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Abstract
Near-field interaction between the monolayers of two-dimensional (2D) materials has been
recently investigated. Another branch under investigation has been the interaction between 2D
materials and zero-dimensional (0D) nanostructures including quantum dots (QDs) and metal
nanoparticles. In this work, we take one more step to engineering the interaction between those
systems. We probe the effect of mechanical strain on the non-radiative energy transfer (NRET) rate
from a 0D material, ZnCdSe/ZnSe QD, to a 2D material, monolayer (1L) WS2. It is known that the
mechanical strain causes large shifts to the exciton energies in 1L WS2. As a result, our calculations
show that strain can tune the NRET rate by engineering the overlap between the emission
spectrum of ZnCdSe/ZnSe QD and the exciton resonances of 1L WS2.

1. Introduction

1.1. Non-radiative energy transfer
Non-radiative energy transfer (NRET) is the process of exciton transfer from a donor to an acceptor without
the emission of photons. At short distances, NRET is the dominant decay channel due to coupling from the
near field [1, 2] and it is an integral part of solar cells [3], photosynthesis [4], and quantum-dot-based
light-emitting diodes [5]. NRET rate depends on certain factors such as spectral overlap between the
acceptor’s absorption and donor’s emission, screening of the electric field [6], the distance between the donor
and acceptor, and the thickness of the acceptor [7]. NRET rate also depends on the dimensions of the donor
and acceptor media; in this work, we inspect that from a zero-dimensional (0D) donor to a 2D acceptor.

1.2. Techniques for tuning and choice of strain
Numerous tools have been used to alter the dielectric properties of two-dimensional (2D) materials in the
last decade. Those include magnetic field [8], electrostatic gating [9, 10], changing the dielectric
environment (substrate and superstrate) [11–13], and strain tuning [14–20]. 2D materials can also be
integrated with special structures and materials such as nanocavities, photonic crystals, and metamaterials to
tune the light–matter interaction and even enable normally forbidden optical transitions [21–23]. As the 2D
materials are fairly strong, they can endure much larger strains than their bulk counterparts [24]. Strain
engineering has become a topic of interest in the literature as the optoelectronic properties of transition
metal dichalcogenides (TMDCs) strongly depend on strain [17, 25–31]. Studies have shown that strain
tuning has some advantages over other methods; it is dynamic, reversible, and can cause larger changes to 2D
materials as compared to other techniques. Strain tuning also has a fairly small effect on the exciton binding
energies and the relative energy separations between the excitons as compared to the other techniques
aforementioned [17]. Therefore, applying strain to the energy acceptor is an effective way to control the
NRET rate since it significantly influences the spectral overlap of the acceptor and the donor media [17].

On that account, we compute the strain-dependent dielectric function of a 2D material. We calculate the
NRET rate as a function of strain and show that it can be substantially tuned by purely mechanical means.
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Our results exemplify the use of mechanical strain as a means of shedding light on the interaction between
low-dimensional material systems.

1.3. Choice of materials
We choose monolayer (1L) WS2 as the acceptor. We choose it among the commonly used semiconducting
group-6 TMDCs (WS2, WSe2, MoS2, MoSe2, and MoTe2); as it has the smallest A exciton linewidth at room
temperature, which is also the least sensitive to strain [2, 17, 19, 32]. As a comparison, we investigate the
NRET rate from QDs to 1L graphene. As graphene does not exhibit resonances in the emission range of the
QD, the spectral dependence of the NRET rate is weaker. Furthermore, the strain does not cause significant
changes to the dielectric function of graphene, making it a reference material for the strain-tuned NRET
study in this work.

We choose the emitters as core–shell QDs with spherical symmetry because they possess high PL yield
and it would be easy to observe any decrease in their PL. Furthermore, their band-edge excitons exhibit a
long lifetime before recombination that leaves enough time for the excitons to transfer non-radiatively. Thus,
it is intriguing to study the NRET between a QD and a 2D material as its substrate. As their band gaps can be
engineered [33, 34], we pick one with a band gap close to that of the 2D material. We use ZnCdSe/ZnSe QDs
[35–37].

1.4. Structure
In this work, we consider QDs placed on a 2D material without any spacing material, with air above and
below the 0D-2D system. We assume that QDs are excited only, and there is no emission of photons from the
2D material.

2. Methods

2.1. Calculation of NRET
To calculate the NRET rate from the QD to the 2D material, we use the continuummodel derived by Gordon
and Gartstein [38]. We do not apply the Förster resonance energy transfer model as it treats the thin film
acceptor as a combination of non-interacting point-like dipoles which underestimates the dielectric
screening effect [39].

In the Gordon–Gartstein model, the energy donor acts like a classical dipole and exhibits spontaneous

decay with a rate of Γo =
4k3 |⃗p|2
3h̄ in vacuum, where k is the wave number and |⃗p| is the (effective) transition

dipole moment. As the QDs possess spherical symmetry and their size is much smaller than the wavelength
of light, they can be treated as dipoles centered at the core of the QDs for spontaneous emission purposes
[40]. In the electrostatic limit (c→∞), ΓQD−2D is the NRET rate from a point dipole to an anisotropic 2D
acceptor which can be expressed as follows:

ΓQD−2D

Γ0
=

2(h̄c)3

3(Ed)3
× Im

∞̂

0

dρρ2e−2ρ ×
(
β2 − 1

)(
1− e−2ρδt/d

)
(β+ 1)2 − (β− 1)2e−2ρδt/d

 (1)

where d= 3.32 nm, the radius of the QDs, is taken as the distance between the acceptor and the donor [41], t
is the thickness of the thin film acceptor (0.62 nm per WS2 layer [42], 0.33 nm per graphene layer [43]),
β =

√
ε∥ε⊥ (effective permittivity of the acceptor) and δ =

√
ε∥/ε⊥ (dielectric anisotropy of the acceptor),

where ε∥ is the in-plane and ε⊥ is the out-of-plane dielectric function of the acceptor. We treat the WS2 layer
as an infinitely large homogeneous slab with a finite thickness of t. As mentioned in section 1.3, we treat the
QDs as finite-size balls with spherical symmetry.

2.2. Dielectric function ofWS2
We need the in-plane and out-of-plane dielectric function of 1L WS2 for the NRET calculations. We take ε⊥
of 1L WS2 to be constant (∼7) in the spectral region of interest (1.5–3.2 eV) [44]. We also take the
energy-dependent ε∥ of 1L WS2 (ε

1L WS2
∥ ) from the literature [45]. In the energy range of interest, ε1L WS2

∥
exhibits 4 features (A, B, C, D excitons/resonances). We model ε1L WS2

∥ as the sum of 4 Lorentz oscillators,
corresponding to 1 oscillator for each of those features as expressed in equation (2),

ε∥ (E) = εb +
4∑

m=1

fm
E2m − E2 − iEγm

. (2)

Here E is the photon energy, fm is the oscillator strength, γm is the linewidth, and Em is the resonance
energy of themth oscillator, εb is the background dielectric constant representing the contribution of the

2



Nano Futures 7 (2023) 025006 E Şimşek and B Aslan

Figure 1. Experimentally obtained data (solid curves) [45] and fit (dashed curves) of the imaginary (left) and real (right) part of
the dielectric function of 1L WS2. Dashed vertical lines indicate the peak energy of the A, B, C, D features. Reprinted figure with
permission from [45], Copyright (2023) by the American Physical Society.

higher energy resonances not included in our model. We first fit the imaginary part of the experimentally
obtained dielectric function to the superposition of 4 Lorentzian oscillators. We calculate the real part of the
dielectric function using the results of the fit to the imaginary part. We optimize the calculated real part by
adjusting εb and make sure that it is in good agreement with the experimentally obtained ε∥ [45]. We
compute the dielectric function of 1L WS2 from equation (2) using the fit results. Figure 1 shows the
experimentally obtained values of ε1L WS2

∥ and the results of the fits. As we do not take into account the
contributions from features outside the range of the fit, it is impossible to fully capture the experimental
results. As a result, there is a large mismatch beyond the C feature energy in the real part of ε∥. As the NRET
will occur around the A exciton energy, the mismatch beyond the C feature is insignificant for our
calculations.

3. Results and discussion

3.1. Strain-dependent dielectric function ofWS2
Strain affects the band structure of 2D materials resulting in a change in their dielectric function [25–31].
Therefore, to compute equation (1) as a function of strain, we need to obtain the dielectric function of the
host material as a function of strain. To do so, we take the Lorentzian components mentioned above into
account. For that, we make use of the experimentally available data on the effect of strain on the resonances of
1L WS2. We refer to uniaxial strain in this work unless otherwise specified. A exciton shifts by−45.2 meV/%
strain, B exciton shifts by−35.7 meV/% strain, and C feature shifts by−20.7 meV/% strain in 1L WS2 [17,
19]. In our calculations, we ignore the shift of the D feature due to the lack of data in the literature. As the D
feature is far from the QD emission range, it does not affect the calculations. We ignore the effect of strain on
the oscillator strengths and the line widths; as the former is small and the latter is relatively small for WS2 [2,
17, 46]. We also assume that the aforementioned statements are valid over the range of strain values reported
in this study. We compute the strain-dependent Lorentzian lineshapes as described above, yielding the
strain-dependent dielectric function. Figure 2 shows the strain-dependent real and imaginary parts of
ε1L WS2
∥ . With that, we calculate the rate Γ/Γ0 as a function of strain in the energy range of 1.5–3.2 eV.

3.2. Computation of NRET rate
We need to consider the emission spectrum of the QD samples. As QDs are mostly found in aggregates,
rather than isolated particles, the inhomogeneity in the collection result in PL spectra with Gaussian
lineshape. For that reason, we fit the PL of such a sample of ZnCdSe/ZnSe QDs to a Gaussian line shape and
obtain a peak at 613.2 nm [47].

We apply the classical model to calculate the NRET rate between the QD and the 1L WS2 [6, 7, 10].
Figure 3 shows the NRET rate (normalized by the dipole emission to vacuum), ΓQD−2D

Γ0
, as a function of

energy for selected strain levels. As the thickness of the material is very small, the screening effect (governed
by the imaginary part of ε∥) is not dominant. As a result, the NRET rates in figure 3 resemble the imaginary
part of the ε∥ of WS2. Figure 3 also shows the product of QD’s normalized PL and NRET rate under strain as

3
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Figure 2. Calculated strain-dependent real (left) and imaginary (right) part of the in-plane dielectric function (ε∥) of 1L WS2.

Figure 3. (Left): Calculated NRET rate from ZnCdSe/ZnSe QD to monolayer WS2 for selected strain levels and to monolayer
graphene (normalized by dipole emission in vacuum), (Right) Normalized PL spectrum of QD and PL multiplied by the
calculated rate in (left).

a function of energy, PLQD × ΓQD−1L WS2
Γ0

. The rate is dominated by the overlap between the A exciton peak in
Im[ε∥] of 1L WS2 and the QD PL spectrum which is strongly dependent on the strain applied.

3.3. Total NRET as a function of strain
To obtain the NRET rate for this specific emission spectrum, we integrate the product of the PL spectrum
and Γ/Γ0 and normalize by the total emission of the QD:

Total(s) =

´ 3.2 eV
1.5 eVΓ/Γ0 (s,E)×PLQD (E)dE´ 3.2eV

1.5eVPLQD (E)dE
. (3)

Here, s is strain, E is energy, PLQD is the PL emission of the QD. We plot this strain-dependent function
and found the strain-dependent Γ/Γ0 rate between the QD and 1L WS2 theoretically. In figure 4, we plot the
total NRET rate between a ZnCdSe/ZnSe quantum dot and 1L WS2 as a function of uniaxial strain. We see
that the NRET rate is nearly maximized at around 0% strain due to the overlap between the emission
spectrum of the QD and the absorption due to the A exciton in unstrained WS2. At larger strain levels, the A
exciton is significantly redshifted so that the NRET rate is highly reduced to a minimum at around 4% strain.
For strain levels larger than about 4%, the B exciton starts overlapping with the QD peak and the NRET rate
starts increasing again. The ratio of the maximum to minimum NRET rate is around 4 which can be
achieved with a relatively small range of 4% uniaxial strain. Biaxial strain induces a redshift to the A exciton
in 1L WS2 approximately twice that of the uniaxial strain [48]. Therefore, a 2% biaxial strain, which was
demonstrated on suspended MoS2 [20], would show the same tuning effect.

It would be good to consider the validity of our assumption in 1.3 that there is no emission from the 2D
material. That assumption would require the quantum efficiency of the 2D material to be much smaller than
that of the QD on the 2D material. As shown in the literature, QDs placed on 2D materials will exhibit a

4
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Figure 4. Total NRET rate between a 0D, ZnCdSe/ZnSe quantum dot, and a 2D material, 1L WS2, as a function of strain. The
inset is an illustration of the strain-dependent transfer of an exciton created in the quantum dot to the 2D material.

smaller PL yield than those placed on a non-dissipative substrate (such as quartz) due to the very NRET
effect [6]. However, 2D materials have quantum yields of less than 1% [49]. As thicker 2D layers have much a
smaller quantum yield than monolayers, in the case the PL of the two systems are indistinguishable, thicker
2D layers will satisfy that requirement much more easily [50].

4. Conclusion

In conclusion, our calculations show that by utilizing strain engineering, it is possible to tune the NRET
interaction between a 0D and a 2D material, 1L WS2. The ground state A exciton in 1L WS2 has alarge
binding energy and small spectral line width at room temperature. As a result, a broad range in the dielectric
function of the material is mainly influenced by the ground state A exciton only. That way the A exciton can
be shifted over a large spectral range to tune any interaction governed by the dielectric function in 1L WS2.
Including the sensitivity to mechanical strain, all these factors enable strong tuning of NRET via strain. Our
calculations can be repeated for other 2D materials and various thicknesses. The results can be tested with
experiments and utilized for applications such as strain detection sensors, strain-tuned near-field
phenomena, and strong coupling [51].

Data availability statement

All data that support the findings of this study are available online.
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