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Abstract
Anew idea for the quantization of dynamic systems, as well as space time itself, using a stochastic
metric is proposed. The quantummechanics of amass point is constructed on a space timemanifold
using a stochasticmetric. A stochastic metric space is, in brief, ametric spacewhosemetric tensor is
given stochastically according to some appropriate distribution function. Amathematically consistent
model of a space timemanifold equipping a stochasticmetric is proposed in this work. The quantum
theory in the localMinkowski space can be recognized as a classical theory on the stochastic Lorentz-
metric-space. A stochastic calculus on the space timemanifold is performed usingwhite noise
functional analysis. A path-integral quantization is introduced as a stochastic integration of a function
of the action integral, and it is shown that path-integrals on the stochasticmetric space are
mathematically well-defined for large variety of potential functions. TheNewton–Nelson equation of
motion can also be obtained from theNewtonian equation ofmotion on the stochasticmetric space. It
is also shown that the commutation relation required under the canonical quantization is consistent
with the stochastic quantization introduced in this work. The quantum effects of general relativity are
also analyzed through natural use of the stochasticmetrics. Some example of quantum effects on the
Universe is discussed.

1. Introduction

Although quantummechanics (QM) is generally recognised as themost fundamental current theory describing
nature, our understanding ofQMremains incomplete. Themost characteristic andmysterious aspect ofQM is
its requirement for a probabilistic treatment of dynamic systems.Unlike classicalmechanics, inwhich the exact
future configuration of a system is completely deterministic, and can in principle, be predicted if the initial
conditions are sufficiently understood, physical quantities can only be probabilistically predicted inQM.Once
this probabilistic aspect is accepted via frameworks such as, the Copenhagen interpretation, the time evolution
of physical a system (its state) can be calculated exactly and its physical observables predicted probabilistically.
Even thoughQMsuccessfully explain the behavior of nature at roughly the atomic level and below, the
probabilistic aspects ofQMare still not understood completely.

Several approaches have been proposed for constructingQMbased on statistical/stochastic theory. In 1966,
Nelson—whomodeled themotion of amass point as a Brownianmotion under an external force—gave the
initial approach in this direction. TheNewton–Nelson equation is given as a stochastic differential equation, that
can be interpreted as a stochasticmodification of theNewtonian equation ofmotionwithGaussianwhite noise.
TheNewton–Nelson equation has been shown to be equivalent to the Shrödinger equation in some frameworks.
This general approach is called the stochastic quantization (SQ)method. FollowingNelson’s pioneering work,
another SQ approach, the stochastic space timemethod, was proposed by Frederic [1] in 1976 and has been
pursued further byAli, Prugoveck̆i and other authors [2]. A key concept of this approach is to introduce
stochastic phase space, which uses a coordinate probability density to represent the probability that amass point is
observed at two different phase points. Another SQmethod to quantizefield theories was put forth by Parisi and
Wu [3] in 1981, who proposed a quantum theory involving a hypothetical stochastic process with afictitious
‘time’, that differs fromordinary time. In their theory, the conventional quantum field theory is reproduced as
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the thermal equilibrium limit of a stochastic system. Theirmethod has been applied tomany dynamical systems,
for instance byNamiki, et al [4]. A summary of stochastic quantization can also be found in a review article [5].

In this work, a newquantizationmethod based on themathematical theory of probability is proposed. The
concept is developed as follows:We consider the decay process of a given radioisotope. Because the probability
of observing a decay during a unit of time is constant, the number of decays observed during a given time interval
follows a Poisson distribution. Using this phenomenon, a clock inwhich the second hand advances each time a
decay observed can be constructed; hereafter, this will be referred to as aPoisson-clock.We assume for simplicity
that the Poisson-clock is designed to advance one tick per second on average.We then compare this clock to an
ordinarymechanical clock, inwhich the time interval per tick of the second hand is constant. From the point of
view of an observer using themechanical clock, the second hand of the Poisson-clock seems tomove randomly;
however, this is of course a relative observation tied to the reference frame of themechanical clock. If instead the
timemeasured by the Poisson-clock is defined as the regular interval, the running of themechanical clock
becomes random.A distribution of ‘one second’ of the Poisson-clock, asmeasured by themechanical clock,
becomes an exponential distributionwith an average value of unity. Following the central limit theorem, the
deviation between the Poisson and themechanical clock after n seconds will have aGaussian distribution around
zerowith a variance of n. Using themechanical clock tomeasure the time-of-flight of a free particle following a
classical inertial pathwill result in a constantmeasured velocity. On the other hand, if the Poisson-clock is used,
measurement becomes a stochastic-process based on theWienermeasure and can be expressed using a
stochastic differentiation equation. It has been shown that such as expression agrees with the stochastic equation
obtained byNelson [6] that is used in stochastic quantization. Thus, classicalmechanics with a Poisson-time
measure results inQM,which suggests a newquantizationmethod—StochasticMetric Quantization(SMQ). This
observation can be extended to spatial coordinates aswell, and an equal treatment of space and time is necessary
to apply thismethod to relativistic quantumfield theories. A quantumfield theory can be given on the stochastic
metric space, not only forflat spaces such asMinkowski space, but also for highly curved spaces such as the
surface of the black hole. As applications of thismethod, quantum effects in the early universe can be analyzed.

Amain purpose of this work is to give a new framework of a quantum theory usingmathematical tools of the
stochasticmetric space. In other words, a new stochastic quantizationmethod is proposed in this work. A
concept of ourmethod is, in summary, that classical mechanics in the stochastic space is equivalent to quantum
mechanics on the standard space timemanifold. This concept can not answer a questionwhy quantummechanics
requires a probabilistic interpretation (the Born rule), but it can answerwhat is an origin of a probabilistic
nature.While our stochastic quantization gives consistent results to those from the standardmethod, it gives a
new insight of quantumphenomenon.Moreover, a systemwhich can not be quantized yet, e.g. gravitation,may
be quantized using this stochastic quantizationmethod.

This report is organized as follows: In section 2, a heuristic example showing a consequence of the stochastic
metric space is given to enable better understanding of themathematical discussion in following sections. In
section 3, the stochasticmetric space is introduced and applied to theMinkowskimanifold, as amodel of a
physical space time. In section 4, the stochastic quantization for amass point is introduced and the relation
among the stochastic and other quantizations is discussed. In section 5, the effect of the stochasticmetric on the
space timemanifold itself is discussed; this effect is found to be a quantum effect of general relativity. In addition,
stochastic effects on theUniverse is presented. The results of the stochastic quantization are summarized in
section 6.

2.Heuristic example

Before presenting a detailed discussion, a heuristic introduction of SMQ is provided in this section. The central
feature of SMQ is as follows: when the classicalmechanics is defined on a stochasticmetric space, statistical
fluctuations appearing on the classical systemmay be observed as quantummechanical effects. In this section,
the hydrogen atom is treated as an example of how the stochasticmetric works on a classical system.

2.1. The Lamb shift:Welton’smethod
The hydrogen atom is the first and simplest system towhichQMwas successfully used to provide a quantitative
structural explanation. In 1947,WELamb andRCRetherford reported an energy difference between the states,
S2

1 2 and P2
1 2 [7] that does not appear in the lowest perturbative solution of theDirac equation. This energy

shift is referred to the Lamb shift. Eventually, quantum electrodynamics (QED)would be used as a successful
application of renormalization calculus to calculate a precise value of the Lamb shift as a higher order correction.
Before renormalization calculuswas established, however, in 1948TAWelton gave an intuitive explanation [8]
of the Lamb shift as themean square amplitude of an electron coupledwith the zero-pointfluctuations of an
electromagnetic field.Welton used the followingmethod to derive the Lamb shift. The potential energy,V(r), is

2
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given as an isotropic function of the distance = ∣ ∣rr , where r is the three-dimensional vector of the electron’s
position relative to the proton. The potential energy can be Taylor-expandedwith respect to the small
displacement of the electron position d +r r r as;

d d d+ = +  +  + ⎜ ⎟⎛
⎝

⎞
⎠( ) · ( · ) ( )r r r r rV V1

1

2
.2

When the displacement is identified as a variance of the electron position arising from the quantumfluctuation,
an averaged valuewith respect to the vacuum state can be estimated as;

d

d d

á ñ=

á  ñ= á ñ

·

( · )

r

r r

0,

1

3
,2 2 2

where the factor of 1/3 in the second relation comes fromaveraging over the three spatial dimensions. The
hydrogen atomhas aCoulombpotential energyV(r)=−α/r, whereα=1/137.0359895 is the fine structure
constant at the low energy limit. The average of the potential energyfluctuation can bewritten as

d d d
a

á ñ = á + - ñ = á ñ D -⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ( )r r r rV V V

r

1

6
,

H

2

where á ñ• H is an average over the hydrogen atom. The average of a square fluctuation of the electron’s position
can be estimated as;

òd
a
p

á ñ =( )r
a dk

k

2
,B

k

k
2

3 2

0

1

where aB=1/(meα) is the Bohr radius of the hydrogen atom andme is the electronmass. The upper and lower
bounds of the integrationmust befixed according to quantumfield theoretic considerations. The average of the
Laplacian on the potential energy over the hydrogen atom can be estimated as

a
pa yD - =⎜ ⎟⎛

⎝
⎞
⎠ ∣ ( )∣

r
4 0 ,

H

2

whereψ(r) is thewave function of the hydrogen atom.Here well-know relation pdD = -( ) ( )rr1 4 is used. The
average value of the quantum fluctuation of the potential energy can be obtained as;

d a yá ñ = ∣ ( )∣V a
k

k

4

3
0 log .B

4 2 2 1

0

The S-wave solution for the hydrogen atomat the origin is then given as;

y p= -( ) [ ( ) ]na0 ,n B
3 1 2

where n is themain quantumnumber. Fromfield theoretic considerations, the lower and upper cutoffs of the
electronmomentum are chosen to be a=k me0

2 and k1=me respectively [9]. To enable appropriate setting of
these cutoffs, UV and IR divergences are avoided in thismethod. Finally, the deviation of the potential energy for
the S-wave solutionwith themain quantumnumber n is obtained as;

d
a

p a
á ñ =V

n a

4

3
log

1
.

B

4

3 2

This result is consistent with amore precise result [9] obtained using perturbativeQED,which is;

d
a

p a
á ñ = + +⎜ ⎟⎛

⎝
⎞
⎠E

n a
L

4

3
log

1 19

30
.QED

B
n

4

3 2

Where the values of the correction term, Ln, are given in table 1.

2.2. Stochasticmetric point of view
Welton’smethod suggests that the quantum effects on the hydrogen energy levels are caused by the variance of
the electron position. This scenario can be realizedmore naturally using the stochasticmetric space. As is well
known in quantumfield theory, the lowest result in the perturbative calculations is the same as the result of

Table 1.Numerical values of the correction term, Ln [9].

n 1 2 3 4 ¥

Ln −2.984 −2.812 −2.768 −2.750 −2.721

3
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classicalmechanics, and then a quantum effect will appear starting fromone loop corrections. Let us apply a
stochasticmethod on the lowest Bohr solutions of the hydrogen energy levels.

From the stochasticmetrical point of view, the distance between two points (the proton and electron
positions) is given as a stochastic variable.When distances are given stochastically, their distributionmust be
Gaussian following the central limit theorem, variance of the distance possibly be proportional to distance. Here,
we assume a variance sn

2, given as;

s
a
p

= ⎜ ⎟
⎛
⎝

⎞
⎠ ( )a

n3
, 1n

B2
2 2

where the factor 1/3 reflects the dimensionality of space, the standard deviation of theGaussian distribution is
taken as proportional to a nB , and a verification of the factor (α/π)2 will be given later in this section.
Hereafter, the atomic unit aB=1will be used in this section. The statistical fluctuation of the potential energy
can bewritten as;

d d
a

d
a a

d d d= + - =- + + =- - + - +- ( ( )) ( ) ( ) ( )V V r V r
r r r

1 , 1 , .r r r r r
1 2 3

The relative deviation is then obtained as


d

d d d= - + + ( )V

V
.r r r

2 3

When the distance r is given stochastically, thefluctuation δr should have aGaussian distribution. Thus, the
average value of the relative deviation of the potential energy is given as;

ò
d

ps
d
d d

s
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whereσn is given by (1). In reality, theGaussianmean of the reciprocal variable

òps s
= -
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2

does not exist because the integration on the right-hand side does not converge. Here, r̄n is themean radius of S-
wave hydrogenwith themain quantumnumber n, which is considered to correspond to theUVdivergence of
theQEDbecause this divergence comes from the short distance limit r 0. In our calculation, the divergence is
avoided by looking at variances only around the average value. If the integration in (3) is performed numerically
only around themean value (fromwhich themain contributionmust come), results consistent with (2) can be
obtained.

We can now compare the numerical results of the stochasticmetric (2)with those ofQED. Because the S-
wave hydrogen energy levels at the Born level are aá ñ = -E a n2QED B

2, the relative correction on the hydrogen
energy can be given as;

d
d a

p a
=

á ñ
á ñ

= + +⎜ ⎟⎛
⎝

⎞
⎠

E

E n
L

8

3
log

1 19

30
.QED

QED

QED
n

3

2

The numerical results are summarized in table 2, alongwith those fromSMQ.A relative correction fromSMQ,
δSMQ, is defined as;

d
d

=
V

V
2 ,SMQ

inwhich the factor 2 appears because two independent statistical fluctuations of δVʼs with n=1 and
n�2 are, in principle, involvedwith δSMQ. For the calculation of δQED at n=100, the value of Ln at = ¥n is
used. The result at n=100 is shown to examine the asymptotic behavior of the correction at a large distance. As
seen in table 2, the agreement is excellent, which justifies the assumed factor (α/π)2 in the variance (1).

Table 2.Energy corrections of S-wave hydrogen.Numerical values of δQED and δSM are
obtained usingQEDand SMQ, respectively. As seen in the last row of the table, the
agreement between the twomethods, d d d d= -( )SMQ QED SMQ QED QED, is excellent.

n 2 3 4 100

δQED 1.264×10−6 8.473×10−7 6.369×10−7 2.557×10−8

dSMQ 1.272×10−6 8.478×10−7 6.359×10−7 2.543×10−8

δSMQ/QED +0.64% +0.07% −0.17% −0.53%
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3. Introduction of stochasticmetric space

Themetric cannot be completely random; if the distance between two points on the space timemanifold is
completely randomwithout any restrictions, the associated theorymight not respect causality, inwhich it would
not be useful for describing nature. The SMQmethodmust therefore be constructed on a legitimate
mathematical base.

Study of themathematical theory of the stochasticmetric was initiated byMenger [10] in 1942, whosework
was immediately followed by that ofWald [11] in 1943. After intensive efforts by Schweizer and Sklar [12] in the
late 1950s, S̆erstnev introduced the (distance) distribution and triangle functions [13] in 1963. To honor his
pioneeringwork, the stochastic (statistical)metric space is generally called theMenger space; in this work, we
refer to it as the Stochasticmetric-space(SM-space).Mathematical research on the SM-space is ongoing, albeit
with limited application to studies in thefield of physics. One example of physical research is the relation
between stochastic phase spaces and SM-spaces, as discussed byGuz [14], themathematical preparation of
whichwas given at the beginning of this section.

3.1. Stochasticmetric space
Here basic definitions of the SM-space are introduced based primarily on S̆erstnev [13], Schweitzer and Sklar
[15]. The distribution and triangle functions play essential roles in characterizing the SM-space. A distribution
function F, is a non-decreasing function defined as amap such that;

  [ ] ( )F s F s: 0, 1 : ,

with

-¥ = ¥ = < ( ) ( ) ( ) ( )F F s t F s F t0, 1, and .

The distribution function satisfying F(0)=0, which is referred to as the distance distribution function, plays the
role of a cumulative (probability) distribution function to obtain a distance, s. A set of distance distribution
functions is denoted asΔ+, and the triangle function,T, is introduced to give a natural extension of the triangle
inequality on Euclidean space.T is defined as amap such as;

D Ä D  D+ + + { } ( )T F G T F G: : , , ,

which satisfies the following for any distribution functions F,G,H,KäΔ+,

1.T(F,G)=T(G, F);

2.T(F,G)�T(H,K ), whenever F�H, andG�K ;

3.T(F,Θ)=F, whereΘ(s) is theHeaviside unit function. Note thatΘ(s)äΔ+;

4.T(T(F,G),H)=T(F,T(G,H)).

Here, F�Hmeans F(s)�H(s) for any s>0. The SM-space can be defined as follows using the above two
functions.

Definition 3.1 (Stochasticmetric space).A stochasticmetric space is a triple F( )T, , of

•  : a set of points on the space;

• F: amapF  Ä  D+: , and;

• T: a triangle function,

which satisfies for any points Îp q r, , and ¢ Îs s, ;

1.F = Q( )( ) ( )p p s s, ;

2.F ¹ Q( )( ) ( )p q s s, , if ¹p q;

3.F F=( )( ) ( )( )p q s q p s, , , and;

4.F F F+ ¢ ¢( )( ) ( ( )( ) ( )( ))p r s s T p q s q r s, , , , .

If Requirement2 is omitted, the space is referred to as a stochastic pseudometric space. Requirement 4 is a
type of triangle inequality originally introduced byMenger [10].

5
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3.2. StochasticMinkowskimanifold
Toutilize the SM-space for relativistic field theories, the stochasticmetric should be introduced on aMinkowski
manifold. TheMinkowskimanifold equipping the stochasticmetric is referred to as the stochastic Lorentzmetric
space (SLM-space) hereafter. A distance between twopoints on the SLM-spacewillfluctuate around the
geometric distancemeasured by the Lorentzmetric, with the distancemeasured by the (non-fluctuating)
Lorentzmetric referred here as the geometrical distance. A distribution function is required to give the
geometrical distance as an average value over a two-point ensemble on the SLM-space, with the variance of the
distribution function set to be proportional to its geometrical distance. This distribution functionmakes a null
vector (vector with zero length)without any fluctuation, a desirable characteristic for restraining a null photon
mass after quantum corrections. Furthermore, to satisfy the causality condition the probability changing a sign
of the length of a string stretching between two pointsmust be zero. The SLM-space satisfying above
requirements can be introduced as follows:

Definition 3.2 (Stochastic Lorentzmetric space).A stochastic Lorentz-metric-space (SLM-space) is a triple of
( )F T, ,e such that:

1. is a 4-dimensional Minkowski manifold with a metric tensor h = - - -mn ( )diag 1, 1, 1, 1 . The
geometrical distance between two points on, say mx and my in the local coordinate system is defined as

 h- = - -mn
m n( ) ∣ ( ) ( ) ∣x y x y x y ,

using the Lorentz-metric tensor. In this work, the Einstein convention to take the sumover repeated indices
is used. The indices run from zero to three.

2. ( )F s d;e is a map of Î{ } ( ) [ ]d s F s d; ; 0, 1 ,e where Fe is chosen as the following exponential probability
density;

=
<

- -
⎪

⎪

⎧
⎨
⎩ ( )( )F s d

s

s
;

0 0,

1 exp 0.e s

d

3.T is the triangle function defined as

   - ¢ - = - ¢ -( ( ( )) ( ( ))) ( ( )) ( ( ))T F s x y F s y z F s x y F s y z; , ; ; ; ,e e e e

for any Îx y z, , and ¢ >s s, 0.

The function  -( ( ))F s x y;e introduced above can be interpreted as the probability of observing a distance
less than swhen the geometrical distance between x and y is  -( )x y . In otherwords, the probability offinding
a distance greater than s�0 is = - = -¯ ( ) ( ) ( )F s d F s d s d, 1 , expe e when the geometrical distance is d. The
SM-space, whose distribution functionF is a function of  -( )s x y only, is called the simple space [16]; the
SLM-space is an example of a simple space. A probabilitymeasure can be derived from  -( ( ))F s x y;e as
follows. The exponential probability density of a variable swith amean value ofλ is

m l
l l

= -⎜ ⎟⎛
⎝

⎞
⎠( )s

s
ds;

1
exp .e

Therefore, the probabilitymeasure corresponding to  -( ( ))F s x y;e in the SLM-space can bewritten as;


 

m- =
-

-
-

= -
⎛
⎝⎜

⎞
⎠⎟( ( ))

( ) ( )
( ( ))dF s x y

x y

s

x y
ds s x y;

1
exp ; .e e

An interpretation of the probabilitymeasure m -( ( ))s x y;e is that it is the probability of obtaining the distance
within [s, s+ds] for  -( )x y . It can be shown that the SLM-space satisfies the above definition of a Stochastic
Lorentzmetric spacewith an additional requirement, i.e., it is a stochastic pseudometric space. Thus, we give the
following remark.

Remark 3.3 (the SLM-space is the SM-space).The stochastic Lorentzmetric-space ( )F T, ,e is a stochastic
pseudometric space.

A proof of the above remark is given in appendix A. The SM-space has a rich structure [16] as follows:
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• The SM-space is a topological space with aλ-neighborhood at Îp as follows;

e l e l= - > -( ) { ∣ ( ( )) }N q F p q, ; 1 ,p e

where ε,λ>0.

• The SM-space is aHausdorff spacewith a triangle function under the above topology.

• On the SM-space with the continuous triangle function, the convergence and continuity of the distribution
function  -( ( ))F s p q;e is ensured.

These properties ensure that the physical theory can be constructed on the base of the SLM-space following
remark 3.3.

In addition to the above properties, it is essential that the physical theorymust retain causality. In relativistic
theories, causality expressed by the following statement: when the (geometrical) distance between two points

Îp q, is space like such that - <∣ ∣p q 0, the two-point correlation functionmust be zero. Our choice of
distribution function,  -( ( ))F s p q;e , does not destroy causality because it does not change the sign of the
distance;moreover, the existence of the triangle function ensures that there are no shortcuts between two space
time points.

3.3. The Poisson process andGaussianmeasure
Consider a series of independent randomvariables = { }Xi i 1,2, with a probabilitymeasurewith
P(0<s<Xi<s+ds)=p(s)ds. A series of randomvariables = { }Aj j 0,1,2, such as;A0=0 and = å =A Xj i

j
i1

will (a.s.) be a the stochastic-process induced by the probability measure p(s)ds. It is known that the exponential
measure induces the Poisson process; a detailed explanation of the Poisson process is given in appendix B. The
following remarkwill play an essential role in constructing the SMQmethod.

Remark 3.4 (Brownianmotion induced by exponentialmeasure). Suppose that the Poisson process is induced
by the exponentialmeasure m l( )s,e with a series of randomvariables, = { }Xs s 1,2, , and

å l= -
=

( )Z
n

X
1

.n
s

n

s
1

The randomvariableZn is know to show a convergence in law to a normal distributionwith amean value at zero
and a variance l. In particular, for-¥ < < < ¥a b ,

  òpl l
= -

¥

⎛
⎝⎜

⎞
⎠⎟( )P a Z b

x
dxlim

1

2
exp

2
,

n
n

a

b 2

can be obtained. Brownianmotion is induced by this randomvariable.

The proof of this remark is given in appendix C. To summarize the above derivations, if the position of a
force-freemass point at time t can be represented by a series of random variable {Xs}, themass point can follow a
Brownianmotion and a set of positions, each at an equal geometrical distance, should be observed as the Poisson
process in the SLM-space.

4.Dynamics of amass point in the SLM-space

Particle dynamics are introduced on the SLM-space in this section. Initially, the path of amass point is defined
geometrically on the classical space timemanifold. The term classical is used in this section to denote objects that
do not have a stochastic property. Based on this initial treatment, the Lagrangian density and action integral are
defined in terms of the path; in other words, paths are treated as dynamical objects. Quantumeffects of particle
dynamics, such as the quantum equation ofmotion and the uncertainty relation, are obtained because of the
SLM-space.

4.1. Geometrical setup
One of themore important calculations in the dynamical theory of amass point is determining its trajectory.
The trajectorymay be a continuous smooth line between two space time points as would occur under a classical
theory. Such trajectory, called a curvilinear path, is defined geometrically on theMinkowskimanifold. In this
subsection, a classicalMinkowskimanifold is assumed and the stochastic aspects of themanifold are suspended
for the time being.
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The geometrical setup introduced in this subsection is based on reference [17]. A set of bounded functions γ
such that

gg t t t t t g t g t g tÎ =[ ] ( ) ( ( ) ( ) ( )) ( ): , , , , , 41 2
1 2 3

g t g t g Î= ( ) { } ( ) ( )C: , , 5i i i
i 1,2,3

2

is called a curvilinear path (or simply path), and a set of paths, denoted byΓ, is called a curvilinear-path space. A
parameter τ is an order parameter used tomeasure the length of a path from the starting point τ1, which is set to
zerowithout any loss of generality.We set τ1=0 and τ2=T, and hereafter only pathswhose end points are
fixed at xg x x x x= = =m( ) ( ) ( )0 0, , , 0,1 1

1
1
2

1
3

1 and xg x x x x= = =m( ) ( ) ( )T T T, , , ,2 2
1

2
2

2
3

2 are considered. The
dynamics of amass point cannot be determined using only information on the path itself; the time-derivative
along the path is also necessary. A velocity vector is a tangent vector at a point γ(τ) along the curvilinear path,
defined as;

g
t

t
g
t

t
g
t

t
g
t

t=
⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( ) ( ) ( )d

d

d

d

d

d

d

d
1, , , . 6

1 2 3

Hereafter, the velocity vector is written using shorthand notation as g t g t g t g t=˙ ( ) ( ˙ ( ) ˙ ( ) ˙ ( ))1, , ,1 2 3 . The
velocity vector can be expressed in terms of natural bases on a tangent spaceTτγatγ(τ) as;

g t
g q
q g

=
¶
¶ q t=

˙ ( ) ( ) ( )d

d
, 7i

i

i

where i runs from1 to 3 and is not summed in the right-hand side of (7). A tangent vector bundle
gG = g t gÌ ÎG˙ ⋃ ( ) Tt is referred to a velocity bundle.

All the information needed to determine the dynamics of the system is contained in the Lagrangian, which
can be defined as amap from G G{ ˙ }, to a smooth function such that

 g g g gG Ä G  ¥ ˙ { ˙} ( ˙ ) ( )C: : , , . 8

Anewdynamical object, the canonicalmomentum, can be derived from the Lagrangian as;


p

d g g
dg

=
( ˙ )

˙
( ),

, 9i

i

where δ denotes the functional derivative. A tuple ofG g p= { }, is referred to as a phase space.
TheHamiltonian can be derived from the Lagrangian and the canonicalmomentum as;

G g p g p ¥ { } ( ( ) ( ))C t t: : , , ,

where

  g p p g g g p f g p g f g p= - = -g f=( ( ) ( )) ( ˙ ( ˙ ))∣ ( ) ( ( )) ( )˙t t, , , , , . 10i
i

i
i

The functionf i(γ,π) gives the solutions of


p

d
dg

- = =
˙

( )i0, 1, 2, 3, 11i i

with respect to the velocity vector of g f g p=˙ ( ),i i . Here, the Lagrangian is assumed to be a holomorphic
function and therefore a solutionf i(γ,π) always exists and theHamiltonian is defined on the phase space. The
existence of the inverse Legendre transform is ensured because

 g g f g g g g f g= -( ˙ ) ˜ ( ˙ ) ˙ ( ˜ ( )) ( ), , , , 12i
i

where f̃ is a solution of the equation of g d dp- =˙ 0i
i , that is


g

d
dp

=
p f=

˙ ( )
˜

. 13i

i

The action integral can be introduced using the Lagrangian orHamiltonian as follows: amapI g( ) from a path γ
to a real number  such as;

I I g g g gG Ä G  ˙ { ˙} ( ˙ ): : , , ,

where

I  ò òg g t g t g t t p g g p= = -
p f=

( ˙ ) ( ( ) ˙ ( )) ( ˙ ( )) ( )
˜

d d, , , 14
T T

i
i

0 0

is referred to an action integral or simply an action. As is well known, the curvilinear path that gives Id = 0
satisfies the canonical equations ofmotion;
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 

 

g
t p

p
t g

t t

=
¶
¶

= -
¶
¶

=
¶
¶

( )

d

d

d

d

d

d

, ,

. 15

c
i

ci

c
i

ci

A solution of the equation ofmotion is called the classical path and denoted by γc(τ). The classical velocity and
momentum can be further defined from the solution of the equation ofmotion and denoted as ġc andπc,
respectively.

4.2. Stochastic quantization of classical paths
In the Lagrangian formalismof classicalmechanics, the principle of least action (Hamilton’s principle) is the
most fundamental principle. The behavior of a dynamical system can be described by the Euler–Lagrange, or
canonical equations ofmotion; or theHamilton–Jacobi equation, which can be derived from the Lagrangian,
Hamiltonian or action integral, respectively. In the traditionalmethod,QM is introduced only after establishing
the classical dynamics of the systemby requiring some quantization conditions on the system.However, if QM is
themost fundamental theory of nature, a dynamical system should be formulated usingQMas a precedential
theory to classicalmechanics. Following this, some appropriate approximation can be used to derive classical
dynamics from the quantum system.Here, we propose a new algorithm establishing a quantum system
preceding a classical system. (There is another approach to extract quantummechanics directly using the
principle of least action [18, 19]). As our approach is based on the stochastic property of themetric, the principle
of least action is not themost fundamental principle but is instead a theorem that can be derived fromamore
fundamental stochastic principle. To replace the principle of least action, we propose using the entropy-extremal
principle to extract dynamics from the system that equips the Lagrangian.

In the following, we first show that path-integral quantization can be deduced from the entropy-extremal
principle. Then, yet anothermethod—Newton–Nelson equation [20]—to extract the quantum equation of
motion is given for the SLM-space.

4.2.1. Path integral on the SLM-space
Amass point traveling in the SLM-spacewill follow a trajectory that, owing to the probabilities of the SLM-
space, would be expected to be a stochastic process. Such a trajectory cannot be a smooth curvilinear path as
defined in the previous subsection; correspondingly, the instantaneous velocity of themass point will not exist in
classical sense andmust be redefined in terms of probability theory.

Let us consider a following integration:

ò òg t g g g- = =
g

g t t
( ) ( ) ˙ ( ) ( )

( )

( )
d t dt0 , 16c

i
c
i

c
i

c
i

0 0

where i=1, 2, 3 is the spatial components of the vectors. The parameter τ is an ordering parameter along the
curvilinear path, functioning as, e.g. tickmarks along the path.We then consider the integration of a bounded
function, f (x)äC2 along the classical path;

ò òg g g g= =
g

g t t
( )∣ ∣ ( ( ))∣ ˙ ( )∣ ( )

( )

( )
I f d f t t dt, 17c c c c

0 0

where the integrationmeasure is given as;

g h g g h g g

g

= =

=
mn

m n
mn

m n∣ ∣ ∣ ∣ ∣ ˙ ( ) ˙ ( )∣

∣ ˙ ( )∣ ( )

d d d t t dt

t dt

,

. 18

c c c c c

c

Wenote that these lengths are also bounded under classicalmechanics, and, therefore, that integrations (16) and
(17) arewell-defined as Riemann-Stieltjes integrations. The classical path and velocity, γc(τ) and g t˙ ( )c ,
respectively, are functions of τunder the Lagrangian formalism.On the SLM-space, the trajectory of amass
point is cast as a stochastic process induced by the exponentialmeasure; therefore, themotion of amass point in
the SLM-space can be treated as Brownianmotion following remark 3.4.We consider, e.g. amass point stopping
at the origin of the coordinate system in classicalmechanics. Themass point remains at the same spatial position
for a length of time τ. The geometrical distance between the initial and final points is also τ. In the SLM-space,
distance is a random variable and has aGaussian distributionwith a standard deviation proportional to t
following the stipulation of remark 3.4 that there is nomotion other than Brownianmotion.

The quantum effects on themass point appear because of the stochastic treatment for the path. The classical
path and velocity are replaced by random variables induced by the exponentialmeasure of the SLM-space. The
Itô process, defined in definitionD.2 in appendixD, is introduced as
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ò òg t g g g s= + = +w

t

w

t
( ) ( ) ˙ ( ) ( ) ( ) · ( ) ( )t dt t dB t0 0 , 19i

c
i i

c
i

k
i k

0 0

in analogywith equation (16). A precise definition of (19) can be found in appendixD.Wenote that the initial
point isfixed a.s. at g g=w ( ) ( )0 0i

c
i . Here, γω(τ) is referred to as the sample path. The sample path is an element of

Γ0, a set of continuous lines between γ i(0) and γ i(T) inwhich the conditionC2 is relaxed toC0 from a definition
of the curvilinear path (5).Moreover, g tw ( ) is unbounded owing to the BrownianmotionBk(s), as will be
discussed below. The randomvariable g tw˙ ( )must also be treated as a stochastic process.Bk(s)(k=1, 2, 3) are
three independent Brownianmotions and s d s=( ) ( )s sk

i
k
i is a square integrable function. The Brownian

motionB(s) is differentiable nowhere, and the integrationmeasure;

= =( ) ( ) ˙dB s
dB s

ds
ds B ds,k

k
k

must be understood as theGaussianwhite noise (Hida-distribution) introduced byHida [21]. Fromdefinition
D.2, the correspondence is then as g t g t bw w{ ( ) ˙ ( )} { }X, ,i i

t
i

s
i . Note that gw˙ and gw" do not denote dγω/dτ and

g tw˙d d , respectively, but are randomvariable independent of γω and gw˙ , respectively. The stochastic-space –>
stochastic space induced by the randomvariable γω defined by (19) becomes the Brownianmotion, which is
ensured in the SLM-space following remark 3.4. Therefore, the phase space g t g tw w{ ( ) ˙ ( )},i i can be understood
as a pair of randomvariables representing a sample trajectory of amass point on the SLM-space, while
integration (19)must be understood as a stochastic integration. The convergence of these integrations are not
trivial, unlike the convergence of integration (17).

The stochastic representation of the canonicalmomentumπω is also introduced as;


p

d
dg

=w
w˙

( ). 20
c c

Here, w∣• c replacing an operation (functional variation)with a corresponding stochastic process. In the SLM-
space, the Lagrangianmust be understood to be a randomvariable defined as   g g t=w w w( ˙ )( ), ; therefore, the
action integral can be considered to be a random variable as follows;

I ò t g t g t=w w w( ( ) ˙ ( )) ( )d , . 21
T

0

This integration cannot be a Lebesgue-Stieltjes integration because the stochastic process  g gw w( ˙ ), is a
continuous but unbounded function. If it exists, the expected value of this randomvariablemight coincidewith
the classical action. The expected value is formally written using (stochastic) integration over all elements of a set
of possible sample paths, which are denoted asBG. The existence of the Lebesguemeasure on such an infinite
dimensional space cannot be expected in general; amathematical treatment of the integration onBG will be
discussed later.

The classical path is obtained as the expected values of the stochastic process of the γω as follows:

I I B I òå y g g t g t g t= = =w w
g

w wG
ÎGw

[ ∣ ] ∣ ( )∣ ( ) ( ( ) ˙ ( ))E d , ,c

T

c c
2

0

whereψ(γω) is the probability amplitude, which is introduced according toDefinition 4.1 in [17]. Under this
setup, an additional principle—the extremal entropy principle—can be stated: the quantumprobability
amplitude and probabilitymeasure that extremalize the entropy;

å y g y g= -
g

w w
ÎGw

∣ ( )∣ ∣ ( )∣ ( )S log , 222 2

under the constraints,

I Iå
å

y g g

y g

=

=
g w w

g w

ÎG

ÎG

w

w

⎧
⎨⎪
⎩⎪

∣ ( )∣ ( )

∣ ( )∣
( )

,

1,
23

c
2

2

is given by;

Iy gw gw( ) ( )( )C e , 24
i

where ÎC is an appropriate normalization constant andI is rendereddimensionless bydividingby the
dimensional constantÿ. This remark is identical toTheorem4.1 in [17], whose proof canbe found in the same
reference.Here,ψ gives the transitionprobability (propagator) from t=0 to t=T. At this stage,ÿ is simply a
constant to adjust thedimensionof the argument of the exponential function.When it is takenas thePlanck constant
(dividedby2π), it becomes a solutionof the Shrödinger equation1. The sumover possible paths canbe interpreted as
thepath integral and, therefore, themaximumentropyprinciple has induced thepath integral quantization.

1
See, for example, section 1.3 in [22].
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On the other hand, in the context of this report, the summust beunderstood as a stochastic integration such as;

Bå 
g

w
ÎG

G

w

[ ∣ ] ( )E• • . 25

Therefore, the transition amplitude can be obtained from (24) as;

BIy g = w
g

Gw( ( )) [ ∣ ] ( )( )T C E e , 26
i

where the probability that amass pointmoves from γ(0) to γ(T) is given as y g∣ ( ( ))∣T 2. As this integration is not
a functional but a stochastic integration, it is not trivial that the integration (26) is equivalent to the path integral
introduced by Feynman [23, 24]. Fortunately, in 1983Hida and Streit [25, 26] rigorously proved that the path
integral can be formulated bymeans of theHida-distribution for some classes of potential functions. To do this,
they used the following approach [27]. The path integral of a test functional f (γ) can be expressed formally as;

I ò g g= g( ) ( )( )I C f e , 27path
i

where g is the integration ‘measure’ of the functional integration,C is an appropriate normalization factor and
the integration is performed over all possible paths. However, as is well known, the g cannot exist as the
Lebesguemeasure and, therefore, the integration is not well-defined in general. To treat this functional ‘measure’
rigorously, they introducedwhite noise, as is briefly explained in example F.1 in appendix F.1. Using
= -[ ˙ ] [ ˙ ]B B1 exp 2 exp 22 2 , integration (27) can be rewritten as;

I

I

*





ò
ò

g g

g m g

=

= ¢

g t t

w
g t

w

+ -

+w

( )

( ) ( ) ( )

( ) ˙ ( ) ˙ ( )

( ) ˙ ( )

I C f e e

C f e d

,

, 28

B B

E

B
G

path
2 2

2

i

i

2 2

2

where t˙ ( )B is a white noise defined on the dual space *E of B= GE and

m g g=w
-( ) ˙d eG

B 22

is theGaussianmeasure (classicalWienermeasure) on *E . Theflattening factor ( ˙ )Bexp 22 appears in addition
to the action integral. The classical path γc(τ) is assumed to be a square-integrable function as;

ò g t t g t g< ¥ Î∣ ( )∣ ( ) ([ ] )d L T d, 0, ,
T

c c
0

2

bymeans of the normgiven by (18). Therefore, theGel’fand triple *gÌ = Ì([ ] )E H L T d E0, ,2 exists.
Even though the integrationmeasure becomeswell-defined as theHida-distribution, it does notmean this

integration converges, and the ‘measure’ m( ˙ )Bexp 2 G
2 still cannot be understood as the Lebesguemeasure. It is

shown that the path integral is convergent when the limit

å d
d

d
d 

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥ ( )c

B
lim exp 29

k

k

k
k

0

2

k

exists, where ¹c 1 2 [25]. There is awide class of potential functions known to give convergent results [28–31].
Fromour standpoint that the SLM-space is themost fundamental object in nature, the stochastic-

integration representation of the transition probability (26) has priority over the path integral (27). In other
words, the path integral approximates the exact representation of transition amplitude and the flattening
procedure is not necessary. In a conclusion, the following remark given.

Remark 4.1 (QuantumAmplitude). [25] For the Lagrangian of

 g g= -˙ ( ) ( )m
V

2
, 302

the trajectory of themass point is expected to be (19). The quantumprobability amplitude is given as;

B

B

 

 


 

ò ò

ò ò ò

y g g g d g g

g g

d g g

= - -

= - +

´ - -

w w w w

w

G

G

⎡
⎣⎢

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

( ( )) ˙ ( ) ( ( )) ( ( ) ( ))∣

˙ ( ) ˙ ( ) ˙

( ) ( ( ) ( )) ( )

T E C
i m

t dt
i

V t dt T T

i m
t dt E C

i
B dt

i
V t

m
B dt

m
B t

m
T t

exp
2

exp ,

exp
2

exp
2

exp

, 31

T T

c

T

c

T T

c

c c

0

2

0

0

2

0

2

0

wherewe set g =˙Ḃdt 0. Here, Donscker’s d-functional [21], d -( )B a , is used. Instead, the pinned Brownian
motion defined in E.3 gives the same result.
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This remark directory follows from the extremal entropy principle and is consistent with that ofHida and
Streit [25] except for the omission of theflattening factor. If the factor in front of Ḃ2 is replaced as

 +( )i i2 1 2, the representation becomes identical to that in [25] completely (an exact definition of Ḃ2 is
given in appendix F.2.1). Thismodification is absorbed in the normalization factorC andwill give the same
probability amplitude. Although themodified formof theflat ‘measure’ applied to theGaussianmeasuremight
induce some effects on the path integral, it can be confirmed that the path integral with theGaussianmeasure
gives result consistent with those obtained using the flatmeasure, as is shown in appendixG. In addition, the
integration using theGaussianmeasure gives better convergence. The real part of the factor in front of Ḃ2 may
cause divergent integrations over the path integral; however, using a standard procedure of physics this
divergent part can be absorbed into a normalization constant and eliminated by redefining the normalization
constant2. On the other hand, the definition of the quantumprobability amplitude in (31) can be expressed as a
type of stochastic integration;

Iò g m gw
g

ww( ) ( )( )g e d .G
i

This integration is simply the Fourier transformationwith theGaussianmeasure and converges for any
functions g(γc) if the function belongs to the Schwartz space aftermultiplying theGaussianweight.

Before closing this subsection, wewould like to discuss in further detail a relation between the results in this
work and in [17], inwhich the author treatedQMas a phenomenological theory instead of a fundamental theory
without assuming any underlying structure, and then constructed the thermodynamics of particle trajectories
that were shown to be equivalent to those underQM. In this work, the underlying structure of particle dynamics
is identified as the probabilistic nature of the SLM-space. By contrast, in [17] the function y g( ) is assumed to be
a slow-moving functionwith respect to variance of γ around the classical solution. This assumption can also be
justifies within the framework of this report. A set of sample paths going through a neighborhood of γc(τ), where
τ is afixed time in 0<τ<T, is introduced as;

B Bg d= < Ìt w t G{ ∣ } ( ), 32

where,

åd g t g t g t g t= - = -t w w
=

∣ ( ) ( )∣ ∣ ( ) ( )∣ ( ), 33c
i

c
i i

1

3
2

and  Î . The expected value of the functionψ(γ), the sample paths of which go through the neighborhood of
γc can be expressed as;

B




òy g d t y g t
s

- = -w w t
w

w w
-

+ ⎡
⎣⎢

⎤
⎦⎥[ ( )( ) ( )∣ ] ( )( )E t t C

l
l dlexp

2
,c

2

2
2

where g g t= -w w∣ ∣( )l C,c a normalization factor and the integral is understood to be Riemann integration.
Here, theGaussian distribution appears as a result of the stochastic integration over the Brownianmotion, as
shown in equations (70) and (71) in appendixD.1. Therefore, the derivative can be expressed as;

B y g t
g t

y g t y g t
d

~
-

=
g g

w w

t=

G( )( )
∣ ( )∣

[ ( )( ) ( )( )∣ ] ( )d

d

E
Oc

c

Therefore, the limitation  y g g = ( ) ∣ ∣d dlim 0c0 can be obtained.
Wenote that, in this procedureQM is formulated earlier than classicalmechanics. From this point of view,

the reasonwhy the principle of least action can function as the principle for extracting the classical path is that
the path obtained from this principle is robust against perturbation form stochastic shaking of themetric. This
can be understood from the fact that the probability amplitude around the classical path varies very slowly
because thefirst derivative disappears, as shown above, because of the properties of the Brownianmotion of the
stochastic process.

4.2.2. Equation ofmotion
The discussion in a previous section is based on thewhite noise analysis of the quantumpartition function,
which is equivalent to the path-integralmethod. Therefore, the quantum transition function is obtained from
the stochastic integration directly instead of through the equation ofmotion.Here, we propose an independent
method to introduce a quantum equation ofmotion based on the stochastic differential equation (a brief
explanation of the stochastic differential equation can be found in appendix E).

2
For the standard treatment of the path-integral in physics, see, for example, a section 9.1 in [32].
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TheHamiltonian represents the total energy of the systemdefined on the classicalmanifold.When it does
not explicitly include a time-variable, it is conserved during the time evolution of the system. This energy
conservationmust be retained in the SLM-space as a property using the expected value;

B B g p g p= =w w w w w wG G[ ( )∣ ]( ) [ ( ) ∣ ] ( )d

dt
E t E d dt, , 0. 34

Here, the stochastic differentiation of theHamiltonian can bewritten as;


 

g p
d
dg

g
d
dp

p= +w w
w

w
w

w
 

( ) · · ( )d d d, . 35c

c c

c

c c

We take note thatπ and γ are vectors and ‘·’ denotes the inner product of two three-vectors. The functional
variation in (35) can be obtained as;

d
dp

g=
w

w


˙ ( ), 36c

ci c

i

where i=1, 2, 3 are the components of the spatial coordinate. The preceding is obtained from the classical
relation (13) and is not an equation ofmotion. If solutions to the equation ofmotion are obtained as γω(t) and
πω(t), their stochastic differentiations can be respectively written as;

å
å

g g s

p p s

= +

= +

w w g g

w w p p

 =

 =





⎧
⎨⎪
⎩⎪

( )∣ [ ( )] ( )

( )∣ [ ( )] ( )

d t dt t dB t

d t dt t dB t

,

,

i
c
i

c j j
i j

i
c
i

c j j
i j

1,2,3

1,2,3

where s ( )t• is a 3×3matrix of functions of τ and dB•(t) is theGaussianwhite noise with amean value of zero
and a unit variance.When pw˙ and gw˙ aremultiplied by the first and second equations above, respectively, the
stochastic differential equations can be obtained as;

p g p g p s
g p g p g s

= +
= +

w w w w g g

w w w w p p





⎧⎨⎩
˙ · ˙ · ˙ ∣ ˙ · ( ) · ( )
˙ · ˙ · ˙ ∣ ˙ · ( ) · ( )

( )
d dt t dB t

d dt t dB t

,

,
37

c c c

c c c

where· indicates either an inner product of two three-vectors or a product of 3×3matrix and three-vector.
Here, the Itô-rule of (dt)(dB)=0 is used, and the relation;

g p p g g s p s= + +w w w w w p p w g g˙ · ˙ · ˙ · ( ) · ( ) ˙ · ( ) · ( )d d t dB t t dB t

follows from (37). As the Brownianmotion is symmetric around itsmean value(=0), it can be replaced as
 -dB dB. As a result, the stochastic differentiation of theHamiltonian can be obtained from (35) as;


d
dg

p g g s p s= + + +
w

w w w p p w g g


⎛
⎝
⎜⎜

⎞
⎠
⎟⎟˙ · ˙ · ( ) · ( ) ˙ · ( ) · ( )d d t dB t t dB t ,c

c c

When the expected value is taken on both sides of equation (38), the conservation relation

B B
d
dg

p g= + =w w
w

w wG


G

⎡
⎣
⎢⎢
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥[ ∣ ] ˙ · ˙ ∣ ( )E d dt E 0, 38c

c c

can be obtained because themean value of theGaussian noise is zero. Therefore, the stochastic equations of
motion such as

 åp
d
dg

s= - +w
w

p p
 =

[ ( )] ( ) ( )d dt t dB t , 39i c

ci c j
j
i j

1,2,3

follow from (38). After solving the above stochastic equation (ofmotion), further stochastic integration

 åg
d
dp

s= +w
w

g g
 =

[ ( )] ( ) ( )d dt t dB t , 40i c

c
i

c j
j
i j

1,2,3

from (36) can produce a trajectory of themass point. These differential equations, including that for Brownian
motion, are referred to as the stochastic differential equations (SDE). The existence and uniqueness of the
stochastic processes as solutions of the SDEs are ensuredmathematically when the stochastic processes satisfy
the local Lipschitz condition [33], as is true in this case.

To this point, we have not used the constraint that the Brownianmotion is pinned, as the starting and ending
points are fixed as in equation (E.3). The set of SDEs above does not have invariance under time reversal; to
preserve the time-reversal symmetry, another set of SDEsmust be added as follows;
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



g s

p s

= - +

= +

w
d
dp w

g g

w
d
dg w

p p





⎧
⎨
⎪⎪

⎩
⎪⎪

[ ( )] ( )

[ ( )] ( )
( )

¯
¯

¯ ¯

¯
¯

¯ ¯

d dt t dB t

d dt t dB t

,

.
41

i

c
j
i j

i

c
j
i j

c

c
i

c

c
i

The sample path indexedby w̄ is also an element ofΓ0. The stochastic process gw ( )¯ t withBrownianmotion ( )¯B t• can
be interpreted as aprocess evolving fromthe future to thepast, as it obey the equationofmotionwith time reversal.

This approach can be comparedwith a stochastic quantization ofNelson [6].When the functionsσ•(t) are set
to be constants as;





s d

s d

=

=

g

p

⎪
⎪

⎧
⎨
⎩

[ ( )]

[ ( )]

t m

t m

,

,

j
i

j
i

j
i

j
i

equations of (39), (40) and (41) together reduce to theNewton-Nelson equation. For instance, the classical
Hamiltonian of p g= + ( )m V2c c c

2 gives





d
dg g

g g

d
dp

p

- =- =

=

( ) ( )d

d
V F

m

,

1
.

c

c
i

c
i c i c

c

ci
c
i

Therefore, the stochastic equationofmotion from  =wd 0 gives a result consistentwith stochastic quantisation [20].

4.3. Uncertainty and commutation relations
As shown above, the dynamics of amass point in the SLM-space are equivalent toQMunder stochastic
quantization. If the stochastic quantization ismathematically equivalent to canonical quantization, the
canonical commutation relationsmust be derived from the stochastic properties of the system. Although the
relation between the commutation relation and stochastic processes has been discussed by several previous
authors [34–36], here wewill show the derivation of the commutation relation in our formalism.

First, let us consider the uncertainty relation in terms of stochastic processes. The uncertainty relation
between the solutions of equations ofmotion (39) and (41) can be obtained on the covariancematrix of two
Gaussian distributions.When the equations ofmotion are assumed to be linear SDEs such as;

g a b g s= + +w g g w g w( ) ( ( ) ( ) ( )) ( )d t t t t dt dB , 42

their solutions can be obtained as;

ò ò

ò

g g a s

b

= + +

=

w g g g g g w

g g

- -⎜ ⎟⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

t U t u U u du U u dB u

U t u du

,

exp , 43

t t

t

0
0

1

0

1

0

as shown in example E.2 in appendix E.Here, {αγ,βγ} are integrable functions given by theHamiltonian. The
SDEs and their solutions with respect to the canonicalmomentum arewritten by simple replacements of

g p• • in (42) and (43). The expected values of these solutions coincide with classical solutions as follows:

B

B

g g
p p

=
=

w w

w w p

G( ) [ ∣ ]
( ) [ ∣ ]
t E

t E

,

.
c

c

The classical solutions can be obtained as the solutions of a set of classical equations ofmotion as;

g
a b g g g= + =g g

( ) ( ) ( ) ( ) ( ) ( )d t

dt
t t t , 0 , 44c

c c 0

p
a b p p p= + =p p

( ) ( ) ( ) ( ) ( ) ( )d t

dt
t t t , 0 . 45c

c c 0

Therefore, the covariancematrix can be obtained as

B



ò

ò ò

s g p g g p p

s s

s s

= - -

=

=

=

w w w

g p g g p p

g p g g p p

G

- -

- -⎜ ⎟⎛
⎝

⎞
⎠

( ) [( )( )∣ ]

( ) ¯ ( ) ( ) ¯ ( )

( ) ( ) ( ) ( )

( )

E

U t U t U t U t dt

U t U u U t U u du dt

C

, ,

,

,

, 46

c c

T

T t

2

0

1 1

0 0

1 1
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where

ò g p= g g w
- -¯ ( ) ( ) ( ) ( )U t U s dB s , .

t
1

0

1

The constantC can be obtainedwhen the equation ofmotion and durationT are fixed.Here we use the Itô rule,
d -w w w[ ( ) ( )] ( )E dB t dB s t s ds, given in appendixD.1, and note that γω andπω are induced by common

stochastic process. If these processes are independent each other, then itmust be true thatσ2(γ,π)=0. If the
functionsβ•(t) are simply constants, thenC=T2/2, and therefore the relation,


s g p =( ) ( )

T

1
,

2
, 47

2
2

can be obtained, which is simplyHeisenberg’s uncertainty relation.
Next, we consider the commutation relation using the same framework and assumptions as above. The

commutation relation becomes

ò ò

p g p g g p

s s p g

= Ä - Ä

= - «

w w w w w w

p g p p g g w w
- -⎜ ⎟

⎧⎨⎩
⎛
⎝

⎞
⎠

⎫⎬⎭

[ ]( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

t t

U t U u U u U v dB v dB u

, ,

. 48
t u

0

1

0

1

Here, the convolution of two stochastic integrations is defined as

ò ò

ò

= Ä =

=

w w w w w

w w

⎜ ⎟
⎛
⎝

⎞
⎠( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

X t X X t x u x v dB v dB u

X t x u dB u

,

.

t u

i
t

i

12 1 2

0

1

0

2

0

The convolution induces a new stochastic process w ( )X t12 , and the stochastic integration appearing in
equation (48) can be estimated as

ò s=g w w
- ( ) ( ) ( ) ( )U v dB v B u; , 49

u

0

1 2

whereBω(u;σ
2) is a Brownianmotionwith zeromean and a variance of

òs = g
-( ( )) ( )U v dv, 50

u
2

0

1 2

as defined in appendixD. It is known that twoBrownianmotions with different variances will bemutually
disjoint, and therefore, the stochastic integration vanishes as

ò s =p g w w
- ( ) ( ) ( ) ( ) ( )U u U u B u dB u; 0. 51

t

0

1 2

Therefore, any commutation relation comprising two solutions of the equations ofmotion, that share the same
sample path,ω, will be zero due owing to the samemechanism.Only commutation relations of type p gw w[ ],
can be non-zero; in this case, a convolution of two stochastic processes can be defined as;

  ò ò ò

ò ò ò

= Ä =

= + +

w w w w w w

w w
-

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

X t X X t x v dB v x v dB v du

x v u dB v u x v dB v du

,

,

t

t

u u

t t u u

12 1 2

0

1

0

2

0 0

1

0

2

where wdB is a time-reversedGaussian process with the same sample path,ω. Each stochastic integralmay
produce aGaussian process with a different variance, for instance, s1

2, and s2
2, and as the result new stochastic

process w wX 12 will also be aGaussian process with amean value of zero. If the integration region is from-¥ to
+¥ instead of 0 to t, the variance becomes s s s= +12

2
1
2

2
2. Again, using the same equations (44) and (45) a

commutation relation can be obtained as;

  

ò ò ò

p g p g g p

s s p g

= Ä - Ä

= + - «

w w w w w w

p g
b b b

w
b

w
+

-
- + -p g p g

⎧⎨⎩
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭

[ ]( ) ( )( )

( ) ( ) ( ) ( )( ) ( )

t t

e e dB v u e dB v du

, ,

. 52t
t t u

v u
u

v

0 0 0

This is a convolution of twoGaussian processes, whose variances are

ò

ò

s
b

s
b

= =
-

= =
-

p
b

b b

p

g
b

b

g

-
- -

-
-

p
p p

g
g

e dv
e e

e dv
e

2
,

1

2
,

u

t
v

u t

u
v

u

2 2
2 2

2
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2
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respectively. The variance of the resultingGaussian process can be obtained as;

s s s= +pg p g.2 2 2

When b b¹p g, it is easily confirmed that s s¹pg gp
2 2 , where

ò òs = +gp
b b- -p ge dv e dv.

u
v

u

t
v2

0

2 2

Therefore, owing to the reproducing property of theGaussian distribution, the commutation relation is the
following stochastic processes;

p g s s s s

s s s s

= -

= +

w w p g
b b

w pg w gp

p g
b b

w pg gp

+

+

p g

p g

[ ]( ) ( ( ) ( ))

( )

( )

( )

t e B t B t

e B t

, ; ; ,

; .

t

t

2 2

2 2

After taking an average over a long time interval, the variance becomes

s
s s

b b
=

+
= +pg gp

p g¥
¯ ( )

t
lim

1

2

1 1
. 53

t

2
2 2

Thus, the commutation relation can be expressed as a single Gaussian process with zeromean and the variance
derived above. The classical limit of this commutation relation is given as;

Bò p g =w w w w
⎡
⎣⎢

⎤
⎦⎥[ ]( ) ∣ ( )E t dt, 0. 54

T

0

Note the similarity between the commutation relation in (52) and the stochastic area defined in definitionD.3.
The commutation relation can be understood to be the stochastic area on the phase space. As the average value of
the stochastic area on the phase space is zero, the area surrounded by the classical trajectory is conserved
(Liouville’s theorem). On the other hand, the variance of the stochastic area is not zero, whichmeans that it
cannot vanish as a result of quantum (stochastic) effects (the uncertainty principle).

Here, wewill discuss the relation between the path integral and stochastic equation ofmotionmethods. In
the path-integralmethod, themeaning of the amplitude,ψ(γ), is given in its definition. By contrast, themeaning
of the solutions of the SDEunder the stochastic equation ofmotion needs clarifying. The physicalmeaning of
the solutions can be elucidated by investigating the relation between twomethods. First, let us consider an
operator such as;

 
ò

ò

dy g
dg

d
dg

y g

p y g p y g

- =-

= =

w w

w
w w

 



⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( ) ( )

˙ ( ) ( )

i dt

dt

,

.

c

c c

T
c

c
c

c

T

c c

c

0

0

This operator can be interpreted as themomentum as follows;

 d
dg

p- 
w

w


( )i . 55
c c

Next, let us look closely at equation (24) from the point of view of the stochastic equation ofmotion. After
solving the SDE, the transition probability (propagator) becomes;


ò òy g g g t t m g=

g

g
w w w

⎡
⎣⎢

⎤
⎦⎥( ( )) ( ˙ )( ) ( )

( )

( )
T C

i
d dexp , .

T T

G
0 0

From equations (39) and (42), the solution of the quantum equation ofmotion is expected to have the form;


g g= +w w ( )

m
B , 56c

where wB is the pinned-Brownianmotion given in (E.3). This stochastic integrationhas beenproven tobe equivalent
to the Feynmanpath-integration [25, 37] (see also chapter 10.4.2 in [38]). The above results show that the amplitude
defined in thepath-integralmethod is consistentwith solutionsbasedon thequantumequationofmotion.

5.General relativity on the SM-space

As SMQ is amethod for treating themetric tensor itself, itmust be closely related to general relativity. Onemight
expect to obtain the quantum effects of gravity by treating the space timemanifold as the SM-space, as well
investigated in this section, inwhich Planck units setting 4πG=c=ÿ=1will be used.
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5.1. Geometrical framework
First, we summarize classical general relativity in terms of a vierbein formalism. Themathematical setups
introduced in this subsection are based on [39]; only classical (non-probabilistic) setups of the differential
geometry are treated in this subsection.

First, classical general relativity is geometrically re-formulated in terms of a vierbein formalism. Let us
introduce a four-dimensional RiemannianmanifoldMwith ametric tensor g•• of dimension four, which is
referred to as the globalmanifold. A line element onM can be expressed as;

= Äm m
m m( ) ( )ds g x dx dx . 572

1 2
1 2

The covariant derivative for a tensor defined onM can be introduced using the affine connection G ∙∙
∙ . Because

the affine connection is not a tensor, it is always possible tofind a frame inwhich the affine connection vanishes
as G =( )∙∙

∙ x 0 at any point x on the globalmanifold. A localmanifold with a vanishing affine connection is
required to have the symmetries SO(1, 3) andT4 (4-dimensional translation symmetry) and is referred to as the
local (Lorenz)manifold and denoted by. On, a vanishing gravity, ¶ =g 0• •• , is not required, and a
transformation from the global to the localmanifold can be achieved using a tensor function3  ( )x•

• , such as

  h=m m
m m( ) ( ) ( )g x x x ,a b ab1 2

1 2

where ηab is a local Lorentzmetric under a particle physics convention such as h = - - -( )diag 1, 1, 1, 1•• .
Here, we employ the convention that indices of Greek andRoman letters represent coordinates on the global
and localmanifolds, respectively. Both indices run from zero to three. Note that the sign of the determinant of
themetric tensor is invariant under the general coordinate transformation. The inverse function is represented
as  =m

m
-( )a

a1 , which satisfies

   d d= =m
m

m
n n

m( ) ( ) ( ) ( ) ( )x x x x, . 58a
b

a
b

a
a

Both ma and its inverse m
a are called the vierbein. An alternative definition of the vierbein can be given using a set

of bi-local functions ξ a(y, x), defined on a neighborhood MÎ ->ÌU , inwhich Ìx y U, .While ξ a is a
function on the globalmanifold, it is a vector on the localmanifold; it is given as a solution of the differential
equation


x

=
¶

¶m m
=

( ) ( )y x

y

,
, 59a

a

y x

and of equations (57) and (58)with the boundary condition x =( )x x, 0a . The vierbein (one-)form is introduced
as = m

me dxa a and behaves as a local vector under the Lorentz transformation (throughout this report, Fraktur
letters indicate differential forms).

The covariant (under the general coordinate transformation) derivative∇μ applying on a local tensor can be
written using the spin-connectionω as follows:

w w = ¶ + -m m m mT T T T ,b
a

b
a

b
a

b
c

b
c

c
a

where

   w = G - ¶m n mr
n r

m r
r( ) .b

a a
b

a
b

A spin-connection form(or simply spin form) can be defined using the spin connection as

w h h= =m
mw wdx ,ab

b
a cb

c
a cb

which satisfies = -w wab ba.We note that the spin form is a generator of the Lie algebra of ( )so 1, 3 and is not a
Lorentz tensor. The torsion and curvature forms can be introduced as;

= + 

= + 

T e w e

R w w w

d

d

,

,

a a
b
a b

ab ab
c
a cb

respectively. Any two-forms defined on the localmanifold can be expanded using the orthogonal bases of the
two-forms on the localmanifold, e e• •. The curvature form can be expressed as

=  ( )R e eR
1

2
. 60ab

c c
ab c c

1 2
1 2

The expansion coefficients R••
•• are referred to theRiemann curvature tensor.

3
More exactly, simultaneously a rank-one global and a rank-one local vector.
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The volume form can be expressed using vierbein forms, e.g.

=   
!

( )v e e e e
1

4
, 61a a a a

a a a a
1 2 3 4

1 2 3 4

where •••• is a complete anti-symmetric tensor with ò0123=+1. Similarly, three-dimensional volume-and
surface-forms are introduced as;





=  

= 

!

!

V e e e

S e e

1

3
,

1

2
.

a ab b b
b b b

ab abc c
c c

1 1 2
1 2 3

1 2
1 2

The surface formSab is perpendicular to plane spanned by ea and eb. Hereafter, dummyRoman indices are
omitted in expressions when the index pairing is obvious, with dots placed instead at the index,
e.g. = · ·

· ·S e e2 ab ab .
The Lagrangian form and action integral for gravitation can be represented in this terminology as;

=  - L
!

( ) ( )· ·
· ·L R w S v

1

2
, 62G

and

I ò=
S
L ,G G

respectively, whereΛ is the cosmological constant. To complete the general relativity formulation, Lagrangian
forms of thematter and gaugefieldsmust be added. The equation ofmotion can be obtained as the Euler–
Lagrange equation by taking variations with respect tow•• andS••. The Einstein equation and the torsion-less
condition can be obtained as the Euler–Lagrange equation ofmotion as;

  -
L

  =⎜ ⎟⎛
⎝

⎞
⎠!··· ·

· · · · · · ·R e e e e VT
1

2 3

1

2
,a

and =T 0• , respectively, whereT•• is the energy-momentum tensor of thematter and gaugefields.

5.2. Construction of local SLM-space
The general relativity equipping the local SLM-space is constructed in this sub-section. The stochastic aspects of
general relativitymay be implemented bymodifying the vierbein form; throughwhich the effects of these aspect
may appear on the spin and surface forms.

Let us start from the definition of the vierbein in (59). The bi-local function ξ a(y, x) has non-local
information of the space timemanifold, and the vierbein can be defined through the differentiation of this
function. By contrast, the distance between two points on the SLM-space is a random variable, that follows a
Gaussian distributionwith amean value and variance given by the geometrical distance between the points, as
per remark 3.4. A possiblemodification of the function ξ a(y, x) that is consistent with the above requirements is
given as follows;

òx x s= + eˆ ( ) ( ) ( ) ( )( )y x y x dB x, , , 63
a a

y
a

whereB( a)(x)(a=0, 1, 2, 3,) are four independent Brownianmotions. Note that the second termof the right-
hand side of (63) represents the totalfluctuation of the length between x and y owing to the Brownianmotion; a
constant, s , is prepared to adjust the variance aswell as the dimension. The order parameter of the Brownian
motion is not simply a single parameter but a four-dimensional coordinate-vector on the local coordinate-patch
of the globalmanifold.Moreover, dB( a)(x)must be understood as thewhite noise introduced in appendix F.2. In
this definition, the stochastic function still retains the condition x =ˆ ( )x x, 0

a
. Note thatB( a)(x) cannot be

considered to be a vector on; if it is a Lorentz vector with each component fluctuating independently on
some local inertial frame, the components willmixwith each other following a Lorentz transformation and
therefore will not be independent. In fact, white noise can be treated as an independent Gaussian process in any
local coordinate systems (detailed discussions on the SO(1, 3) symmetries of white noise are given in
appendixH). From the stochastic function x̂a

, the stochastic vierbein is obtained as;


x

s=
¶

¶
+

¶
¶m m e m

=

ˆ ( ) ( ) ( )( )
x

y x

y

B x

x

,
,

a a

y x

a

following (59). Here, the derivative of the Brownianmotion ismerely a formal expression, as it is differentiable
nowhere; an exact definitionwill be introduced later. As a short hand notation, the Brownianmotion is denoted
as = ¶ ¶m

m( ) ( )( ) ( )B x B x xa a
; hereafter.
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In the SLM-space, the vierbein form can be a stochastic process formally expressed as;

s s= + = +e m e m
mˆ ( ) ( )( ) ( ( ) ( )) ( )( ) ( )e e Bx x x B x dx , 64a a a a a

;

where = m
m( ) ( )( ) ( )B x B x dxa a

; (a=0, 1, 2, 3) can be understood as the local one-form valuedwhite-noise. The

s ( )B a
;• must have the same dimensionality as the vierbein, which is dimensionless; therefore, σò has the

dimension of length only.
The precise definition of ( )B x;• can be stated as follows: consider the probabilistic distribution introduced in

appendixD, whichwill be denoted as ( )B x;• , under the following setups. A probability space, B* m( )E , , , is
introduced on the square-integrable functions = ( )H L2 4 defined on the globalmanifold, theGel’fand triple

*Ì ÌE H E and the sigma-fieldB generated by the cylinder subset of *E .

Definition 5.1 (VierbeinWhite-Noise (VWN)).The m ( )B x; is called the vierbeinwhite-noise, when its
characteristic functional is


= - = -m m m ⎡

⎣⎢
⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥( ) ( )

C x
x

e
x

eexp
2

exp
2

,
2 2

where me is the orthonormal base on the local coordinate-patch and mx is a coordinate vector. ( )x is the
geometrical distance defined in definition 3.2.

This characteristic functional induces theGaussianmeasure uniquely as

*òm m=l
m

m l( ) [ ] ( )C iB x d xexp .
E

;

The existence of thismeasure is ensured by the Bochner–Minlos theorem [21, 40]. TheVWN is a stochastic
functional with aGaussian distribution and is pointwise independent. Note that, in the definition of the
stochastic vierbein ê from equation (64) and definition 5.1, the Brownianmotion itself does not appear explicitly.
In theVWN, the one-dimensional order parameter, theMorkovian time, does not exist; therefore, the stochastic
processes do not allow for simple interpretation such as a sample path of the one-dimensional trajectory of the
mass point. One interpretation of theVWN, for instance, is that it gives a sample universe, that equips the sample
metric tensor.

To confirm that theVWNcan construct the SLM-space properly, let us calculate the line element using the
stochastic vierbein form equation (64):

h h s s= Ä = + + Äe m m e m m
m mˆ ˆ ˆ ( )· ·

··
· ·

··
· ( ) (·) ( )e eds ds B B B dx dx2 .2 2

;
2

; ;1 2 1 2
1 2

The terms in parentheses in the above equation can be understood as stochastic processes of theGaussian type.
Thefirst termbecomes aGaussian process with amean value of zero and a variance of;

s s h= Ä µe ⋅⋅
⋅ ⋅ (∣ ∣)e e ds4B

2 2 2

as shown in equation (70).Whenwe setσε=1/2, the variance of thewhite noise becomes s = (∣ ∣)dsB
2 2. As

mentioned previously,σε should have a length dimension, and therefore the precise representationmust be
σε=lp/2, where =l G cp

3 is the Planck length. Although the third term includes Brownianmotion, it is
not a stochastic integration but it gives =( ) ( )dB x dB x dx from the Itô rule. Therefore, this term gives afixed
correction to the line element, and can be neglected as a higher order effect. Finally, the stochastic line element
can be obtained as;

= +ˆ ( ) ( )( )ds x ds B x1 ,2 2

where h= Ä( ) ( ) ( )··
· ·e BB x x x . This is the representation of the line element on the local SLM-space.

5.3. Stochastic effects on basic forms
The volume form (61) on the local SLM-space becomes;





=   

=    +   

+    +   

+   

ˆ
!

ˆ ˆ ˆ ˆ

!
(

) ( )

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

v e e e e

e e e e B e e e

B B e e B B B e

B B B B

1

4
,

1

4
2

3

2

1

2
1

16
, 65

a a a a
a a a a

a a a a
a a a a a a a a

a a a a a a a a

a a a a

1 2 3 4
1 2 3 4

1 2 3 4
1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4

where (64) andσε=1/2 are used. As all white noises appearing here are independent, themean value of the
volume formbecomes the geometric volume as B =[ˆ ∣ ]v vE , as expected. On the other hand, the variance of the
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volume formhas afinite value, which corresponds to the zero-point vibration of space time. This can be
interpreted tomean that the four-dimensional volume cannot be zero owing to the uncertainty principle of
quantumgeneral relativity. In cases of a flat globalmanifold, the vierbein is simply a unitmatrix, inwhich case
the variance of thewhite noise is estimated to be

B Bd = - =m m m
m[ ] [( ) ∣ ] [ ∣ ]B E B E B dx ,; ;

2
;

2

from the Itô rule. Thus, we can obtain d =[ ]( )B ea a for theflat space time case, and the variance of the volume
formbecomes;

d = ( )vv
65

16
66

form (65).
The stochastic effect on other forms can be estimated similarly. For bothVa andSab, themean values are the

same as the classical values. The variances are obtained as;

ò òd d= = ( )V SV S
19

8
,

5

4
, 67a a ab ab

for theflat global spacetime case. In general, the variance of a n-dimensional volume form in the flat SLM-space
is given as δn=(3/2)n−1.

5.4. Stochastic effect on theUniverse
The variance of the volume form (66) has the same shape as the cosmological term in the Lagrangian form (62).
Therefore, even starting from a universe with L = 0, an effective cosmological term appears because of the
fluctuation of themetric. To discuss the quantum effect on theUniverse precisely, it is necessary to formulate the
quantumEinstein equation in the stochasticmetric space and solve it under certain boundary conditions. As
these tasks are beyond the scope of this report, we employ a semi-classical approximation of quantumgeneral
relativity to estimate the quantum effect from the fluctuations of forms. In this approximation, the effect of the
stochasticmetric on the vierbein and other forms are considered around the classical solution of the (classical)
Einstein equation.

Let us estimate an order of totalfluctuation for aflat universe under this approximation. To estimate a four-
dimensional volume of the current universe, ò v, we need to know a complete history of theUniverse. Here, the
simple approximation of a constant expansion of theUniverse is assumed. A recent precisemeasurement gives
an age of theUniverse to be t0=(4.35±0.01)×1017 sec [41, 42]. The total four-dimensional volumewith a
radius of t0 can be calculated as

ò
p

= =vV t
2

,U
Univ

2

0
4

for aflat, constantly expanding universe (this is very rough estimation. It is known that the a comoving distance
of theUniverse is about three times larger than c×t0). Thus, the variance becomes;

d = = ´ -( )v V
65

16
3.26 10 GeV .U

167 4

The standard deviation averaged over theUniverse is

s
d

= = ´ -¯ ( )v
v

V
2.13 10 GeV .

U

1 2
84 2

Interestingly, recentmeasurements of the dark energy gives [41, 42];

L ~ = ´ - ( )H3 6.16 10 GeV .0
84 2

This coincidence suggests that the cosmological constant in the classicalHamiltonian of theUniverse is zero
(Λ=0) and the origin of the dark energy (the cosmological term)may be a quantum fluctuation of space time
arising from the stochastic effect.We note that the unnaturally small values appearing here originated from
division by a large number (the total volume of theUniverse in Planck units). Thefluctuation itself is on the
order ofσò=lp/2, where the Planck length lp is explicitly written to emphasize that the s has a length
dimension. Even though the cosmological constant is zero at the classical level, an effective term corresponding
to the cosmological term appears towing to the stochastic (quantum) effect as;

s ~ - ( )v vv V
65

16
, 684

1 2

whereV4 is the four-dimensional volume in question. This effective termmay therefore have induced the re-
acceleration seen in theUniverse [43, 44].
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6. Summary

One possible way to explain quantum effects in terms of the stochastic effects of themetric tensor is discussed in
this work. The SM-space can be constructed as amodel of theUniverse in amathematically legitimatemanner.
Besides amathematicalmodel of a space timemanifold, a physical principle is necessary to introduce dynamics
into the physical system. In this work, the entropy extramization principle is employed instead of the standard
principle of least action. The entropy extramization principle allows to introduce quantummechanics primarily
before formulating classicalmechanics. The entropy (22) is defined using the probability amplitude instead of
the probability density, and itmust be understood as an independent principle from the entropy extramization.
Some characteristics of quantummechanics, e.g. quantum entanglement, are due to this principle.

It is shown that theQMof amass point are equivalent to its classicalmechanics on the SLM-space. The path-
integration, quantum equation ofmotion, uncertainty relation and commutation relations were re-formulated
on the SLM-space and shown to be consistent with standard definitions. In the formalismproposed in this
study,QM is formulated based on the extremal entropy principle a priori before classicalmechanics. If the path
integration described in this work ismore fundamental than the standard definition, the path integral is
mathematically well-defined on theGaussianwhite-noisemeasure space.

Because the SM-space directly treats themetric tensor of amanifold, its application to general relativity is
straightforward. Basic forms appearing in the four-dimensional space timemanifold can be treated as random
variables and investigated using thewhite-noise analysis initiated byHida.Within the semi-classical
approximation, a possible quantum effect on the dark energy is discussed. This resultmight be an explanation of
the origin of the small cosmological ‘constant’ observed in the current universe. However, the question as towhy
zero-point oscillations of thematter and gauge fields do not generate a large vacuum energy, that is refereed to as
the ‘cosmological constant problem’, remains unanswered.

To answer this question, a simultaneous treatment of gravity andmatterfields is necessary. For the pure
gravitationalHamiltonianG andmatter-filedHamiltonian densityM , a total energy can bewritten as;

 ò= +( )vE .G M

Amatter-gravitation interaction is hidden inM as, e.g. a term f f¶ ¶mn
m n( )( )g in thematterHamiltonian.

There are two sources of statistical fluctuations in a total energy, themetric tensor in theHamiltonian and in the
volume form. In the SM-space, aHamiltonian have a statistical fluctuation d • around amean value•

0 such as
  d+• •

0
•. The volume form can be expressed also as d+v v v0 as shown in section 5.When only a

matterfield is consideredwith ignoring the gravitational contribution, the total energy becomes;

    ò ò ò òd d d d= + + = + +( )( )v v v v vE .M M M M M M
0

0
0

0 0

Thefirst term shows the classical energy and the second therm shows the quantum effect of thematter field. The
third term gives a quantum effect on thematter-gravity interaction. Afluctuation of the volume form is a order
unity d =∣ ∣ ∣ ∣ ( )v v 10 as given in (66). Therefore, a term d vM can not be neglected. This term is proportional
to the total volume and can be absorbed in a definition of the vacuumenergy together with the zero-pint
oscillation under the approximation ignoring amatter-gravity interaction. In this work, only the gravitational
Hamiltonian is consideredwith ignoring thematterfield in section 5. To treat the cosmological constant
problem, the term dvM must be treated.Moreover, the quantum effect on the spin form is not discussed in this
study. The clarification of such a treatment of the spin form involves simply clarifyingwhat is a parallel
translation of a vector on the SM-space andwill be discussed as an independent study elsewhere.
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AppendixA. Proof of remark 3.3

Remark 3.3.The stochastic Lorentzmetric space is a stochastic pseudometric space [16].

Proof.Consider three points, p, q and r, andwhose distribution functions are denoted as
 - ¢ -( ( )) ( ( ))F s p q F s q r; , ;e e , and + ¢ -( ( ))F s s p r;e with ¢s s, 0. These distribution functions

follow an exponential distribution as defined in definition 3.2. Then distances among those pointsmust keep the
triangle inequality such as;   - + - -( ) ( ) ( )p q q r p r . In this case, the triangle inequality can be
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deduce as

   

 
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p q
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p q q r
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p q

s
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; ; , ;

exp exp exp

exp .

e e e

From assumptions of the equal-time triangle inequality and ¢s s, 0,

  
+ ¢

-
+ ¢

- + -( ) ( ) ( )
s s

p r

s s

p q q r

follows. Since -( )xexp is amonotonically decreasing function for x>0 such as;

  
-
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⎞
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exp exp

can be obtained. Furthermore, since all dʼs and s, s’ are positive,
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with equality on either side iff  - = ¢ -( ) ( )s p q s q r . Therefore, we can obtain as;
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On the other hand, due to - <( )xexp 1 for x>0, one can obtained as;
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Thus, the lemma is proved. ,

Appendix B. Poisson process

When a probability density of a randomvariableX satisfied a relation,

> + > = >( ∣ ) ( )P X s t X t P X s ,

for any < Îs t0 , , it is recognized to have amemoryless property. Here, ( ∣ )P a b is a conditional probability,
which gives a probability observing awhen b is realized. It is easily confirmed that the exponential probability
density has amemoryless property, and thus the stochastic process induced by the exponential probability
density becomes aMarkov process, inwhich the probability to a next step only depends on the current status.
The exponential probability density can be induced from the Poisson process. Considering that a series of
independent random variables = { }Xi i 1,2, whose probabilitymeasurewithP(0<s<Xi<s+ds)=p(s)ds. A
series of randomvariables = { }Aj j 0,1,2, such as;

22

J. Phys. Commun. 2 (2018) 035025 YKurihara



å= =
=

A a s A X0 . ., j
i

j

i0
1

is referred as to the ‘stochastic process induced by the probabilitymeasure(p(s)ds)’. Another randomvariable
 Î( )N s0 is also introduced as =( ) { }N s k A smax ; .k A frequency distribution is defined for any n and
= < < <s s s0 n0 1 asD = - -( ) ( )N N s N si i i 1 . This system can be interpreted as a stochastic process as

follows:

• s is a ‘length’ variable,

• Xi is amoving distance at an i’th step.

• p(s)ds is probability tomovewith a distance of s.

• Ai is a totalmoving distance up to the i’th step.

• N(s) is a total number of steps to reach a position s.

IfN(s) is considered as afictitious ‘time’, random variables s/N(s) can be interpret as an average velocity andΔsi/δ
Ni an instantaneous velocity, whereΔsi=si−si−1.When the exponentialmeasure m l( )s;e is used as the
probabilitymeasure, the process becomes the Poisson process. A definition of the Poisson process is given as
follows:

DefinitionB.1 (Poisson process).When a randomvariable  Î{ ( ) }N s0 for  Îs0 defined on the
probability space W( )P, , is satisfied following conditions, it is called ‘Poisson process’;

1.N(0)=0 a.s.

2. For w" Î W w ( )N s, is left-continuous andmonotonically increasing,

3. The frequency distribution of the random variable ( )N s makes the Poisson distribution as

l
l

lD D =
D

D
-D

D
( ) ( )

!
( )P N s

s

N
s; exp ,i i

i
N

i
i

i

where

D = -
D = -

-

-

( ) ( )N N s N s

s s s

,

.
i i i

i i i

1

1

This P(ΔNi;Δsi/λ) is considered as a function that gives a probability observing an incrementΔNiwhen a
time distanceΔsi is given. For anymonotonically increasing series, 0=s1<L<sn, the probability tofind a
sequence of a frequency distribution   lD D({ } )P N i n s, 1 ;i i can be obtained as l D D= ( )P N s;i

n
i i1

because amemoryless property has an exponentialmeasure. A probabilitymeasurewill produce a series of
randomvariables by its independent trials. Those randomvariables are categorized to the independent and
identically distributed random variables(i.i.d.). It is knownwell that a stochastic process induced by an
exponentialmeasure,μe(s,λ), a frequency distributionwill form aPoisson process. Therefore, the following
lemma can be stated:

LemmaB.2 (stochastic process induced by exponentialmeasure). For a stochastic process Ai, following two
statements are equivalent:

1. A stochastic process Ai is induced by an exponential measure m l( )s; .

2. A frequency distribution ( )N s induced by the random variables Ai forms a Poisson process.

Proof. 1 2: Atfirst, randomvariables {Xi} for i=1, 2,L, whose probabilitymeasure isμ(s;λ) are
introduced. Then a parameter < D = - -s s s0 i i 1 is divided intom peaces, then each length becomes
ds=Δs/m and an expected number of randomvariablesXi in ds, the frequency distribution, can be expressed
asλ/ds=λm/Δs. The frequency distribution is independent each other and can be obtained asμ(0;λm/

Δs)=Δs/(λm), because of amemoryless property. Then the probability to observe the frequency distribution
ΔN can be expressed after taking a limitation  ¥m as
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where = -! !( )!C a k a ba b is the combinatorial coefficient to take b out of a for    Îb a0 . Therefore,
the randomvariables {N(s)} satisfies the requirement 3 in the definition B.1. Requirements 1 and 2 are trivially
satisfied. Therefore, 1 2 is proved.

2 1: In the stochastic processAi induced by the probabilitymeasure p(s)ds, themeasure p(s)ds gives the
probability not tofind any randomvariableXi from0 to s, thenfind one of someXi during next ds, which can be
expressed as



l l
l l l

l l
m l

= = - ´ -

= - + 
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s
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0; 1; exp exp ,

1
exp , ; .2

Therefore, the probabilitymeasure inducingAi is nothing but the exponentialmeasure. ,

AppendixC. Proof of remark 3.4

Remark 3.4. (Brownianmotion induced by exponentialmeasure)(repeat) Suppose that the Poisson process is
induced by the exponentialmeasureμe(s,λ)with a series of randomvariables, = { }Xs s 1,2, , and

å l= -
=

( )Z
n

X
1

.n
s

n

s
1

The randomvariableZn is know to show a convergence in law to a normal distributionwith amean value at zero
and a varianceλ. In particular, for-¥ < < < ¥a b ,

  òpl l
= -

¥

⎛
⎝⎜

⎞
⎠⎟( ) ( )P a Z b

x
dxlim

1

2
exp

2
, 69

n
n

a

b 2

can be obtained. Brownianmotion is induced by this randomvariable.

Proof. For the stochastic process induced by the exponentialmeasure, eachX(s) is i.i.d. and the frequency
distribution forms a Poisson distribution as stated in LemmeB.2. For the randomvariableZn, mean value and
variance are given as [ ] ( )E X a s0 . .n , and l < ¥[ ] ( )V X a s. .n , respectively, due to the law of large
number. Therefore, for the limit  ¥n , the equation (69) follows from the central limit theorem. Therefore,
theGaussian probabilitymeasure can be defined as

 
pl l

Î = + = -l
¥

⎛
⎝⎜

⎞
⎠⎟( ) ( )P B dx P x Z x dx

x
dxlim

1

2
exp

2
.

n
n

2

Therefore, the Poisson process converges in low to the Brownianmotion. ,

AppendixD. Stochastic integration

This appendix is devoted to introduce and summarize the stochastic integrations and stochastic differential
equationswithout proofs.

D.1. Itô formula

DefinitionD.1 (Brownianmotion). If a set of Randomvariable, = Î( ) { ( ) }B t B t t, satisfies the following
properties:

1. ( )B t is aGaussian systemwith =[ ( )]E B t 0 for every t ,

2. =( )B 0 0,

3. - = -[( ( ) ( )) ] ∣ ∣E B t B s t s2

it is called Brownianmotion [21].

24

J. Phys. Commun. 2 (2018) 035025 YKurihara



The covariantmatrix of the Brownianmotion can be obtained as

G = = + - -[ ] [ ( ) ( )] (∣ ∣ ∣ ∣ ∣ ∣)s t E B t B s t s t s,
1

2
,

due to the definition.

DefinitionD.2 (Itôprocess and Itô formula).On following setups:

• Functions:

1. = Î= { } ( )x x Ct
i

i d
d

1, ,
1 for t 0,

2. j j" = Î( ) ( )x C2 .

• Two stochastic processes:

1. N-independent Brownianmotion: = = ( ) { ( )}B t B tk
k N1, , .

2. stochastic processes: = { ( )}A ti
i d1, , , where w" =  < ¥w w( ) ( )i A A t, , 0 0i i ,

whereω is a index for sample paths. The indexωwill be often omitted.

Itô process is defined as randomvariables of = { }X t, 0t
i

i d1, , , which follows:

ò s= + +· ( ) ( )BX X d s A t ,t
i i

t
i i

0
0

where s s= Î = ( ) { ( ) }s sk
i

k
i

k N
2

1, , , ( 2 is a set of square integrable functions). Then the Itô formula [45] is
introduced as;

ò òs s sj j
j j j

= +
¶
¶

+
¶
¶

+
¶

¶ ¶
( ) ( ) ( ) ( ) · ( ) ( ) ( ) ( ) · ( )BX X

x
X s d s

x
X dA

x x
X s s ds

1

2
.t

t

i s
i

t

i s s
i

i j s
i j

0
0 0

2

Here, integrationwith respect to dA i
s must be understood as the Riemann-Stieltjes integration, and the

stochastic integrationwith respect to the Brownianmotion s · ( )Bd si must be understand as the Itô integral,
that is defined as;

ò ås s= -
¥ =

-

+( ) · ( ) ( )[ ]B B Bs d s slim ,
t

i

n k

n
i

k k k
0 0

1

1

where = { }si i n1, , are the dissection 0=s1<L<sn=t, and = ( )B B sk k . Each Bk will be independent
Gaussian noise. The Itô integral is themartingale because s ( )si

k is only depends on the process [0, sk]. Another
definition of the stochastic integration can be given as;

ò ås s= -
¥ =

-

+ +( ) ◦ ( ) ( )[ ]B B Bs d s slim ,
t

i

n k

n
i

k k k
0 0

1

1 2 1

where = ++ +( )s s s 2k k k1 2 1 . It is known as the Stratonovich integral, which is notmartingale, but sub-
martingale.We use the Itô convention as the stochastic integral in this work, unless otherwise stated. The Itô
formula can be expressed as;

ò òs s sj j
j j

b
j

= +
¶
¶

+
¶
¶

+
¶

¶ ¶

⎡
⎣⎢

⎤
⎦⎥( ( )) ( ) ( ( )) ( ) · ( ) ( ( )) ( ) ( ( )) ( ) · ( )BX t X

x
X s s d s

x
X s s

x x
X s s s ds

1

2
,

t

i
i

t

i
i

i j
i j

0
0 0

2

when the stochastic processA i(s) is written as;

ò b- =( ) ( ) ( )A t A s ds0 .i i
t

i

0

This formula can be understood from aTaylor expansion ofjwith simple rules (Itô rules) as

b
b b

=
=

=

⎧
⎨⎪
⎩⎪

( ) · ( )
( )( ( ) )

( ( ) )( ( ) )

B B I

B

d s d s ds

d s s ds

s ds s ds

,

0,

0,

i

i j

where I is aN×Nunitmatrix. In otherwords, they are evaluated as ~( )Bd s ds and ~( )dA s ds in the
expansion and taken up to order ds such as;

j
j j

=
¶
¶

+
¶

¶ ¶
+( ( )) ( ( )) ( ) ( ( )) ( ) ( )d X t

x
X t dX t

x x
X t dX t dX t

1

2
,

i
i

i j
i j

2
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where

s s
s s s s

b= + = +
= =

( ) ( ) ( ) · ( ) ( ) ( ) · ( )
( ) ( ) ( ( ) · ( ))( ( ) · ( )) ( ( ) · ( ))

B B

B B

dX t dA t t d t t dt t d t

dX t dX t t d t t d t t t dt

,

.

i i i i i

i j i j i j

Then, the Itô formula follows from them.Above expressionsmust be understood as a shorthand for the
integration form, and a following remark for one and two randomvariablesX i(t) can also bewritten as;

= +

= + +

( ( ) ( )) ( )( ( )) ( ( ) ) ( )
( ( ) ( )) ( )( ( )) ( ( )) ( ) ( ( ))( ( ))

d f t X t f t dX t df t dt X t dt

d X t X t X t dX t dX t X t dX t dX t

,

,

i i i

i j i j i j i j

where f (t)äC2. Above formulae are referred as to the Stochastic Leibniz rule. Integration forms of above
expressions can be given as:

ò ò

ò ò

ò ò

ò

s

s s

s s

b

b b

- = +

= + +

- = + + +

+

⎛
⎝⎜

⎞
⎠⎟

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) · ( )

( ) ( ) ( ) ( ) ( ( ) ( ) ( ) ( )) ( ( ) ( ) ( ) ( )) · ( )

( ( ) · ( ) )

B

B

f t X t f X f s dX s
df s

ds
X s ds

s
df s

ds
X s ds s d s

X t X t X X X s s X s s dt X s s X s s d s

t t dt

0 0 ,

,

0 0

.

i i
t

i
t

i

t
i i

t
i

i j i j
t

i j j i
t

i j j i

t
i j

0 0

0 0

0 0

0

The second line is just a special case of the Itô formulawithj(X(t))=X i(t)X j(t).
The stochastic integration of a function f (x) by the Brownianmotion is given as;

ò s=( ) ( ) ( ) ( )f s dB s B t; , 70
t

0

2

where s( )B t ; 2 is theGaussian process with a variance of

òs = ( ) ( )f s ds, 71
t

2

0

2

andmean value of zero. One of an important property of theGaussian distribution is a reproducing property,
whichmeans the convolution of twoGaussian distributionsmake aGaussian distribution.

D.2. Iterated stochastic integration
First, let us introduce an iterated classical (non-stochastic) integration of one-forms w = i n1, , along the
curvilinear path g Î G{ }as defined in section 4.1. A pull ofωi using the path γ is expressed as *g w = ( )f t dti i ,
and then, the iterative integration can be introduced as;

* *ò ò ò ò òw w g w g w= =
g d

-   ⎜ ⎟
⎛
⎝⎜

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎞
⎠⎟( ) ( ) ( )dt f t dt f t dt f t, ,n n

T

n n n

t

n

t

1 1
0 0

1 2 2
0

1 1 1
n

n 2

using simplexes δn defined as 0�t1�L�tn�T. A natural extension of this iterative integration to the
iterative stochastic integrationsmight be;

ò ò ò= -  ⎜ ⎟
⎛
⎝⎜

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎞
⎠⎟({ }) ( ) ( ) ( ) ( ) ( ) ( )I f dB t f t dB t f t dB t f t .n i

T

n n n

t

n

t

0 0
1 2 2

0
1 1 1

n 2

The existence of thismultiple integrations can be shown using approximation of fi being step functions [40]. It is
known that the stochastic integration for the unit function can be represented by using the parameterized-
Hermite polynomials as follows [40];

ò ò ò= = - --  ⎜ ⎟
⎛
⎝⎜

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎞
⎠⎟({ }) ( ) ( ) ( ) ( ( ) ( ) )I dB t dB t dB t H B T B T1 0 , 0 ,n

T

n

t

n

t

n
0 0

1
0

1
n 2

whereHn can be expressed as;

=
-

-
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( ) ( )

!
H x t

t

n

x

t

d

dx

x

t
, exp

2
exp

2
.n

n n

n

2 2

One of interesting examples of the iterated stochastic integration is a stochastic area introduced by Lèvy [46]:
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DefinitionD.3 Stochastic Area.

ò ò ò ò ò

ò

= = -

= -

w w w w w w w

w w w w

⎜ ⎟ ⎜ ⎟
⎧⎨⎩

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎫⎬⎭( ) [ ( ) ( )] ( ) ( ) ( ) ( )

( ( ) ( ) ( ) ( ))

S T dB t dB t dB s dB t dB s dB t

B t dB t B t dB t

1

2
,

1

2
,

1

2
,

T T t T t

T

0

1 2

0 0

1 2

0 0

2 1

0

1 2 2 1

where =w w w( ) ( ( ) ( ))B t dB t dB t,1 2 , with t 0, is a 2-dimensional Brownianmotion.

This quantity can be interpreted as the area surrounding by trajectory of wB and straight line connecting
between initial and final points of the trajectory.

Appendix E. Stochastic differential equation

With the same setup as in appendixD, one can introduce the stochastic differential equations (SDE) as

s b= +( ) ( ( )) ( ) ( ) ( ( )) ( )BdX t t X t d t t t X t dt, , . 72i i i

Here, si andβ(t)i are referred to as diffusion and drift coefficients, respectively. Exactmeaning of equation (72)
might be clear after cast it into a integration form. A definition of a solution of the SDE can be given as follows:

Definition E.1 (Solution of the SDE). Let us consider a stochastic process X defined on a probabilistic space
AW( )P, , , which is assumed to be A( )-adaptive andmeasurable d-valued continuous stochastic process. The

solution of the SDE (72) is the random variables, = { ( )}X X t t 0, which satisfied following two conditions:

1. For any i and As Î( ( )) ( ( ))k t X t t, ,k
i 2 , and

ò b < ¥∣ ( ( ))∣t X t dt, ,
T

a
i

0

for any T 0 (a.s.).

2. ( )X t satisfies a following relation including a stochastic integral:

ò òs b= + +( ) ( ( )) ( ) ( ) ( ( ))BX t x t X t d t t t X t dt, , .
t

i
t

i

0 0

When the existence of the Brownianmotion is assumed, it is referred to the strong solution.

Here, wewill give two examples and their (strong) solutions.

Example E.2 (Linear SDE).The solution of the linear is SDE defined as;

a b g d= + + +( ) ( ˜ ( ) ˜ ( ) ( )) ( ˜ ( ) ˜( ) ( )) ( )dX t t t X t dt t t X t dB t ,

where a b g d{ ˜ ( ) ˜ ( ) ˜ ( ) ˜( )}t t t t, , , are given integrable functions. The solution of this SDE can bewritten as;

ò ò

ò ò

a d g g

b d d

= + - +

= - +

- -

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

{ }( ) ( ) ( ˜ ( ) ˜( ) ˜ ( )) ( ) ˜ ( ) ( ) ( )

( ) ˜ ( ) ˜ ( ) ˜( ) ( )

X t U t X s s s U s ds s U s dB s

U t s s ds s dB s

,

exp
1

2
.

t t

t t

0
0

1

0

1

0

2

0

Example E.3 (PinnedBrownianmotion).One dimensional SDEof

= +
-
-

( ) ( ) ( )
dX t dB t

a X t

t
dt

1
,

 <t0 1, and =( )X 0 0 is called a pinned Brownianmotion.

It is easily confirmed that the solution of this SDE is

ò= + -
-

= + -( ) ( ) ( ) ( ) ( )X t at t
dB s

s
at B t tB1

1
1

t

0

The stochastic processX(t) is starting from the origin at t=0 and arrived at a at t=1with themean
convergence. It is easily understood that time-reversed process,X(1−t), is the same process as original one,
because these two processes have the samemean value and variance.
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Appendix F. Functional of Brownianmotion andwhite noise

Basic definitions and several remarks are given in this sectionwithout proofs. Detailed explanations can be
found in [40].

F.1. one-dimensional case
Let us consider distributions of stochastic processes in the sense of Schwartz. The realHilbert-space of square
integrable functions is taken as a set of test functions as Ì = Î( )E H L T2 . A space of distribution, *E , is a
dual space ofE, which has a relation of

*Ì ÌE H E .

A standard bilinear form iswritten as xá ñx, ,where *x Î ÎE x E, .When ξäH, this is nothing but an inner
product of two vectors on theHilbert space. A normof two elements in theHilbert space is denoted as

= á ñ x x x,2 . A set of stochastic processes definedon someprobabilistic space is considered to be parameterized
by xäE such as Î{ ( )∣ }X x x E . For the probabilistic distribution (measure)μ on *E , the characteristic
functional is defined as

*ò x m x= á ñ( ) ( ) ( )C x i x dexp , .X
E

The characteristic functionalmust have following characteristics:

1.CXis continuous onE,

2.CXis positive definite,

3. =( )C 0 1X .

Themeasureμ(dξ) on *E is uniquely determined by the characteristic functional, thanks to the Bochner–
Minlon theorem.

A vector space of the standard bilinear form, á ñ Î( ( ))x f f L, , 2 1 is considered. This vector space becomes
theHilbert spacewith the inner product as the covariance integral and the subspace of L2(μ).We denote this
Hilbert space as ( )H1

1 and its dual space as -( )H1
1 . A subscript 1means theHilbert space defined on a one-

parameter space. (±1) is put for future convenience. Isomorphism @ ( )( )H L1
1 2 1 can be obtained under the

isomorphicmap « á ñf x f, . Thus theGel’fand triple of Ì Ì -( ) ( )H H H1
1

1
1 is obtained.

Example F.1 (White noise).Themeasured space induced by the characteristic function of

s
s

= -  
⎛
⎝⎜

⎞
⎠⎟( )C x x; exp

2
2

2
2

is namedWhite noisewith a variance of s2, which denoted as ˙ ( )B t . Here • is aHilbertian norm.

The probabilistic distribution of white nose is theGaussian distributionwithmean value of zero and
varianceσ2. It is easily confirmed that thewhite noises with different variances aremutually disjoint.

Example F.2 (Second derivative of Brownianmotion).The characteristic functional of

x x¢ = - ¢ ⎜ ⎟⎛
⎝

⎞
⎠( )C exp

1

2
2

induces a process of second derivative of the Brownianmotion, ( )B t" for-¥ < < ¥t .

Themeasure of this process,μ’, is defined on the same space as that of the original white noise, however
those are themutually disjoint each other. If the support of the originalmeasure isX, themeasureμ’ gives

m m=  ¢ =( ) ( )X X1 0,

and vice versa.

F.2.multi-dimensional case
The definition of Brownianmotion andwhite noise can be extended to amulti-dimensional parameter space.

Definition F.3 (Brownianmotion on theMulti-dimensional parameter space). If a set of Random variables,
= Î( ) { ( ) }B x B x x, d satisfies the following properties:
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1. ( )B x is a Gaussian system,

2. =[ ( )]E B x 0,

3. Covariantmatrix is

G = = + - -[ ] [ ( ) ( )] (∣ ∣ ∣ ∣ ∣ ∣)x y E B x B y x y x y,
1

2
,

it is called Brownianmotion.

From the definition,B(o)=0 can be obtained, where o=(0, 0, L, 0) is the origin of the parameter space.
A proof of existence ofmulti-dimensional Brownianmotions can be found in [21].

In order to define themulti-dimensional white noise,Hilbert space, its dual space andGel’fand triple defined
in the previous subsection are extended to *Ì @ Î( )E H L x E,d d

d
d

2 and *Ì ÌE H Ed d d . On the dual space
*Ed , a completely additivemeasure space B* m( )E , ,d can be constructed. According to notations for th one-

parameter case, we can denote theGel’fand triple as

Ì Ì -( ) ( )H H Hd d d
1 1

Existence of the completely additivemeasure associatedwith the characteristic function of

*òx x m

x

= á ñ

= -  ⎜ ⎟⎛
⎝

⎞
⎠

( ) ( ) ( )C i x d xexp , ,

exp
1

2
,

E

2

d

where ξäEd and • is aHilbertian norm, is ensured by the Bochner–Minlos theorem.

Definition F.4 (Multi-dimensional white noise).A stochastic process induced by this characteristic function of
equation (73) is calledmulti-dimensional white noise. Thewhite noise induced by themulti-dimensional
Brownianmotion ( )B x is denoted as m ( )B x; .

F.2.1. Polynomial of white noise. Further extension of thewhite-noise space for polynomials of thewhite noise
is possible [21, 40]. Atfirst, a n-dimensional white-noise functional space is introduced as

1. Test functional space ( )Hd
n : a symmetric (n+1)/2 dimensional Sobolev space on n.

2.Hilbert spaceHn: a symmetric tensor product of n square-integrable functions.

3.White-noise functional space -( )Hd
n : a dual space of the test functional space, which is an isomorphic with a

symmetric−(n+1)/2 dimensional Sobolev space on n.

TheGel’fand triple can be obtained as Ì Ì -( ) ( )H H H .d
n

d d
n Power functionals of thewhite noise are a element of

the dual space ( Î -( )B Hn
d

n
;• ).

A polynomial of thewhite-noise functional canbedefined on the space -⨂ ( )c Hn n n
n with theGel’fand triple of

Ì Ì -⨂ ( ) ⨂( ) ( )

c
H L c H

1
,

n n
n

n

n
n n

n2

where cn is a positivemonotonically non-increasing series.

AppendixG. Path integral withGaussianmeasure

Let us start from the Lagrangian (30) and defined a path integral with theGaussianmeasure under the time-
slicing approximation [47] as follows: the setup defined in section 5 is used in the appendix.

DefinitionG.1 (Gaussian path-integral). From the Lagrangian (30), a transition amplitude frompoint γ(0) to
γ(T) is defined as
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This path-integral is defined using the time-slicing approximation, which divides a time period from0 toTwith
awidth ò. HereC(ò) is an appropriate normalization constant as a function of ò and γi=γ(τi). A relation
between the flat ‘measure’ and theGaussianmeasure is given as

m g
s

g g g= - -+
⎡
⎣⎢

⎤
⎦⎥( ) ( )d dexp

1

2
,G k k k k2 1

2

where aσ2 is a variance of theGaussian distributionwith a dimension of length, whichmay be fixed by
characteristics the SMM-space. The ‘measure’ isflat when setting s  +¥2 . If the time-slicing width ò is a real
number, the integrationwith the flat ‘meadure’ does not converge. In a standardmethod to evaluate the path
integral in the quantumfield theory (see, for instance, Chapter 9 in a textbook [32]), the integration is treated
formally as òhas a negatively finite imaginary-part. In contrast with the standardmethod, theGaussian path-
integration converges with a real values of a time-slicing in the SMM-space.

RemarkG.2 (Effect ofGaussianmeasure).TheGaussianmeasure gives the same transition amplitude as that
with theflat ‘measure’.

Proof. Let us pick up any one of the integrands, say a k’th time-slice, in infinite product of integrations, and
expand the potential and transition amplitudewith respect to the small parameter g g- -k k 1 according to [32],
one can get
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where the normalization constant is set to be


p

=( )C
m

i2
.

The integration is performedwith a assumption that ò is a real positive-number. The transition amplitude is
independent of a value ofσ. ,

AppendixH. Rotational invariance ofwhite noise

A rotational group can be introduced on themulti-dimensional white-noise space defined above. A following
definition is based onYoshizawa [48] andHida [21].

DefinitionH.1 (Rotational group on Ed).A rotational group, g , is defined as a continuous linear
homeomorphism acting on Ed, which satisfies

=   gx x ,

where xäEd.

It is obvious that a collection of g forms a group. Even though this group is named a rotational group by
Yoshizawa, it includeswider class of orthogonal groups in reality. Therefore, the group is denoted asO(Ed)
hereafter. This group induces an adjoint transformation g* on the dual space *Ed such as

*x xá ñ = á ñgx g x, , ,

where xäEd and *x Î Ed . This group is denoted as * *( )O Ed . Following statements can easily confirmed:

• * *( )O Ed forms a group.

• g* is also a continuous linear homeomorphism.
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• * *( )O Ed is isomorphic toO(Ed).

Following theorem is essential for a application of thewhite noise analysis for physics applications.

TheoremH.2 (rotational invariance of thewhite-noisemeasure).Thewhite noisemeasure m is invariant under
the group operation * * *Î ( )g O Ed .

It can be proved by checking an invariance of the characteristic functional after applying an operation g* on
*x Î Ed . Note that this theorem is valid for the Lorentz transformationΛ on the SLM-space due to the fact

ΛäO(E4). Therefore, one can treat theVWN, m ( )( )B xa
; defined in section 5.2, as the local Lorentz-vector, since the

white-nosemeasure is invariant under * * *L Î ( )O E4 .
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