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Abstract
Analysis of quantum error correcting codes is typically done using a stochastic, Pauli channel error
model for describing the noise on physical qubits. However, it was recently found that coherent errors
(systematic rotations) on physical data qubits result in both physical and logical error rates that differ
significantly from those predicted by a Paulimodel. Herewe examine the accuracy of the Pauli
approximation for noise containing coherent errors (characterized by a rotation angle ò)under the
repetition code.We derive an analytic expression for the logical error channel as a function of arbitrary
code distance d and concatenation level n, in the small error limit.Wefind that coherent physical
errors result in logical errors that are partially coherent and therefore non-Pauli. However, the
coherent part of the logical error is negligible at fewer than - -( )d 1n

error correction cycles when the
decoder is optimized for independent Pauli errors, thus providing a regime of validity for the Pauli
approximation. Above this number of correction cycles, the persistent coherent logical error will cause
logical failuremore quickly than the Paulimodel would predict, and thismay need to be combated
with coherent suppressionmethods at the physical level or larger codes.

1. Introduction

Progress in fault-tolerant quantum computation relies on the ability to simulate the performance of quantum
error correcting codes. For example, the numerical prediction of a high fault-tolerant error threshold for the
surface code [1] is one of themotivating factors in the significant recent experimental effort to realize topological
codes [2–4]. Numerical predictions of performancemetrics such as the fault tolerant threshold and the logical
failure rate typically assume a stochastic (incoherent) and uncorrelated Pauli channelmodel for physical qubit
errors, since thismodel is easiest to simulate.However, recent findings indicate that a Pauli channel significantly
underestimates the diamond norm error rate of coherent errors—errors that are both unitary and slowly varying
relative to the gate time [5–8]. Such errors can occur, for example, due to systematic control noise, cross-talk,
global externalfields, and unwanted qubit–qubit interactions. It is therefore important to examine the accuracy
of the Pauli approximation for coherent errors in the context of quantum error correction (QEC).

A variety of results have recently appeared that evaluate the impact of realistic noise onQEC. The numerical
work of [9–11] has lent support to using a Paulimodel for certain types of incoherent errors. These authors
performed simulations ofQEC for amplitude and phase damping and the corresponding Pauli-twirl
approximations, finding no significant difference in logical error rates. This is consistent with a recent result of
Wallmanwhich states that non-unital deviations fromPauli channels (as in amplitude damping) do not
significantly impact the error rate [7].

A different result was obtained by Fern et al [12] in the case of coherent errors. Using a formalism developed
byRahn et al [13] for general noise, these authors found that coherent errors in the physical error channel can
lead to coherent errors in the logical channel, asmanifested by off-diagonal elements in the superoperators for
these channels. For the specific example of the d=3 Steane code, [12] found that an off-diagonal element of
order ò in the unencoded error superoperator leads to an encoded (logical) error superoperatorwith off-
diagonals of order  3 and diagonals of order  4. This leads to a diamond-distance logical error rate of order 1
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greater thanwould be obtained by replacing the physical error by its Pauli twirl. The same result was also
obtained numerically recently [14].

Another recent paper has reported diamond-distance logical error rates for surface codes up to distance
d=10 for coherent physical errors [15]. That work alsofinds discrepancies between coherent physical errors
and their Pauli twirl approximation that are consistent with coherent errors at the logical level.

Despite these insights, it remains a challenge to obtain analytic expressions for the logical errormap for
general noise as a function of arbitrary code distance and (for concatenated codes) concatenation (i.e., for
arbitrarily large codes). Such information can be useful for determining parameter regimeswhere a Paulimodel
is valid, and for providing independent validation of numerical results. Indeed, [12] considered general
channels, deriving upper bounds on superoperator coefficients for the logical error, but not their actual value
except for the d=3 Steane code. The results of [13]were limited to diagonal channels, while [14, 15] evaluated
the logical noisemaps numerically, a techniquewhich does notmake explicit the scaling of the logical error
parameters with d. The latter references also considered coherent and incoherent errors individually but not
simultaneously.

Our aim in the present work is to obtain analytic expressions for the logical errormap due to a combination
of coherent and incoherent physical noise, since both are present in real qubits.Weworkwith the repetition
code, which, though not a full quantum code in that it cannot correct bothX andZ errors, has the advantage of
being analytically tractable and yet nontrivial. Indeed, we find that it reproduces the key features of generic
codes, saturating the bounds on error channel parameters under concatenation given in [12].

Our analysis is restricted to the case of a quantummemory (or of gate-independent errors) and perfect
syndrome extraction. Consideration of gate-dependent and syndrome extraction errors is left for futurework.
We also do not consider coherent leakage errors [6, 16] or coherent errors due to residual qubit–qubit
interactions.

We derive an analytic expression for the logical error channel for arbitrary code distance d and concatenation
level n, in the small error limit. (By small error limit wemean that the error rate ismuch less than one,
irrespective of the threshold. In practice, our results apply to error rates below threshold.We givemore precise
definitions below.)Weuse a decoder optimized for independent Pauli errors—i.e., a decoder that selects the
minimum-weight Pauli error consistent with the syndrome and associates a corresponding Pauli recovery
operator.Wefind that the coherent contribution to the logical error—as quantified by the infidelity of the entire
quantum computation—becomes important only after a timescale (number ofQEC cycles) tcoh that increases
exponentially with the size of the code. (See equation (25) and the accompanying discussion.)

Our analysis predicts the same scaling of the failure ratewith the errormodel parameters as one obtains
using the diamondnorm errormetric. However it emphasizes the nature of the error process as it unfolds in
time. In particular, the coherent errorwill not be important atmodest code distances for which tcoh is longer
than the correlation time of the physical error.When this is the case, replacing the physical error by its Pauli-
twirl accurately determines the logical error probability for quantum computations of arbitrary length.When it
is not the case, therewill be a critical number of correction cycles abovewhich the persistent coherent logical
errorwill cause logical failuremore quickly than the Paulimodel would predict, and thismay need to be
mitigatedwith coherent suppressionmethods at the physical level or larger codes. One promisingway to do this
is by randomization over gate sequences, which several recent papers have shown can help to combat the
coherence problem [17–22].

1.1. Repetition code
Webeginwith a brief review of the repetition code. Formore details see, e.g., [23]. The repetition code onN
qubits (code distance d=N) is defined by the encoding ñ = ¼ ñ∣¯ ∣0 00 0 , ñ = ¼ ñ∣ ¯ ∣1 11 1 . The logicalX
operator, which flips ñ∣0̄ to ñ∣1̄ and vice versa, is denoted X̄ and is equal to

= ¯ ( )X X X X . 1N1 2

(Tensor product signs betweenXʼs are implied; they have been omitted for notational simplicity.)Bit flips (X
errors) are detected bymeasuring the parity of neighboring qubits, which is given by the eigenvalues
s s s -( ), , , N1 2 1 of the stabilizer operators =S Z Z1 1 2, =S Z Z2 2 3,K, =- -S Z ZN N N1 1 . Stabilizer eigenvalues
are±1 corresponding to even or odd parity, and the set of eigenvalues is called the syndrome. -N 1 stabilizers
are required to encode a single logical qubit.

When the syndrome ismeasured, the state is projected onto the subspace of theHilbert space corresponding
to that syndrome. E.g., if the syndrome is ¼( )1, 1, , 1 then the state after syndrome extraction is in the error-free
subspace, known as the codespace. If on the other hand a faulty syndrome is detected, the error can be corrected
byflipping (applying theX operator to) the faulty qubit(s), thereby returning the state to the codespace.We do
not pause to discuss the procedure for syndromemeasurement sincewe assume this is donewithout error.
Importantly, we note that the association of a syndrome to a particular error is done in amaximum likelihood
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rather than deterministic sense—multiple errors can have the same syndrome (e.g.,X1 and X X2 3 for theN=3
code) andwe choose the onewhich ismost likely given the syndrome. In this wayweminimize the error of the
encoded (logical) bits.

1.2. Errormodel
For anN-qubit register, we consider the error

   = Ä Ä Ä ( )( ) , 2N

where each  is a single-qubit error channel. This formof error describesmany of the physically relevant noise
processes affecting qubits, such as cross-talk, systematic control errors, relaxation, dephasing, and external
fields. An important noise source not described by equation (2) is that due to qubit–qubit interactions.

We assume the following form for the single-qubit error acting on an arbitrary input state ρ perQEC cycle.

    



r r r
r

= - +
= L L

- -[ ] ( )
◦ [ ] ( )

q qX X1 e e e e

, 3

X X X X

q

i 2 i 2 i 2 i 2

where q is the probability of a stochastic bit-flip and ò is the angle of a small rotation error that is constant in time.
We can relate these parameters to a physical dephasing rate γ and systematic rotation at rateω (e.g., from cross-
talk or an externalfield) through themaster equation

r w
r g r r= - + -[ ] ( ) ( )

t
X X X

d

d
i

2
, , 4

by setting  wt= and = - gt-( )q 1 e 22 for a gate time (QECcycle time) τ [24].
Equation (3) describes the composition of a coherent process, L , and an incoherent process, Lq. The latter

is an appropriate description for environmentally induced decoherence as well as for random coherent
rotations, such as those due tofluctuating control noise. These are described by the average overmany instances
of the operator = q-U e Xi 2 applied to the quantum state, where the angle θfluctuates fromoneQEC cycle to the
next. (Hence q is the infidelity of the operatorU, which can be related [25] to the rms rotation angle as

q=q 4rms
2 .)Therefore Lq and L are suitable for describing the high and low-frequency components of a

stochasticX rotation error. Although this errormodel is somewhat restrictive in that the channels Lq and L
commute, it captures the relevant impact of coherent errors on qubit errormetrics [5, 6].

We note that in general, it is possible to have a different rotation angle  j and a different bit-flip rate qj for
each qubit.We are interested in capturing the properties of errors that have broad spatial extent such as external
fields. It is therefore only important that these parameters have similar (non-zero)magnitude. Choosing them
all identical as in equation (2) simplifies the calculations without sacrificing any significant generality. The sign of
ò is also not important for this discussion, and sowe choose   0 throughout.

2. Analysis

Upon logical encodingwith the repetition code and using a decoder optimized for correcting independent Pauli
errors, we obtain an effective errormodel for the logical qubit that has the same form as equation (3) butwith
renormalized parameters q̄ and ̄ . Thismirrors the general transformation found in [12], and stems from the
fact that unital and trace preserving physical errors lead to unital, trace preserving logical errors. Such channels
can be expressed as Pauli times a unitary. Non-unital deviations fromPauli channels were found in [7] to not
change the error rate significantly sowe do not consider themhere.

We focus on lowphysical error rates,  q, 1, asmodern qubits routinely operate with an average error per
single-qubit gate of 10−3 [3] down to 10−6 [26]. In this regime, wefind the following expressions for the
parameters q̄ and ̄ of the logical qubit to leading order in the physical parameters q and ò.




=
-

-
⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠¯

( )
( )d

d
2

1

1 2 2
, 5

d


=

-
+

+⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟¯

( )
( )

( )
q

d

d
q

1 2 4
. 6

d2 1 2

Here d=N is the code distance. The computation is elementary but lengthy. Details are given in the appendix.
Equations (5) and (6) saturate the bounds in [12]. In terms of our parameters, these bounds are: ̄ is atmost
( )d and - =¯ ¯∣q q 0 is atmost ( )2 . The second of these bounds is not tight when q=0, and so cannot be

used to determine the impact of ̄ on the logical error rate.
We note that the condition of low physical error rates,  q, 1, that was used to derive equations (5) and

(6), is independent of theQEC threshold.However, for the analysis tomake sense the error ratemust also be
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below threshold.We shall see below (see figure 2) that the error rate found from equations (5) and (6) decreases
with increasing code distance and/or concatenation level for small enough ò and q. This indicates the existence
of a threshold for our errormodel and the consistency of the small error conditionwith a below-threshold
regime.

2.1.Discussion of decoding protocol
The logical error parameters, equations (5) and (6), were found using the standard Pauli decoder, which selects a
recovery operator corresponding to the smallest-weight Pauli error that is consistent with themeasured
sydrome [23]. Since the stabilizers of a repetition code of distance d concatenated n times are the same as those of
a repetition code of distance dn concatenated once (a fact that can be readily verified bywriting out the stabilizers
as defined in section 1.1) it follows that the optimal Pauli decoder for n levels of concatenation of a distance d
repetition code yields equations (5) and (6)with d replaced by the total number of qubits (in this case, =N dn):




=
-

-
⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠¯

( )
( )d

d
2

1

1 2 2
, 7n

n

n

dn


=

-
+

+⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟¯

( )
( )

( )
q

d

d
q

1 2 4
. 8n

n

n

d2 1 2n

For a generic concatenated code, the optimal decoding could be computed using amessage passing
algorithm [27]. However, for generic codes it is also possible that a hard decoder (an algorithm that computes
recovery operations independently at each concatenation level)would in some cases be preferable to the optimal
one, for example if the computational resources for decoding are limited [28]. The result of a hard decoder
optimized for Pauli errors at each concatenation level also follows from equations (5) and (6). In this case the
equations give a recursion relation for the logical error between concatenation levels n and +n 1 (n= 0 is the
physical level):




=
-

-
+ ⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
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¯ ( )d

d
2

1

1 2 2
, 9n

n
d

1


=

-
++

+⎛
⎝⎜

⎞
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⎠⎟¯
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q
d

d
q

1 2 4
. 10n

n
n

d

1

2 1 2

The number of qubits is dn for each logical qubit at level n.
We note that a fully optimal decoder for the errormodel equation (3) (not just optimal for Pauli errors)

would include coherent rotations to compensate for the ò parameter in equation (3). In this paper we do not
consider such a decoder, and restrict ourselves to Pauli decoders, for the following reasons. (1)Wedonot
assume the parameters q and ò are known. If theywere, it is possible the physical qubits could be tuned in
advance to theminimum level of ò allowed by hardware. Assuming such a tuning has been done, it would not be
possible to implement the coherent parts of recovery operations intended to reduce ò further, as this would
require afiner level of tunability than available. (2)Adecoder compensating for coherent errors directly would
give results that are highly specific to our particular choice of code, whichwouldmake the analysis less general.

2.2. Coherent errors and code concatenation
Wenow compare the dependence of coherence and logical error rates on code concatenation for the optimal
Pauli decoder, equations (7) and (8) and the hard Pauli decoder, equations (9) and (10). As discussed in [6], a
convenientmetric for quantifying the coherence of the error is the ratioD/r of the diamond distanceD [29] to
the average infidelity r [25, 30] of the channel. For the error channel, equation (3), these quantities are [6]

 = +[ ( ) ( )] ( )r q
2

3
cos sin 2 , 112

= - -( ) ( )D r q q
3

2
1 . 12

For the purely incoherent case,  = 0, we have = =D q r3

2
. Therefore the ratioD/r should tend to 3/2 from

above as the coherent contribution becomes negligible.
We define a coherencemetric,

= ⎜ ⎟⎛
⎝

⎞
⎠ ( )c

D

r
log

2

3
, 1310

4

QuantumSci. Technol. 3 (2018) 015007 DGreenbaumandZDutton



which is 0when the channel is incoherent and increases with increasing coherence in the channel. Infigure 1we
plot the coherencemetric c for d=3, =n 0, 1, 2 and a broad range of initial values of  q, 1. (For
illustration, we choose a range that is well beyond the capabilities of present-day qubits.)At the physical level
(n= 0) andfirst logical concatenation level (n= 1), both the optimal and hard decoders give the same results.
For the hard decoder, the lower left panel offigure 1 shows that the error is effectively incoherent (c= 0) in the
entire range of ò and q for n=2. For the optimal decoder, d=3, n=2 is equivalent to d=9, n=1, and the
lower right panel offigure 1 shows that the logical error contains some level of coherence at n=2 for a range of ò
and q.

These results can be understood as follows. In the limit of low error rate that we are interested in ( q, 1)
wehave that  ¯ ¯q , 1n n in equations (7) and (8) or equations (9) and (10) for any n. Equations (11) and (12) then
give




»

+

+

¯
¯

¯ ¯

¯ ¯
( )D

r

q

q

3

2

4

4
. 14n

n

n n

n n

2 2

2

Therefore the error channel is incoherent if  ¯ q̄n n. For the hard decoder, equations (9) and (10) show that this
occurs when both n 2 and d 3 for any initial  q, 1. Hence only two levels of concatenation are
necessary to obtain a logical error channel that is effectively stochastic (i.e., c= 0), for any size repetition code.
For the optimal decoder on the other hand, taking the ratio of ̄n and q̄n in equations (7) and (8) shows that
 ¯ q̄n n can fail to holdwhen  ⪆ q. The regionwhere theN=9 logical error has non-negligible coherence

Figure 1.Coherence of the error, = ( )c log D

r10
2

3
, for the physical qubit (concatenation level n = 0) and logical qubit at concatenation

levels n=1 and n=2 of the distance 3 repetition code, over a broad range of values  q, 0. Larger values indicate greater
coherence. All plots refer to the same range of initial values of ò and q in equation (3) for the physical error. For n=1, the hard Pauli
decoder and optimal Pauli decoder are identical. For n=2, the two decoders differ. The bottom two panels show that the n=2
logical error under the hard decoder is effectively incoherent (c = 0)while under the optimal decoder there is significant coherence for
some ranges of ò and q.
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(lower-right panel infigure 1) satisfies this inequality.When   q, for example, we have  ~¯ q̄ 1n n , which is
much greater than one for   1.

It would therefore appear that the hard decoder is better atmitigating coherent errors than the optimal
decoder. Figure 2 sheds additional light on thematter. Here the logical rotation angle ̄ and the diamondnorm
logical error rate D̄ for both decoders are plotted versus the total number of qubits =N dn for a range of
distance d and concatenation level n. The values shown are for a single choice of physical parameters,  = 0.1
and q=0. This choice wasmade because both ̄ and D̄ are largest when q=0 for a given total physical error
rate » +( )r q2 4 32 . Also, it satisfies our requirement that   1and gives a total physical error rate that is
below threshold, as can be seen in Figure 2, where the logical error rate decreases with code size.

Both decoders show a similar suppression of ̄ withN. Indeed, equations (7) and (9) show that  µ¯n
dn
for

both decoders. However, the optimal decoder suppresses the logical error rate D̄ muchmore rapidly withN
than the hard decoder. The reason is that the optimal decoder ismore effective at suppressing incoherent errors,
asmay be expected from a decoder optimized for Pauli errors.

Hence, while the hard decoder practically eliminates the relative coherence of the error for n 2, the
optimal decoder provides a better logical error rate for a given number of qubitsN. This illustrates the types of
performance tradeoffs that can play a role when selecting a particular decoder and values of d and n for a given
total number of qubitsN.

2.3. Logical time to failure
Wenow examine the logical time to failure of the encoded qubit. As a failuremetric we use the diamond norm
and also theworst-case infidelity [7], since the latter naturally arises in a simulation of the time evolution.We
show that bothmetrics give the same result for the failure time. Theworst-case infidelity aftermQEC cycles is
defined as

y r yº - á ñ
y ñ

( ) [ ( )∣ ( )∣ ( ) ] ( )
∣ ( )

w m mmax 1 0 0 . 15
0

This is themaximumprobability of logical failure over all initial states. Here r ( )m is the state of the logical qubit
aftermQEC cycles,

 r y y= ñá  ( ) ¯ ◦ ◦ ¯ (∣ ( ) ( )∣) ( )m 0 0 . 16
m times

The noise operator ̄ is the single qubit operator, equation (3), with ò, q replaced by ̄ , q̄ from equations (5) and
(6). Equation (15) is satisfied for some initial state *y yñ = ñ∣ ( ) ∣ ( )0 0 . For the noise operator ̄ , *y ñ∣ ( )0 is any
state of the form q qñ - ñ( )∣ ( )∣cos 0 i sin 1 . This is a state whose Bloch vector is in the y–z plane and is therefore
maximally affected by theX-rotation in equation (3).

Figure 2. Logical rotation angle (left) and diamond normof the logical error (right) as a function of the total number of qubits,
=N dn for code distances = ¼d 1, 3, 21 and concatenation levels =n 1, 2, 3. For the hard decoder, values of (¯ )log10 and

( ¯ )Dlog10 corresponding to different concatenation levels lie on lines with different slopes. For n=1 the hard decoder and optimal
decoder coincide. The values shown are for the initial condition  =( ) ( )q, 0, 0.1 in equation (3).
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Using equation (3) and the fact that Lq and L commute, we have

   = L L º L L  ¯ ◦ ◦ ¯ ( ) ◦ ( ) ◦ ( )¯ ¯ ¯( ) ¯ ( ), 17
m

q
m m

q m m

times

where Lm denotes the composition ofΛwith itselfm times and ¯ ( )q m , ̄ ( )m are the effective errormodel
parameters form compositions of the error channel. (Weuse the notation =¯ ( ) ¯q q1 ,  =¯ ( ) ¯1 .)

Since the parameter q (or q̄) in equation (3) can be parameterized as = - gt-( )q 1 e 22 (see comments after
equation (4)), for some time interval τ, we canwrite = - g t-( ) ( )q m 1 e 2m2 . Rearranging this expression and
using q̄ instead of qwefind

= - -¯ ( ) [ ( ¯) ] ( )q m q
1

2
1 1 2 . 18m

Since ̄ ( )m is simply the rotation angle for the composition ofm rotations, each by angle ̄ , we have

 =¯ ( ) ¯ ( )m m . 19

Theworst-case infidelity, equation (15), of the error channel, equation (17), is




= + ⎜ ⎟⎛
⎝

⎞
⎠¯ ( ) ¯ ( ) ( ¯ ( )) ¯ ( ) ( )w m q m m

m
cos sin

2
. 202

This formula can be derived by expressing equation (15) in terms of the Liouville representation [31] and using
equations (A.33), (A.34) in the appendix for the error channel, equation (3), in this representation.Wenote that
theworst-case infidelity is 3/2 the average infidelity, see equation (11).

Equation (20) predicts logical failure when ~¯ ( )q m 1or  ~¯ ( )m 1. According to equations (18), (19), this
occurs when ~ ¯m q1 or ~ ¯m 1 , whichever gives the smaller value form. The second condition is clear from
equation (19). Oneway to derive the condition involving q̄ is as follows. Assuming m 1, the quantity

-( ¯)q1 2 m is well approximated by - ¯e mq2 . Equation (18) then becomes » - -¯ ( ) ( )¯q m 1 e 2mq2 , which is( )1
when the quantity ¯mq2 in the exponent is( )1 . Our assumption that m 1 is therefore justified, since q̄ 1
(which follows from equation (6) and our initial assumption that  q, 1). Denoting the number ofQEC
cycles to logical failure as mfail, we therefore have

= ( ( ¯ ¯)) ( )m q1 max , . 21fail

The same result is found using the diamond distance as an errormetric. Indeed, putting equation (11) in
equation (12) gives the diamond distance aftermQECcycles as


= + - ⎜ ⎟⎛

⎝
⎞
⎠¯ ( ) ¯ ( ) ( ¯ ( )) ¯ ( ) ( )D m q m q m

m
1 2 sin

2
. 222 2

Therefore ~¯ ( )D m 1when either ~¯ ( )q m 1or  ~¯ ( )m 1, as before.
Equation (20) also predicts a crossover from stochastic behavior, »¯ ( ) ¯w m mq , to coherent behavior,

»¯ ( ) ( ¯ )w m msin 22 , above a critical number mcrit ofQEC cycles, which satisfies  ¯ ¯m q m1, 1crit crit . In
the limit  ¯ ¯q m, 1 , equation (20) becomes


» + ⎜ ⎟⎛

⎝
⎞
⎠¯ ( ) ¯ ¯ ( )w m mq

m

2
. 23

2

This is a sumof two error rates, the first, ¯mq , from the incoherent channel L ¯mq and the second, ( ¯ )m 2 2, from
the coherent rotation, L ¯m . Setting these error rates equal to each other gives


~

¯
¯

( )m
q2

. 24crit 2

Inserting the values of ̄ , q̄ from equations (5) and (6) into (24)wefind that the crossover from stochastic to
coherent behavior of the logical error occurs at

~ - ( )m 1 , 25N
crit

1

where =N dn is the number of qubits, which holds when q=0. In contrast, the number ofQEC cycles to
logical failure occurs at ~m 1 N

fail , which is ( )1 cycles greater than the crossover point. Therefore our
initial assumption that  ¯ ¯m mq, 1 form below mcrit was valid.

It is instructive to compare these results to the stochastic errormodel defined by the Pauli-twirl of
equations (2) and (3). This gives  =¯ 0 in equation (5). Theworst-case logical failure probability is then equal to
thefirst term in equation (23), which is approximately the stochastic part of the full error probability. Thismodel
predicts a logical time to failure proportional to = +( )m 1 N

fail
st 1 . This is ( )1 longer (moreQEC cycles)

thanwhen the coherent part of the errorwas included.
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Weconclude that a stochastic errormodel would correctly predict the logical failure rate up to mcrit QEC
cycles, beyondwhich it is necessary to take account of the coherence of the error. If the correlation time of the
coherent error is less than t t= mcoh crit QEC, where tQEC is the duration of aQEC cycle, then the logical error is
effectively stochastic and can be obtained by replacing the physical error, equation (3), by its Pauli twirl.

Figure 3 plots theworst-case failure probability vs number ofQEC cycles for physical error parameters
 = 0.1, q=0 and for = =N d 3. The blue curve is the result of aMonte Carlo simulation of three data qubits
initialized to *y ñ = ñ∣ ( ) ∣0 0 , each subject to the error operator, equation (3), once perQEC cycle. This is
compared to the theoretical curve, equation (20), as well as the coherent and incoherent parts of equation (23).
The simulation results show good agreementwith equation (20). The crossover from stochastic to coherent
behavior occurs at ~ =m 1 100crit

2 , consistent with the discussion above.

3. Conclusion

ImplementingQEC for coherent errors will be an important challenge for realizing scalable fault-tolerant
quantum computing. It is nowunderstood that despite the projective nature ofQEC stabilizermeasurements,
coherent physical errors give rise to a logical error that is also coherent to some extent [12, 14, 15]. Several
strategies formitigating coherent errors have been proposed, including averaging over randomgate sequences
[17–22], and optimization of the decoding algorithm [28]. Our goal in this paperwas to investigate another
possibility, namelywhether there exist parameter regimes in standard stabilizerQEC for which the logical error
is Pauli evenwhen the physical error is coherent. This would enable the use of existing techniques for correcting
Pauli errors, and justify numerical simulations ofQECbased on a Pauli errormodel.

To this end, we analyzed repetition codeQEC for an errormodel containing coherent and incoherent errors.
Focusing on the repetition code allowed us to obtain quantitative analytic results on the scaling of coherent and
incoherent logical error rates with code distance d and concatenation level n.

We found that coherent physical errors result in logical errors that are partially coherent and therefore non-
Pauli, in agreement with recent numerical studies [14, 15], but that the degree of coherence depends on the code
distance and concatenation level. An analysis of the time to logical failure, based on a decoder optimized for
independent Pauli errors, showed that the coherent part of the logical error is not important at fewer than
- -( )N 1 error correction cycles, where   1 is the rotation angle error per cycle for a single physical qubit and

=N dn is the total number of qubits. Logical failure occurs at ( )1 N QEC cycles, which is ( )1 faster than
predicted by the Pauli-twirl approximation of the error. Furthermore, with a hard Pauli decoder the coherent
part of the logical error is not important at any number of error correction cycles for two ormore concatenation

Figure 3. Logical failure probability of the 3-qubit repetition codewith coherent errors given by equations (2) and (3). The rotation
angle is  = 0.1 radians and the depolarizing probability is q=0. The vertical axis is theworst-case logical error probability, defined
in equation (15) and the accompanying text. The blue line is the average of 10 000Monte Carlo sample runswith data qubits initially
in state ñ∣000 . The error operator is applied once perQEC round and syndrome extraction is perfect. The black lines are theory curves
where ‘Stochastic’ is thefirst term in equation (23), ‘Coherent’ is the second term in this equation, and ‘Stochastic+Coherent’ is
equation (20). The simulation and theory show good agreement. Error bars (not shown) calculated via the bootstrapmethod using
100 resampled data sets gave a standard deviation of 1%–2% formost of the range ofQEC cycles. In particular, the standard deviation
atm=500QEC cycles was ´ -3.3 10 4 which is close to the value ´ -2.8 10 4 of the discrepancy between the simulated and
theoretical curves in thefigure. The stochastic approximation begins to fail around  =1 1002 QECcycles, consistent with the
discussion in the text.
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levels and small initial error rates. However, this needs to be traded against the larger total logical errorwhich
results fromhard decoding as comparedwith optimal decoding.

Our findings lend support to using stochastic Pauli errormodels in the presence of low-frequency coherent
errors under conditions of large enough code distance or concatenation.However, several questions remain to
be addressed to justify the use of Paulimodels for general coherent errors. Our errormodel was limited to a
tensor product of single-qubit errors on data qubits only. Futureworkmust include syndrome qubit and
measurement errors, coherent leakage errors [6, 16], and gate dependence. In addition, unwanted couplings
between qubits cause coherent errors that need to be included in the analysis.

Finally, while the calculations presented here are suggestive, the real test lies in their applicability to the
particularQEC codes that will be implemented in real devices. To this end, we hope these resultsmay inform
further studies of, e.g., the surface code, which at present can only be done numerically. Recently, thework of
Bravyi et al [32] has evaluated the impact of coherent errors on the logical error rate of quantummemory in large
surface codes.
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Appendix. Derivation of the logical errormap

Wederive the logical error parameters equations (5) and (6), for the repetition code under the errormodel,
equations (2) and (3), and a decoder optimized for independent Pauli errors. Throughout this sectionwewill use
a bold font to indicate a channel that acts in complex conjugate on the right and left of the densitymatrix, for
example:

r rº[ ] ( )†A AA . A.1

Following the notation of Rahn et al [13], the effective logical errormap is the composition of encoding,
noise, and decoding,

   = ◦ ◦ ( ). A.2

The encodingmap for the repetition code is

 ñ ñ = ñ ñ ñ = ñ   ∣ ∣¯ ∣ ∣ ∣ ¯ ∣ ( ): 0 0 00 0 , 1 1 11 1 . A.3

The decodingmap includes syndromemeasurement and recovery, followed by the inverse of encoding. It
can be expressed as a sumover all syndromes,

  å=
s

s s◦ ◦ ( )† , A.4

where

   r
s

r
s

r=
+ +

=s s s

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟[ ] ( )S S1

2

1

2
A.5

i

i i

i

i i

projects the state onto the space corresponding to the syndrome s s s= -( ), , N1 1 , = +S Z Zi i i 1 is the ith
stabilizer, ands is the recovery operation thatmaps the logical state back to the codespace.

To simplify the notation, wework directly in terms of the physical qubit densitymatrix r̄, which is initialized
by the encoding, r r=¯ ( )0 0 . The logical errormap is then given by    = ◦ ¯ ◦† , where

  å=
s

s s¯ ◦ ◦ ( )( ). A.6N

Defined in this way, r̄0 is a state in the codespace,  r r= ¼ ¼¯ ¯0 0 0 0 0 0, andwe restrict themap ̄ to act only on
such states.

We begin by factoring the stochastic and coherent parts of the channel  ( )N :

 = L LÄ Ä◦ ( )( ) , A.7N
q

N N

where the tensor product over all qubits L º L Ä Ä LÄ ...N denotes the application ofΛ to each qubit. The
incoherent part can bewritten
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å

å

L = -

= - + -

Ä

=

-

=

-
- -

( )

◦ [ ( ) ( ) ¯ ] ( )
( )

q q

q q q qI X

1

1 1 . A.8

q
N

k

N
k N k

k

k

N

k
k N k N k k

0

0

1 2

Herek is the sumover all weight-k products of X iʼs:

 = Ä Ä + Ä Ä Ä +- +   ( )X X X X X X X . A.9k k k k1 2 1 2 1 1

wherewe have defined r r=[ ¯] ¯X XX i i i as in equation (A.1). The channel = X̄N is the lowest-weight
undetectable error, and is also the logical bit-flip channel [23]. The second line of equation (A.8) comes from the
identity = -X̄j N j.

We note that, since r̄0 is restricted to a stabilizer eigenspace (it is in the codespace, as noted above), rLÄ [ ¯ ]q
N

0

does not havematrix elements between states of different syndromes.We canwrite this compactly as

  å år r rL = L = L
s

s
s

s s
Ä Ä Ä[ ¯ ] ◦ [ ¯ ] [ ¯ ] ( ). A.10q

N
q

N
q

N
0 0 0

Continuing, we canwrite the coherent part of equation (A.7) as


 r r

r

L =

= - +

Ä

=

-

=

= =

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟[ ¯ ] ⨂ ¯ ⨂

⨂( ) ¯ ⨂( ) ( )c sX c sX

e e

i i , A.11

N

j

N
X

k

N
X

j

N

j
k

N

k

1

i 2

1

i 2

1 1

j k

where


º ⎜ ⎟⎛

⎝
⎞
⎠ ( )c cos

2
, A.12


º ⎜ ⎟⎛

⎝
⎞
⎠ ( )s sin

2
. A.13

If r̄ does not havematrix elements between states of different syndromes, as will be the case if r r= LÄ¯ [ ¯ ]q
N

0

per equation (A.10), wefind upon expanding equation (A.11) and projecting out a single syndromeσ that

   år rL =s s
Ä

=

-

◦ [ ¯] ◦ ¯ ◦ [ ¯] ( )
( )

P U , A.14N

j

N

j j j
0

1 2

wherewe have defined

= +- - ( )( ) ( )P c s c s A.15j
N j j j N j2 2 2 2

and


º

- + -

+
º -

- -

- -
⎜ ⎟⎛
⎝

⎞
⎠¯ ( ) ( ) ¯ ¯ ( )

( ) ( )
U

c s c s X

c s c s
X

i i
exp i

2
. A.16j

N j j j N j

N j j j N j

j

2 2 2 2

The rotation angle  j is given by

 
= - + --⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠( ) ( )tan

2
1 tan

2
. A.17

j j N j2N 1
2

Combining now the coherent, equation (A.14), and incoherent, equation (A.8), part of the error channel,
and using equation (A.7)we obtain

 



 

 

å

å

r r

r

= L

= - + -

s s

s

=

-
Ä

=

-
- -

◦ [ ¯ ] ◦ ¯ ◦ [ [ ¯ ]]

◦ [ ( ) ( ) ¯ ] ◦ ¯ ◦ ◦ [ ¯ ] ( )

( )
( )

( )

P

P q q q q

U

I X U1 1 . A.18

N

j

N

j j j q
N

j k

N

j
k N k N k k

j j k

0
0

1 2

0

, 0

1 2

0

Since each term in the product ◦j k is a product of X iʼs, it follows that

  å=
=

+ -◦ ( )
( )

m A.19j k
n

j k

jk
n

k j n
0

min ,

2

for some coefficientsmjk
n . It is straightforward to calculate these coefficients. Consider a single term ink and

select n of the X iʼs in this term to coincide with terms inj . The appropriate terms inj are chosen by selecting
from - - - = -( ) ( )N n k n N k possible X iʼs for the remaining j−n X iʼs inj that contribute to the RHS
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of equation (A.19). This gives -
-( )N k

j n
terms.Next there are ( )k

n
ways to pick n X iʼs in the given termofk.

Finally there are ( )N

k
terms ink. Since each termon the LHS of equation (A.19) contributes to theRHS of

equation (A.19) and there are
+ -( )N

j k n2
terms on theRHS, we obtain

=
-
- + -

⎜ ⎟⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )m

N

k

k

n

N k

j n

N

k j n2
. A.20jk

n

Substituting equation (A.19) into (A.18) gives

  å å= - + -s s
=

-

=
+ -

- -◦ ◦ ¯ ◦ ◦ [ ( ) ( ) ¯ ] ( )( )
( ) ( )

m P q q q qU I X1 1 . A.21N

j k

N

n

j k

jk
n

j j k j n
k N k N k k

, 0

1 2

0

min ,

2

From this result, the logical errormap can be derived given the decoding algorithm.We choose a decoder
optimized for independent Pauli errors, which selects a recovery operator equal to the smallest weight Pauli
consistent with the syndrome.

The syndrome, and hence recovery operator, is determined entirely by the term + -k j n2 in the above
equation. It is therefore straightforwardwrite down the errormap, equation (A.6), which includes projection
and recovery operations. If + - -( )k j n N2 1 2 then the recovery operation transforms each of the

+ -( )N

k j n2
terms in + -k j n2 to the identity, while if + - > -( )k j n N2 1 2 then the recovery operation

transforms each term in + -k j n2 to X̄ . Substituting equation (A.20) formjk
n and collecting terms, wefind

 år r r= +
=

- ⎛
⎝⎜

⎞
⎠⎟

¯ ( ¯ ) ( ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ) ( )
( )

† †N

j
P A U U Q XU U X , A.22

j

N

j j j j j j j0
0

1 2

0 0

where

å å=
-
-

Q + -
-

-

+ Q + - >
-

-

=

-
-

-

⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥

( )

( ) ( )

( )
A

j

n

N j

k n
j k n

N
q q

j k n
N

q q

2
1

2
1

2
1

2
1 , A.23

j
k

N

n

k N k

N k k

0

1 2

å å=
-
-

Q + -
-

-

+ Q + - >
-

-

=

-
-

-

⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥

( )

( ) ( )

( )
Q

j

n

N j

k n
j k n

N
q q

j k n
N

q q

2
1

2
1

2
1

2
1 . A.24

j
k

N

n

N k k

k N k

0

1 2

The sumover n runs over all values for which the combinatorial coefficients are defined.HereQ( )x is a
Heaviside step functionwhich takes the value 1when the statement x is true and 0when it is false.

UsingVandermonde’s identity,

å
-
-

=⎜ ⎟⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ ( )j

n

N j

k n

N

k
, A.25

n

wefind

+ = ( )A Q 1. A.26j j

Returning now to the full errormap    = ◦ ¯ ◦† we obtain for the effective 1-qubit logical error channel

 å= L L
=

- ⎛
⎝⎜

⎞
⎠⎟ ◦ ( )

( ) N

j
P , A.27

j

N

j Q
0

1 2

j j

where

r r rL = - +( ) ( ) ( )Q Q X X1 , A.28Q j jj

 r rL =( ) ( )†U U , A.29j jj

withUj as in equation (A.16)withX replacing X̄ .
Equations (A.27)–(A.29) show that the effective logical error is an incoherent sumof terms, each of which is

the composition of a stochastic bit flip and coherent rotation.
To enable further simplification it is helpful to use the Liouville, or Pauli transfermatrix (PTM)

representation of quantum channels [31]. For anN-qubit channel this is defined as
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L = L( ) [ ( )] ( )R V V
1

2
Tr , A.30ij N i j

whereVi, Î Ä{ }V I X Y Z, , ,j
N are basis vectors in the vector space spanned by all tensor products ofNPauli

matrices (including the identity).
The PTMs are linear functions of the channels they represent. The following identities hold for arbitrary

quantum channels L1, L2 and constants a, b.

åL L = L L( ◦ ) ( ) ( ) ( )R R R , A.31ij
k

ik kj1 2 1 2

L + L = L + L( ) ( ) ( ) ( )R a b aR bR . A.32ij ij ij1 2 1 2

The logical error channel, equation (A.27), is a single-qubit channel. It contains only identity andX
operators, leaving the space spanned by { }X1, invariant. By analogy to the notation in [14] for processmatrices,
we can therefore writeR in terms of 2×2 blocks,

= ⎜ ⎟⎛
⎝

⎞
⎠˜ ( )R

R
1 0
0

. A.33

Thematrices R̃ satisfy the same composition properties, equations (A.31) and (A.32), as the fullmatrixR. Using
these definitions, thematrix R̃ for the single-qubit error channel, equation (3), evaluates to

 
 

 = L L = - -( )˜( ) ˜( ) ˜( ) ( ) ( )R R R q1 2 cos sin
sin cos

. A.34q

Wenowwrite equation (A.27) as

 å= L L
=

- ⎛
⎝⎜

⎞
⎠⎟

˜( ) ˜( ) ˜( ) ( )
( )

R
N

j
P R R A.35

j

N

j Q
0

1 2

j j

 

 å= -
-

=

- ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( ) ( )

( ) N

j
P Q1 2

cos sin

sin cos
. A.36

j

N

j j
j j

j j0

1 2

Weare interested in the leading order terms in this equation in ò, q. From equation (A.15) and the identity

å ==
- ( )( ) P 1j

N N

j j0
1 2 , wefind to lowest order in ò,





å
»

- =

¹

=
- ⎜ ⎟

⎧
⎨⎪

⎩⎪

⎛
⎝

⎞
⎠( )

( )
( )

( )

P

N

k
j

j

1 , 0,

, 0

A.37j
k

N k

j

1

1 2

2

2

2

2

and from equation (A.24)we find, to lowest order in q,

»
-

-+
-+

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ( )Q

N j

j
q . A.38j N

j
1

2

N 1
2

The last equation is found by observing that the lowest order term in q comes from the 2nd term in
equation (A.24)when k takes itsminimal value. This happens when n=0 and = + -( )k N j1 2 . Finally,
from equation (A.17)we find

 »
- -

-⎜ ⎟⎛
⎝

⎞
⎠ ( )i

2
, A.39j

N j
N j

2 1
2

to leading order in ò.
We now calculate the diagonal and off-diagonal terms in equation (A.36). The diagonal terms are



 

 

å

å

å

-

= - - -

+ -
-

-
-

=

-

=

-

+
-

=

-

+
-

-

+

+

⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎡

⎣
⎢⎢

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎤

⎦
⎥⎥

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎡

⎣
⎢⎢

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎤

⎦
⎥⎥

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

( )

( )

( )

( )

( )

N

j
P Q

N

k

N
q

N

j

N j

j
q

1 2 cos

1
2

1 2 1 2
2

2
1 2 1 2

2
. A.40

j

N

j j j

k

N k

N
j

N

j

N j

N
j

N j

0

1 2

1

1 2 2

1

2

2

1

1 2 2

1

2
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N

N

1
2
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Expanding and keeping the lowest order terms in q and ò, the above equation reduces to - q̄1 2 , where


= ++

+⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛
⎝⎜

⎞
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This proves equation (6).
Next we calculate the off-diagonals in equation (A.36).
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The sum in the last equation is straightforward to simplify bywriting the sums over even and odd j separately and
using Pascal’s rule. The result is
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This proves equation (5).
At this level of approximation (linear in q̄ and ̄ ), which is accurate when  q, 1, we canwrite the reduced

PTMas

 
 

 = - -( )˜( ) ( ¯) ¯ ¯
¯ ¯

( )R q1 2 cos sin
sin cos

. A.44

This shows that  has the same form as  (see equation (3))with renormalized parameters  ¯q q ,   ¯ .
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