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Abstract
Following the recent work byDeffner and Saxena (2015Phys. Rev. Lett. 114 150601), where the
Jarzynski equality is generalised to non-Hermitian quantummechanics, we prove in this work a
stronger formof Jarzynski equality, the Crooks fluctuation theorem, also in the non-Hermitian
formalismwhen the system is in the unbroken  -symmetric phase.

1. Introduction

Near-equilibrium systems are relatively well understood [1–4], but systems far from equilibrium aremuch less
so and are still under intensive study. Thefirst breakthrough in quantitatively characterising systems arbitrarily
far away from equilibrium camewith theworks of Evans et al [5, 6] andGallavotti et al [7], where the entropy
production fluctuation theorems for such systemswhere firstly formulated. In a seminal paper [8] and a paper
following [9] in 1997, Jarzynski derived an equality relating thework fluctuationswith the free energy difference
when a classical thermodynamic system is driven from an equilibrium state to another state. The equality reads

e e , 1W Fá ñ =b b- - D ( )

whereW is thework done to the systemby the external driving force, FD is the change in the system’s free
energy during the driving process, and the left hand side of the equality is averaged over all the phase space
trajectories of the system. Two years later in 1999, Crooks proved a stronger formof the Jarzynski equality, the
entropy production fluctuation theorem [10]. TheCrooksfluctuation theorem relates the forward entropy
production distribution along phase space trajectories with the backward entropy production distribution along
the time-reversed trajectories. Thefluctuation theorem reads
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where w+ ( w- ) is the entropy production (decrease) during the non-equilibriumprocess, PF w( ) is the forward
entropy production distribution for all the phase space trajectories and PR w-( ) is the entropy decrease
distribution for all the time-reversed phase space trajectories. Equation (2) has another equivalent form that
replaces the entropy by the non-equilibriumwork and equilibrium free energy difference and thus is closer in
formwith the Jarzynski equality given by equation (1). This version of the fluctuation theorem is given by
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where theW and FD have the same physicalmeaning as in equation (1). Equation (3) reduces to equation (1) if
P WR b-( ) ismoved over to the right hand side followed by an integration on both sides with respect toW. Soon
after the discovery of the classicalfluctuation theorems, efforts had beenmade to generalise thefluctuation
theorems to quantum regime [11–14]. Especially in [15], the authors pointed out that quantumwork is not an
observable. Instead, quantumwork should be represented using correlation functions, whichwill be an
important ingredient of this paper.
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Almost at around the same time of the discovery of the Jarzynski equality, Bender et al discovered new classes
of complexHamiltonians that are non-Hermitian, but comewith real spectra [16]. ThereHamiltonians, not
necessarilyHermitian, are supposed to satisfy aweaker condition: the so-called  -symmetry.More precisely,
H , 0 =[ ] , where  is the parity operator and  is the time-reversal operator. For  -symmetric
Hamiltonian systems, there are two phases: broken  -symmetry, where the energy eigenvalues appear as
complex conjugate pairs, and the unbroken  -symmetry, where all the energy eigenvalues are real [17].

In the recent work [18, 19], the authors proved that the quantum Jarzynski equality can be readily
generalised to non-Hermitian quantum systemswith unbroken  -symmetry, by adopting amodified unitary
time-evolution operator suitable for the formalismof non-Hermitian quantummechanics. However, to the best
of our knowledge, themore general Crooksfluctuation theoremhas not been proved in the  -symmetric
quantummechanical framework, and this is the purpose of our present work.We are going to show that the
Crooksfluctuation theorem still holds in non-Hermitian quantum systemswith unbroken  -symmetry.

2.Non-Hermitian quantum thermodynamics

For non-HermitianHamiltonianwith  -symmetry, theHamiltonian is still diagonalisable, but not unitarily
diagonalisable. The left eigenstate and right eigenstate do not have the usual bra-ket correspondence as in
Hermitian quantummechanics, simply because theHamiltonian is non-Hermitian andwe no longer have the
formal left–right symmetry [20, 21]. Based on the non-Hermitian formalism, we have themodified ket-bra
correspondence g g gf f f fñ « á = á = á∣ ∣ ∣ ∣† , where g is aHermitian operator, i.e. g g=† . As a result, the
normalisation conditionwill be given by g 1f fá ñ =∣ ∣ and the completeness relationwill be given
by g 1m m mf få ñá =∣ ∣ .

For a quantum system coupled to a thermal bath and thus in equilibrium at time t0, withHamiltonian H t0( ),
an external driving force is applied and the systems starts to evolvewith a time-dependentHamiltonianH(t), till
some final time tf. The system is decoupled from the heat bath starting at time t0 such that the system remains
isolated except there is a driving force during the process.

It has been shown that the time evolution in non-Hermitian quantummechanics has to bemodified to
preserve unitarity [22]. In this framework, themodified Schrodinger equation is given by

t
H t A ti , 4y y

¶
¶

ñ = + ñ∣ ( ( ) ( ))∣ ( )

whereH(t) is the time-dependentHamiltonian of the system and A t g g
t t t

i

2
1= - ¶-( ) is a time-dependent gauge

field term that has been added in to ensure unitarity of the non-Hermitian quantumdynamics when all the
energy eigenvalues are real. The corresponding time evolution operator then is given by
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,
d

f
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whereUt t, f0
is the time evolution operator from initial time t0 to some final time tf, and  is the time-ordering

operator.When the system is in the unbroken  -symmetric phase, it has real spectrum and thus the dynamics
generated by the above time evolution operator is unitary in the sense that probability is preserved. This does not
mean that the evolution operatorUt t, f0

is unitary. Instead, the conventional unitarity condition of the time

evolution operatorU U 1t t t t, ,f f0 0
=† should be replaced by

U g U g . 6t t t t t t, ,f f f0 0 0
= ( )†

The latter reduces to the formerwhen g is set to be the identity.We can see from this formalism that the non-
Hermitian quantummechanics serves to generalise the conventionalHermitian quantummechanics.

Sincewe are using the non-Hermitian formalism to solve problems in quantum thermodynamics, some of
the basicmathematicalmanipulations have tomodified to be consistent with the theory of statisticalmechanics
and experimental observations. One essential change is the formof inner product. In the non-Hermitian
formalism the inner product has to bemodified to g gf y f yá ñ = á ñ∣ ∣ ∣ . Correspondingly, the definition of the
trace operation, which is a crucial part of the definition of density operator and calculation of thermodynamic
observables, will also have to bemodified as the following:

O gOTr , 7g
m

m må f f= á ñ{ } ∣ ∣ ( )

whereO is some arbitrary operator, and mf ñ{∣ } form a complete basis of theHilbert space andwe have assumed
that the spectrum is discrete and non-degenerate for simplicity. There are two simple facts regarding the
modified trace operation thatwill be useful in our later discussions. Thefirst fact is that the usual cyclic property
still holds in themodified version, i.e.
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AB BATr Tr . 8g g={ } { } ( )

The second fact is that trace is preserved under the unitary dynamics generated by equation (5):

O OTr Tr . 9g t g tf0 ={ } { } ( )

The proofs of the the above two facts are provided in the appendix.

3. Proof of Crooksfluctuation theorem inunbroken  -symmetric phase

The calculation of thework done on the system is based on the two-time energymeasurement [15, 23]. An
energy projectionmeasurement is performed on the system at the initial time t0, resulting in E t0( ), after which
the system is allowed to evolve by theHamiltonianH(t) till some final time tf, when a second energy
measurement is performed, resulting in E tf( ). Then thework done for this particular quantumprocess is given
byW E t E tf 0= -( ) ( ). Average is done over all the possible realisations of the two-time energymeasurement
and the probabilitymeasure is given by theGibbs distribution

Z

e e

Tr e
. 10

H H

g
H

r = =
b b

b

- -

-
( )

In order to prove theCrooksfluctuation theorem,wefirst calculate thework distribution for the non-
equilibriumprocess. Based on the two-time energymeasurement, thework distribution is given by [15]

P W W E t E t P t P t t , 11t t
m n

n f m m m n f,
,

0 0 0f0 å d f f f= - - ñ ñ  ñ( ) ( ( ( ) ( ))) (∣ ( ) ) (∣ ( ) ∣ ( ) ) ( )

where P tm 0f ñ(∣ ( ) ) denotes the probability for the system to be found in the eigenstate tm 0f ñ∣ ( ) for thefirst
measurement at t0 and P t tm n f0f fñ  ñ(∣ ( ) ∣ ( ) ) denotes the transition probability from tm 0f ñ∣ ( ) to tm ff ñ∣ ( )
under time evolution. Assuming the system is initially thermalised and follows the Boltzmann–Gibbs
distribution equation (10), thenwe have
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where t t t gm m m t0 0 0 0
f fP = ñá( ) ∣ ( ) ( )∣ is the projection operator for energymeasurement at t0. The transition

probability is given by

P t t t g U t . 13m n f n f t t t m0 , 0
2
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Following the samemethod used in [14] to prove theHermitian quantumCrooksfluctuation theorem,we
calculate the Fourier transformof thework distribution function

P u W P W

Z t t g U t

Z t U U

U U

d e

e e

1 Tr e e e

e e , 14

t t
uW

t t

m n

u E t E t E t
n f t t t m

g t t
uH t

t t
uH t H t

t

t t
uH t

t t
uH t

t

,
i

,

,

i
0 , 0

2

0 ,
1 i

,
i

,
1 i

,
i

f f

n f m m
f f

f
f

f

f
f

f

0 0

0 0
0

0 0
0 0

0

0 0
0

0

ò
å f f

=

= á ñ

=

= á ñ

b

b

- -

- - -

- -

˜ ( ) ( )

( )∣ ( )∣ ∣ ( ) ∣

( ) { }

( )

( ( ) ( )) ( )

( ) ( ) ( )

( ) ( )

where the completeness relation t t g 1m m m t0 0 0
f få ñá =∣ ( ) ( )∣ and the cyclic property of the trace have been used.

We also have for the time-reversed distribution, following [14] and setting v u ib= - + ,
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wherewe have used both of the two aforementioned facts for the trace operation defined in the non-Hermitian
formalism.We can see from the above derivations that in the non-Hermitian case, the characteristic function
(the Fourier transformof thework distribution) of thework performed during the non-equilibriumprocess can
again be identified as a correlation function, which is in a slightly different formwith the one given in [15] due to
themodified unitarity condition. Comparing equation (14)with (15), it immediately follows that

Z t P u Z t P v Z t P u i . 16t t f t t f t t0 , , ,f f f0 0 0 b= = - +( ) ˜ ( ) ( ) ˜ ( ) ( ) ˜ ( ) ( )
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After inverse Fourier transforming both sides of equation (16), we readily obtain

P W P W
Z t

Z t
P We e , 17t t t t

f W
t t

W F
, ,

0
,f f f0 0 0= - = -b b -D( ) ( )

( )
( )

( ) ( )( )

which is equivalent to equation (3), and hence theCrooksfluctuation theorem is proved in the non-Hermitian
quantummechanical setting. It has to be noted that the above derivations have assumed that the non-Hermitian
system is in its unbroken  -symmetric phase, and thus the dynamics is unitary, which is crucial for the proof.
It has been pointed out in [18] that the Jarzynski equality no longer holds if the dynamics is non-unitary.
Following the same argument, we can conclude that the Crooksfluctuation theorem also breaks downwhen the
 -symmetry is broken.

4. Conclusion and outlook

By deriving a similar expression [15] regarding the characteristic function of quantumwork using non-
Hermitian formalism, we have generalised the quantumCrooksfluctuation theorem to the non-Hermitian case
with unbroken  -symmetry. It has to be emphasised that whatwe have done assumes the system-bath
coupling is switched off during the driving process. For non-zero system-bath coupling, i.e. open quantum
systems, the effects of quantumdecoherence and dissipationwill have to be considered. There has been recent
theoretical work on quantum fluctuation theoremswhen decoherence is explicitly considered [24] and their
experimental confirmations [25]. Therefore, an interesting and natural extension of the present workwould be
to investigate the validity of non-Hermitian fluctuation theorems in the presence of quantumdecoherence,
whichwould involve generalising the open quantumdynamics to onewith non-HermitianHamiltonian.
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Appendix

The cyclic property of Trg is shown as the following:
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The invariance of Trg under the unitary dynamics generated by equation (5) is proved below:
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where use has beenmade of the unitarity condition equation (6) and the cyclic property equation (8). Herewe
have defined that t U tm f t t m, 0f0

f fñ = ñ∣ ˜ ( ) ∣ ( ) . It has to be noted that even if tm 0f ñ∣ ( ) is an energy eigenstate of the

initialHamiltonian H t0( ), the time-evolvedfinal state tm ff ñ∣ ˜ ( ) may not necessarily be the eigenstate of thefinal
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Hamiltonian H tf( ). That is why tm ff ñ∣ ˜ ( ) is used to distinguish it from the true energy eigenstate tm ff ñ∣ ( ) . This,
however, does not prevent tm ff ñ{∣ ˜ ( ) } to form a valid basis for theHilbert space at tf.
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