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Abstract
The bulk-boundary correspondence is crucial to topological insulators. It associates the existence of
boundary states (with zero energy and possessing chiral or helical properties)with the topological
numbers defined in bulk. In recent years, topology has been extended to non-hermitian systems,
opening a new research area called non-hermitian topological insulator. In this paper, however, we
will illustrate that the bulk-boundary correspondence does not hold in these newmodels. This is
because a prerequisite condition: ‘the boundaries cannot altermost of the bulk states, so as to the
topological numbers defined on them’ does not hold any longer. This cuts out the correspondence
between the topological numbers and the boundary states.Wewill illustrate that, as approaching the
open boundary condition by eliminating the strength of the hopping between the two ends of a chain,
a new series of exceptional pointsmust be passed through and the topological structure of the
spectrum in the complex plane has been changed. Thismakes the spectrum topology different for the
chainswith andwithout boundaries.We also discuss that such exotic behavior does not emerge when
the open boundary is replaced by a domain-wall. So the index theorem can be applied to the systems
with domain-walls but cannot be further used to thosewith open boundaries.

1. Indroduction

In quantummechanics with hermitianHamiltonian, the degeneracy of the energy levels is the source of the
topological order, e.g., the nonzero (first kind of)Chern number is generated by the effectivemagnetic
monopoles at the degenerate points in a parameter space [1]. In the last decade, some authors try to spread these
ideas to themodels with non-hermitian(NH)Hamiltonian [2–8]. Besides the topological phase that is smoothly
extended from the hermitian cases [5, 9], theNHmodels can possess new topological phases stemming from a
newkind of degenerate points, the exceptional points (EPs) [10–18].

The discussions on theNHHamiltonian startedmore than half a century ago and a special kind ofNH
models,  -symmetricmodels, has been studied both theoretically and experimentally [13–15, 19–52]. EPs are
the special points in a parameter space where theNHmatrix ceases to be diagonalizable because of the
coalescences of the eigenvalues and eigenstates. These properties can be illustrated by the following 2×2 Jordan
block reading as
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The EP at r0=0 is the point where the two eigenvalues coalesce to 0 and the right eigenstates (left eigenstates)
coalesce to (1, 0)T (0, 1). As there is only one eigenstate, the Jordan block cannot be diagonalized anymore at the
EP. AnEP can induce a square root singularity so that there aremultiple square root branches in the parameter
space around it. It can be illustrated by encircling the EP by varying k from0 to 2π in the abovematrix. The two
eigenvalues read
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Due to the two branches in the complex plane induced by the square root, the eigenvalues that continuously
varyingwith kwill come back to their original values after 4π instead of a 2π period for thematrix itself. This fact
leads to the studies ofNH topological insulators [7, 8].

In the previous comment [53], we questionwhether it is necessary to connect the square root branches with
fractional winding number in a topological language [7, 8]. In this article, we further prove that there is no bulk-
boundary correspondence in severalNHmodels. In thesemodels, the zero energy boundary states (ZEBSs) are
created by the open boundary condition that is just at an EP of theHamiltonian (as the open boundary condition
is at the EP r= 0 ofHamiltonian (3)), or is exponentially close to an EP (as the open boundary condition at r= 0
which is exponentially close to an EP at rc∼e−αN ofHamiltonian (7)). This is different from the ZEBSs that are
protected by the chiral symmetry in the traditional hermitian topological insulators. As the open boundary is
accompanyingwith EPwhile a domain-wall does not, the index theorempresented in [8] can only be applied to
the systemswith domain-wall but cannot be further extended to the systemswith open boundary condition
(OBC). Besides that,many exotic properties emerge, i.e., all bulk states are changed from extended states to the
exponentially localized states only by a change of the boundary condition fromperiodic to open.

2.Models and results

We start this sectionwith the toymatrix in equation (1) because it will illustratemany exotic features associated
with EP.Wewill talk about two kinds of EPs.When theHamiltonian is presented in themomentum space, the
first kind of EP, (r0=0, k=any), is in a polar coordinated space spanned by the parameter r0 (radius) and the
wave-vector k (azimuth).

After a Fourier transformation, the parameter r0 is representing the strength of hoppings between the nearest
neighboring unit cells and the unity on the up-right corner of thematrix in equation (1) specifies the intra-unit-
cell hoppings. Here wewill use the lettersA andB to denote the inequivalent atoms in each unit cell. In this real
space representation, there is a particular hopping termbetween the two ends of the chainwhose strength and
phase are denoted by the newparameters, r andf, respectively. Obviously, we can approach the open boundary
condition by taking r=0.f, here, is used to connect with thewave-vector k in equation (1).When r=r0, one
can understand this by a gauge transformation that transforms all the related phases e ik between the nearest
neighboring unit cells to a phase jump e if=e iNk across the two ends. HereN is the length of the chain (the
number of the unit cells). Such connection betweenf and k has been employedmore than three decades [54]
and it is easy to verify that varyingf by 2π is equivalent to a shift of

N

2p for k in the Brillouin zone, as will be shown

infigures 1 and 2. The second kind of EPswewill discuss is in the parameter space spanned by r (radius) andf
(azimuth).

We can explicitly write down the aboveHamiltonian in the real space,

H c c r c c re c c . 3
l

N

l A l B
l

N

l B l A
i

N B A
1

, ,
1

1

0 , 1, , 1,å å= + + f

= =

-

+ ( )† † †

Without loss of generality, we take r0 to be real and positive. The last term represents the hopping between the
two ends.When r=r0 andf=0, the translational symmetry restores and the spectrum can be grouped into
two branches by E k r eik

0
2= ( ) withN discrete k. Infigure 1(a), we schematically show the eigenvalues on a

Figure 1. (a)The alternation of eigenvalues whenf is varying 2π continuously in equation (3). As the translational symmetry is present
in the case off=n2π, the spectrum can be branched intoE±. Here the blue and red points represent the eigenvalues in these two
branches, respectively. (b) For a typical hermitianHamiltonianwith two bands, inserting one quantum flux in the loop is equivalent to
moving k by

N

2p in the Brillouin zone. So the alternation of eigenvalues by varyingf occurs within each band and is different from that

in theNHcase.
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circle in the complex plane and the colors are used to distinguish the two branches. For the sake of clarity in our
next discussion, we relabel these eigenvalues along the circle counterclockwise by Eα, whereα=1, 2,L, 2N.
Thenwe adjustf from0 to 2π continuously in equation (3). The 2nth-root of the complex number implies that
Eα is continuously changed toEα+1 andE2N is changed toE1.Wewant to emphasize that this pumping property
is distinct from that in the hermitian case and our general discussionswill be based on it. Infigure 1, we
schematically show this distinction.

Next, we consider the effect of boundary by decreasing r. Infigure 2, we showhow the eigenvalues evolve
withf in aN=4 chainwhen r X rN2

0= . In thefigure,X2N is taken as 1, 10−4, 10−8 and 0, respectively. Actually,
When r r0¹ , equation (3) can still bemapped back to a translational symmetricmatrix by a non-unitary
transformation,

H V HV , 41 - ( )

withV X X Xdiag 1, , , N2 2 1= -( ). HereV is amatrix with only diagonal elements X X1, , , N2 1- . After the
transformation, the difference between the hopping amplitudes at the boundary and in the bulk is smeared out
and the hoppings in bulk are rescaled byX. This is why only the radius but not the shape of the circle is changed
as r is decreasing.We also notice that the above transformation indicates that all the right eigenstates becomes
exponentially localized on the left end of the chainwhile the left eigenstates localizes on the right end, which are
confirmed by the numerical calculations.

Here r=0 is an EP of theHamiltonian in equation (3). Actually, this is a 2N degenerate EPwith 2N
eigenvalues coalescing toE=0. All the right and the left eigenstates coalesce to 1, 0, T( ) and (0,L, 1),
respectively. Andwe need to encircle this EP (by taking r 0¹ andf=0→2π) 2N rounds to reach the initial
sheet of the eigenstates. One should note that in themomentum space, the toymodel is encircling an EP as
varying kwithout touching any EP. But in the real space representation, when theOBC is taken, themodel is
right at an EP and theHamiltonianmatrix becomes defective. As the spectrum and the eigenstates are changed
entirely in approachingOBC,we have to understand the ZEBSs from the coalescence of eigenstates at the EP
instead of the topological protection of boundary states caused by the bulk (fractional)winding numbers. One
reason is that the bulk spectrumhas been dramatically changedwhen theOBC is approached. Thismakes it
impossible to connect the topological band structure in themomentum space to the boundary states in the real
space because the two bulk spectra with andwithoutOBC are totally different. So the index theorems, such as the
Thouless pump [55], cannot be applied anymore.Wewill present the other reasons after the studies of several
models.

In themomentum space, the 1Dmodel in [7] is

H v r k r k icos sin 2 . 5k x z0 0s g s= + + +( ( )) ( ( ) ) ( )

Figure 2. (a) Fromoutside to inside, the traces in different colors showhow the eigenvalues varywithf in the complex planewhen
r r r r, 10 , 100

4
0

8
0= - - and 0, respectively. The chain containsN=4 unit cells. So there are totally 8 eigenvalues, which are represented

by different colors in thefigure. As long as r 0¹ , one needs 2N rounds off to return to the initial eigenvalue sheet. Here r=0 is an
EP, where all eigenstates coalesce together.
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After a unitary transformationU
i i

H U H U1 1 , k k
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( ) † , theHamiltonian changes to
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The EPs are at the points where either of the off-diagonal elements is zero.Wefirst take γ=1, v=−0.5 and
r0=0.5, which are in the topological phase with fractional winding number in [7]. Similar to the toymodel in
the above discussion, wewrite down theHamiltonian in the real space as

H i c c c c c c

r e c c e c c

1 2

, 7
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† †

where r andf are the amplitude and the phase of the hopping between the two ends of the chain, respectively.
Infigure 3, we showhow the energy spectrum is varyingwithf in aN=6 chain for several values of r.When

r is relatively large, it still needs totally 2N rounds to restore the initial sheet of the eigenvalues because each
round shifts the adjacent energy levels one by one counterclockwise.When r is smaller than a critical value,
r rc< ¢, the circular alternation splits into three parts, inwhich each of two sideward ones containsN−1 states
and themiddle one has two states. So onewill need 2(N−1) rounds to reach the initial spectrum sheet whenN
is an even number or (N−1) roundswhenN is odd.When r is further decreased to 0, which corresponds to the
chainwithOBC, the three circles shrink to three points at±0.5 and 0, respectively. So r=0 is also an EP of the
Hamiltonian in the real space. But the degeneracy of this EP is smaller than that in the above toymodel. Actually,
there are totally three EPs at r=0, whose degeneracies areN−1, 2 andN−1, respectively. One should
remember that there is also another EP at r r ,c f p= ¢ =( ), where two pairs of eigenvalues coalesce.

We also calculate the evolution of the spectrum for longer chains. The circular alternations are similar to
those in the short chain presented in the abovefigure but the EP at r rc= ¢ is exponentially rapidlymoved to the
EP at the origin as the length of the chain is increased.

We plot the results when the parameters are changed to γ=1, v=−0.6 and r0=0.5 infigure 4(a). In this
case, the center EPs at r=0 is split intomany EPs and aremoved away from the origin. Asfigure 4(a) shows,
when r is decreased to 0.001, one EP has been encountered and the traces of eigenvalues are split into three parts
with a center large loop containing 10 eigenvalues and the two satellite circles each containing 1 eigenvalue. As
further decreasing r, more EPs are encounted andmore andmore eigenvalues are segregated from the center
circle.When r=rc=3×10−5, the last two eigenvalues at the center coalesce. As all eigenvalues evolve to
themselves when r<rc, there is no EP anymore. So in thismodel, r=0 is not an EP and there are only two
bound states near the zero energy when theOBC isfinally reached. But when the length of the chain is increased
toN=20, whose results have been shown infigure 4(b), all EPs shrink toward 0 rapidly. The last two adherent
eigenvalues coalesce at amuch smaller rc∼5.3×10−15 and staymore close to the zero energywhen r=0. So

Figure 3. (a)The traces in different colors showhow the eigenvalues are evolvingwhenf=0→2π. Fromoutside to inside, r is
taking 0.5, 1 10 , 5.23 10 , 6 103 4 5´ ´ ´- - - and 0, respectively.When r=rc=5.23×10−4, theHamiltonian encounters an EP
atwhich two pairs of eigenvalues coalesce. As further decreasing r, the alternation of eigenvalues splits into three unconnected loops.
When r=0, there is another EP at which the eigenvalues coalesce to three points, 0 and±0.5.Here the length of the chain isN=6.
Enlarging the chain does not change the evolution qualitatively, but rcwill exponentially decrease to 0.
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we can conclude that even r=0 is not an EP in this case, all EPs aremoving toward it exponentially rapidlywith
enlarging the system.

The 2-dimensional(2D)model in [8] reads as

H B k k B k k, , , 8k x x y z y x y xs s= +( ) ( ) ( )

where kx and ky are thewave-vectors in the x and y directions, respectively. Although this is a 2Dmodel, the
authors had considered ky as a parameter and characterize the topological property by the fractional winding
number in the kx direction. So thismodel will be equivalent to the previousmodel in equation (6).

3.Discussions

In real space representation, when the translational symmetry is restored by taking the amplitude of the hopping
between the ends equal to that in bulk, r=r0, the variation off by 2π is equivalent to the shift of thewave-vector
k by

N

2p in the Brillouin zone. As the period of the energy spectrumwith k is 4π in themomentum space, their

periodwithf in the real spacemust be 4Nπ instead of 2Nπ. On the complex plane r rcos , sinf f( ( ) ( )), there
must be several EPs inside the circle re ri

0=f∣ ∣ becausewhen r=0 all eigenvaluesmust not varyingwithf any
longer. For equation (7)with γ=1, v=−0.5 and r0=0.5, after writing down theHamiltonianmatrix with
OBC, r=0, one can immediately realize that this is an EP and there are at least two eigenvalues coalesce to zero
energy.We suggest to attribute this ZEBS to the EP instead to the topological protected boundary state for the
following reasons.

Firstly, as wementioned previously, the spectrumof themodels withOBCorwith periodic boundary
condition are sharply different. All the states, including the ZEBS, are exponentially localized at the boundary in

Figure 4. (a)The traces of the eigenvalues when the parameters are changed to γ=1, v=−0.6 and r0=0.5 in equation (7). Here
fromoutside to inside, r is taking 0.5, 1×10−3, 5×10−4, 3.2×10−5 and 0, respectively. A zoomof the original region is shown in
the inset. The length of the chain is stillN=6. (b)The traces of the eigenvalues when the length of the chain is changed toN=20.
Here r is taking 0.5, 1 10 , 1 10 , 1 10 , 5.3 106 9 10 15´ ´ ´ ´- - - - and 0, respectively. The inset shows themini circle and the saturate
points when r=5.3×10−15 and 0.
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the former case, but are extended in the latter case. This distinctionmakes the two systems uncorrelated so that
the topological numbers defined in the latter systemhas nothing to dowith the spectrumwhen theOBC is taken.

Secondly, the fractional winding number defined in themomentum space is stemmed from the 4π period of
k. In real space, it has been inherited by the N4 p period offwhen r=r0. Sowe can conclude that the
topological number (fractional winding number here) is encoded in the topology of the traces of the eigenvalues.
To reachOBC as decreasing r, onemust encounter EPs and the topology of the tracesmust be changed (as one
large loop splits into smaller loops shown in the previous figures). So it is impossible to associate the ZEBS at the
open boundary to the fractional winding number definedwithout boundary because the topologies of the two
systems are entirely different.

Thirdly, the ZEBSs are not protected by the chiral symmetry. They are actually caused by the fact that the
Hamiltonianmatrix withOBChas two eigenvalues coalesce to zero energy or near the zero energy.We take
equation (6)with the parameters γ=1, v=−0.5 and r0=0.5 as an example. The definition of thewinding
number in themomentum space requires a chiral symmetry, which is H Hz k z ks s = - in this article. If the
topological understanding of ZEBS is right, theymust disappear when a term hσz is added in theHamiltonian to
break the symmetry. In the real space representation, we recover the EP at r=0 by eliminating the term
h c c c cA A NB NB1 1 -( )† † in the two unit cells at the boundaries. A simple numerical calculation confirms that the
ZEBSs are still present. So evenwhen there is no chiral symmetry and the fractional winding number is
undefined, as long as the EP at r=0 is present, the ZEBSs can still exist.

This article questions the topological understanding of ZEBS inNHmodels. Butwe are not challengingmost
of the results in [8] because the authors discussed domain-walls instead of open boundaries there. Unlike the
models with open boundaries, a systemwith domain-walls will not encounter the EP problem. Butwewant to
emphasize that their conclusions on the domain-walls cannot be further extended to the open boundaries. For
instance, the index theorem in that article starts from a translation H H H¢ = † thatmaps theNHHamiltonian
H to an hermitianHamiltonianH′.WhenH is not defective, the above translationmaps the spectrum ò to 2∣ ∣
one by one. But theHamiltonianHwill be defective right at the EP so that the spectrumofH′ are notmapped
one by one to that ofH anymore. The toymodel in equation (1) can illustrate this: the eigenvalues ofH†H are not
fixed at zerowhen r0=0. So the index theorem cannot be applied to the chainwithOBC.

In theHermitianmodels, the topological boundary states bounded on the boundary can be traced back to
themismatch of theWanniers centers in themodern theoremof the polarization [56]. TheseWanniers centers
are determined by thewhole occupied band of the bulk. This is the physics behind the bulk-boundary
correspondence. However, as we just concluded, in the non-hermitianmodels, the bulk states are inevitably
changed by the EPs as approaching the open boundary condition. This is why the correspondence between the
bulk band structure and the boundary states is cut off in the open boundary condition of theNHHamiltonian. If
the open boundary condition is replacedwith a domainwall, the situationwill become different. A domainwall
is a boundary that separates two regionswith different parameters (such as themedia with inverse sign ofmass or
gap discussed in [8]). The similar polarization argument is still applicable because the domain-wall will not
enroll extra EP like open boundary. Thus, as discussed in [8], the bulk-boundary correspondence is applicable
provided that the suitable bulk topological numbers are chosen. In [8], twowinding numbers obtained from the
bulk states are chosen to describe the bulk-boundary correspondence, one is a generalization of the Berry phase
to theNH system, another is calculated from the argument of the eigenvalues.

At the end of this section, wewant to clarify howwill the topology of the spectrum(eigenvalues) relate to the
traditional topological winding number defined for the eigenvectors. Aswe have discussed,f is playing a similar
role as thewave-vector k. The nontrivial topological proprieties for the eigenvectors stem from themultiple
branches of the eigenvalues which have been inherited byf showing infigure 2. Any topological change of the
spectrum from a circlemust indicate a change in the topological property of the eigenvectors.

4. Conclusions

We indicate that, as eliminating the amplitude of hopping between the ends of a chain to reachOBC, extra EP
must be passed through and the topological structure of the band has been changed. Thismakes it impossible to
associate the ZEBS in theOBC case to the fractional winding number definedwithout taking into account the
boundary effect. The topological index theoremon a domain-wall cannot be naturally extended to that on the
boundary for the same reason. The spectrumof the chainwithOBC should be studied individually and the
topological bulk boundary correspondence is cut out. Our studies also show that there are EPs at or
exponentially adjacent to r=0 in a long chain in thesemodels. Thismakes it possible to study the effect of EP on
a long chainwithout finely tune the parameters.

Technical note: All data shown in this article are calculated by the standard lapack function: zgeev. But near or
at the EP, the LUdecomposition used by zgeev is unstable when the dimension of thematrix is large. So if one
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want to calculate the spectrum for a longer chain, we suggest to use a bi-orthogonal Gram-Schmidt process
whose validity has been verified by us.
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