended states to the
exponentially localized states only by a change of the boundary condition from periodic to open.

2. Models and results

We start this section with the toy matrix in equation (1) because it will illustrate many exotic features associated
with EP. We will talk about two kinds of EPs. When the Hamiltonian is presented in the momentum space, the
firstkind of EP, (ro = 0, k = any), isin a polar coordinated space spanned by the parameter r, (radius) and the
wave-vector k (azimuth).

After a Fourier transformation, the parameter ry is representing the strength of hoppings between the nearest
neighboring unit cells and the unity on the up-right corner of the matrix in equation (1) specifies the intra-unit-
cellhoppings. Here we will use the letters A and B to denote the inequivalent atoms in each unit cell. In this real
space representation, there is a particular hopping term between the two ends of the chain whose strength and
phase are denoted by the new parameters, rand ¢, respectively. Obviously, we can approach the open boundary
condition by taking r = 0. ¢, here, is used to connect with the wave-vector k in equation (1). When r = r,, one
can understand this by a gauge transformation that transforms all the related phases e between the nearest
neighboring unit cells to a phase jump e’” = ¢™* across the two ends. Here Nis the length of the chain (the
number of the unit cells). Such connection between ¢ and k has been employed more than three decades [54]
and it is easy to verify that varying ¢ by 27 is equivalent to a shift of % for k in the Brillouin zone, as will be shown
in figures 1 and 2. The second kind of EPs we will discuss is in the parameter space spanned by r (radius) and ¢
(azimuth).

We can explicitly write down the above Hamiltonian in the real space,

N N-1
H=3% ¢l as+ Y nepeiia+ recf gaa. (3)
=1 =1
Without loss of generality, we take 1 to be real and positive. The last term represents the hopping between the

two ends. When r = ryand ¢ = 0, the translational symmetry restores and the spectrum can be grouped into
two branches by E. (k) = 4 /iy e**/2 with N discrete k. In figure 1(a), we schematically show the eigenvalues on a
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Figure 2. (a) From outside to inside, the traces in different colors show how the eigenvalues vary with ¢ in the complex plane when
r = 1y, 10715, 10781y and 0, respectively. The chain contains N = 4 unit cells. So there are totally § eigenvalues, which are represented
by different colors in the figure. Aslongas r = 0, one needs 2N rounds of ¢ to return to the initial eigenvalue sheet. Here r = Oisan
EP, where all eigenstates coalesce together.

circle in the complex plane and the colors are used to distinguish the two branches. For the sake of clarity in our
next discussion, we relabel these eigenvalues along the circle counterclockwise by E,,, where « = 1,2, --+,2N.
Then we adjust ¢ from 0 to 27 continuously in equation (3). The 2nth-root of the complex number implies that
E,, is continuously changed to E,, ,  and E,y is changed to E,. We want to emphasize that this pumping property
is distinct from that in the hermitian case and our general discussions will be based on it. In figure 1, we
schematically show this distinction.

Next, we consider the effect of boundary by decreasing r. In figure 2, we show how the eigenvalues evolve
with ¢ina N = 4 chain when r = X*Nr,. Inthe figure, X*Nistakenas1,107% 10 %and 0, respectively. Actually,
When r = 1y, equation (3) can still be mapped back to a translational symmetric matrix by a non-unitary
transformation,

H— V-HV, (4)

with V = diag(1, X, X2, --- X?N~1). Here Vis a matrix with only diagonal elements 1, X, ---, X?N~1, After the
transformation, the difference between the hopping amplitudes at the boundary and in the bulk is smeared out
and the hoppings in bulk are rescaled by X. This is why only the radius but not the shape of the circle is changed
as ris decreasing. We also notice that the above transformation indicates that all the right eigenstates becomes
exponentially localized on the left end of the chain while the left eigenstates localizes on the right end, which are
confirmed by the numerical calculations.

Here r = Oisan EP of the Hamiltonian in equation (3). Actually, this is a 2N degenerate EP with 2N
eigenvalues coalescing to E = 0. All the right and the left eigenstates coalesce to (1, 0, ---)" and (0, ---, 1),
respectively. And we need to encircle this EP (by taking r = 0 and ¢ = 0 — 2m) 2N rounds to reach the initial
sheet of the eigenstates. One should note that in the momentum space, the toy model is encircling an EP as
varying k without touching any EP. But in the real space representation, when the OBCis taken, the model is
right at an EP and the Hamiltonian matrix becomes defective. As the spectrum and the eigenstates are changed
entirely in approaching OBC, we have to understand the ZEBSs from the coalescence of eigenstates at the EP
instead of the topological protection of boundary states caused by the bulk (fractional) winding numbers. One
reason is that the bulk spectrum has been dramatically changed when the OBC is approached. This makes it
impossible to connect the topological band structure in the momentum space to the boundary states in the real
space because the two bulk spectra with and without OBC are totally different. So the index theorems, such as the
Thouless pump [55], cannot be applied any more. We will present the other reasons after the studies of several
models.

In the momentum space, the 1D model in [7] is

Hy = (v + rycos(k)) o, + (1psin(k) + iy/2)0,. (5)
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Figure 3. (a) The traces in different colors show how the eigenvalues are evolving when ¢ = 0 — 27. From outside to inside, ris
taking 0.5, 1 x 1073, 5.23 x 1074, 6 x 10~%and 0, respectively. Whenr = r, = 5.23 x 10 * the Hamiltonian encounters an EP
at which two pairs of eigenvalues coalesce. As further decreasing r, the alternation of eigenvalues splits into three unconnected loops.
When r = 0, there is another EP at which the eigenvalues coalesce to three points, 0 and £0.5. Here the length of the chainis N = 6.
Enlarging the chain does not change the evolution qualitatively, but r. will exponentially decrease to 0.

After a unitary transformation U = %(1 _11.), Hi — U'H, U, the Hamiltonian changes to
Ho—i 0 y/2 — v) — rye'* ©)
(7/2 4 v) + ne * 0

The EPs are at the points where either of the off-diagonal elements is zero. We first takey = 1,v = —0.5and
ro = 0.5, which are in the topological phase with fractional winding number in [7]. Similar to the toy model in
the above discussion, we write down the Hamiltonian in the real space as

N N—1
H=i{) ¢ as+ > 1/2[c/gcrira — ¢f ) 45
1=1 =1

+ rlecl paa — e ¢ yen 51} (7)

where rand ¢ are the amplitude and the phase of the hopping between the two ends of the chain, respectively.

In figure 3, we show how the energy spectrum is varying with ¢ ina N = 6 chain for several values of . When
ris relatively large, it still needs totally 2N rounds to restore the initial sheet of the eigenvalues because each
round shifts the adjacent energy levels one by one counterclockwise. When ris smaller than a critical value,

r < r!,the circular alternation splits into three parts, in which each of two sideward ones contains N — 1 states
and the middle one has two states. So one will need 2(N — 1) rounds to reach the initial spectrum sheet when N
is an even number or (N — 1) rounds when Nis odd. When r is further decreased to 0, which corresponds to the
chain with OBC, the three circles shrink to three points at 0.5 and 0, respectively. So r = 0 is also an EP of the
Hamiltonian in the real space. But the degeneracy of this EP is smaller than that in the above toy model. Actually,
there are totally three EPs at r = 0, whose degeneraciesare N — 1,2and N — 1, respectively. One should
remember that there is also another EP at (r = rC' , ¢ = ), where two pairs of eigenvalues coalesce.

We also calculate the evolution of the spectrum for longer chains. The circular alternations are similar to
those in the short chain presented in the above figure but the EP at r = r/ is exponentially rapidly moved to the
EP at the origin as the length of the chain is increased.

We plot the results when the parameters are changed toy = 1,v = —0.6 and ry = 0.5 in figure 4(a). In this
case, the center EPsatr = 01is split into many EPs and are moved away from the origin. As figure 4(a) shows,
when ris decreased to 0.001, one EP has been encountered and the traces of eigenvalues are split into three parts
with a center large loop containing 10 eigenvalues and the two satellite circles each containing 1 eigenvalue. As
further decreasing r, more EPs are encounted and more and more eigenvalues are segregated from the center
circle. Whenr = r, = 3 x 10, thelast two eigenvalues at the center coalesce. As all eigenvalues evolve to
themselves when r < r,, there is no EP anymore. So in this model, r = 0is not an EP and there are only two
bound states near the zero energy when the OBC is finally reached. But when the length of the chain is increased
to N = 20, whose results have been shown in figure 4(b), all EPs shrink toward 0 rapidly. The last two adherent
eigenvalues coalesce ata much smaller 7. ~ 5.3 x 10~ '>and stay more close to the zero energy when r = 0. So
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Figure 4. (a) The traces of the eigenvalues when the parameters are changedtoy = 1,v = —0.6and r, = 0.5 in equation (7). Here
from outside to inside, ris taking 0.5, 1 x 10735 x 10743.2 x 10 %ando0, respectively. A zoom of the original region is shown in
the inset. The length of the chain is still N = 6. (b) The traces of the eigenvalues when the length of the chain is changed to N = 20.
Here ris taking 0.5, 1 x 107%, 1 x 107%, 1 x 107!9, 5.3 x 107'>and 0, respectively. The inset shows the mini circle and the saturate
pointswhenr = 5.3 x 10~ and 0.

we can conclude that even r = 0isnotan EP in this case, all EPs are moving toward it exponentially rapidly with
enlarging the system.
The 2-dimensional(2D) model in [8] reads as

H; = Bx(kx, ky)az + By(km ky)gx) )]

where k. and k, are the wave-vectors in the x and y directions, respectively. Although this is a 2D model, the
authors had considered k, as a parameter and characterize the topological property by the fractional winding
number in the k, direction. So this model will be equivalent to the previous model in equation (6).

3. Discussions

In real space representation, when the translational symmetry is restored by taking the amplitude of the hopping
between the ends equal to that in bulk, r = ry, the variation of ¢ by 27 is equivalent to the shift of the wave-vector
kby % in the Brillouin zone. As the period of the energy spectrum with k is 47 in the momentum space, their
period with ¢ in the real space must be 4N instead of 2N7. On the complex plane (r cos(¢), r sin(¢)), there
must be several EPs inside the circle |re’”| = ry because when r = 0 all eigenvalues must not varying with ¢ any
longer. For equation (7) withy = 1,v = —0.5and ry = 0.5, after writing down the Hamiltonian matrix with
OBC, r = 0, one can immediately realize that this is an EP and there are at least two eigenvalues coalesce to zero
energy. We suggest to attribute this ZEBS to the EP instead to the topological protected boundary state for the
following reasons.

Firstly, as we mentioned previously, the spectrum of the models with OBC or with periodic boundary
condition are sharply different. All the states, including the ZEBS, are exponentially localized at the boundary in
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the former case, but are extended in the latter case. This distinction makes the two systems uncorrelated so that
the topological numbers defined in the latter system has nothing to do with the spectrum when the OBC is taken.

Secondly, the fractional winding number defined in the momentum space is stemmed from the 47 period of
k. Inreal space, it has been inherited by the 4N period of ¢ when r = r,. So we can conclude that the
topological number (fractional winding number here) is encoded in the topology of the traces of the eigenvalues.
To reach OBC as decreasing r, one must encounter EPs and the topology of the traces must be changed (as one
large loop splits into smaller loops shown in the previous figures). So it is impossible to associate the ZEBS at the
open boundary to the fractional winding number defined without boundary because the topologies of the two
systems are entirely different.

Thirdly, the ZEBSs are not protected by the chiral symmetry. They are actually caused by the fact that the
Hamiltonian matrix with OBC has two eigenvalues coalesce to zero energy or near the zero energy. We take
equation (6) with the parametersy = 1,v = —0.5and ry = 0.5 as an example. The definition of the winding
number in the momentum space requires a chiral symmetry, which is 0, H o, = — H in this article. If the
topological understanding of ZEBS is right, they must disappear when a term ho, is added in the Hamiltonian to
break the symmetry. In the real space representation, we recover the EP at r = 0 by eliminating the term
h (Cita aa — CLB cnp) in the two unit cells at the boundaries. A simple numerical calculation confirms that the
ZEBSs are still present. So even when there is no chiral symmetry and the fractional winding number is
undefined, as longas the EP at r = 0 is present, the ZEBSs can still exist.

This article questions the topological understanding of ZEBS in NH models. But we are not challenging most
of the results in [8] because the authors discussed domain-walls instead of open boundaries there. Unlike the
models with open boundaries, a system with domain-walls will not encounter the EP problem. But we want to
emphasize that their conclusions on the domain-walls cannot be further extended to the open boundaries. For
instance, the index theorem in that article starts from a translation H’ = H'H that maps the NH Hamiltonian
Hto an hermitian Hamiltonian H'. When H is not defective, the above translation maps the spectrum ¢ to | [?
one by one. But the Hamiltonian H will be defective right at the EP so that the spectrum of H' are not mapped
one by one to that of H any more. The toy model in equation (1) can illustrate this: the eigenvalues of H' H are not
fixed at zero when ry, = 0. So the index theorem cannot be applied to the chain with OBC.

In the Hermitian models, the topological boundary states bounded on the boundary can be traced back to
the mismatch of the Wanniers centers in the modern theorem of the polarization [56]. These Wanniers centers
are determined by the whole occupied band of the bulk. This is the physics behind the bulk-boundary
correspondence. However, as we just concluded, in the non-hermitian models, the bulk states are inevitably
changed by the EPs as approaching the open boundary condition. This is why the correspondence between the
bulk band structure and the boundary states is cut off in the open boundary condition of the NH Hamiltonian. If
the open boundary condition is replaced with a domain wall, the situation will become different. A domain wall
is aboundary that separates two regions with different parameters (such as the media with inverse sign of mass or
gap discussed in [8]). The similar polarization argument is still applicable because the domain-wall will not
enroll extra EP like open boundary. Thus, as discussed in [8], the bulk-boundary correspondence is applicable
provided that the suitable bulk topological numbers are chosen. In [8], two winding numbers obtained from the
bulk states are chosen to describe the bulk-boundary correspondence, one is a generalization of the Berry phase
to the NH system, another is calculated from the argument of the eigenvalues.

At the end of this section, we want to clarify how will the topology of the spectrum(eigenvalues) relate to the
traditional topological winding number defined for the eigenvectors. As we have discussed, ¢ is playing a similar
role as the wave-vector k. The nontrivial topological proprieties for the eigenvectors stem from the multiple
branches of the eigenvalues which have been inherited by ¢ showing in figure 2. Any topological change of the
spectrum from a circle must indicate a change in the topological property of the eigenvectors.

4. Conclusions

We indicate that, as eliminating the amplitude of hopping between the ends of a chain to reach OBC, extra EP
must be passed through and the topological structure of the band has been changed. This makes it impossible to
associate the ZEBS in the OBC case to the fractional winding number defined without taking into account the
boundary effect. The topological index theorem on a domain-wall cannot be naturally extended to that on the
boundary for the same reason. The spectrum of the chain with OBC should be studied individually and the
topological bulk boundary correspondence is cut out. Our studies also show that there are EPs at or
exponentially adjacent tor = 0in along chain in these models. This makes it possible to study the effect of EP on
along chain without finely tune the parameters.

Technical note: All data shown in this article are calculated by the standard lapack function: zgeev. But near or
atthe EP, the LU decomposition used by zgeev is unstable when the dimension of the matrix is large. So if one
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want to calculate the spectrum for a longer chain, we suggest to use a bi-orthogonal Gram-Schmidt process
whose validity has been verified by us.
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