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Abstract
The coherent Isingmachine is expected tofind a near-optimal solution in various combinatorial
optimization problems, which has been experimentally confirmedwith optical parametric oscillators
and afield programmable gate array circuit. The similarmathematicalmodels were proposed three
decades ago byHopfield et al in the context of classical neural networks. In this article, we compare the
computational performance of bothmodels.

1. Introduction

In recent trends in semiconductor technologies, theMoore’s law is slowing downmainly due to the limitation
ofmicro-fabrication heat dissipation and communication bottleneck problems on a chip [1, 2].Many efforts
to boost the processor performance have beenmade for parallelized architectures includingGPU, other
multi/many-core processors, and neuromorphic hardwares [3]. An optics-based special purpose computer,
which is named the coherent Isingmachine (CIM), has been proposed to exploit a rapid physical convergence
time for accelerating the solution search in hard optimization problems [4].

One of thewell-known examples of combinatorial optimization problems is amaximum cut problem
(MAX-CUT) on a graph, which is essentially equivalent to the Isingmodel in statisticalmechanics [5, 6]. It is a
problem tofind the largest cut in a given graph G V E,= ( ), where the number of edges at the boundary of a
partition of vertices into two subsets ismaximized. The size of the cut is defined as the total weight of edges
separated by the cut, i.e., edges which have each endpoints in the different sides of the cut. This objective
function can bewritten as
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where the graph order n V= ∣ ∣ is the number of vertices,wij is theweight of the edge i j E, Î( ) and x 1i =  is a
binary value indicatingwhich side of the cut the vertex i VÎ belongs to.We focus on theMAX-CUT in this
study since it is suitable for fundamental benchmarks. It is a classically known example ofNP-hard problems as
in [5] and also awell-studied problemwith several approximation algorithms including the convex relaxation
algorithmusing semi-definite programming (SDP) [7]. In addition, anyNPproblems can bemapped onto the
MAX-CUT since it belongs toNP-hard class.

To implement the above problemon a physical system, the injection-locked lasers [4] and the degenerate
optical parametric oscillators (DOPOs) [8]were proposed to use.With a series of experimental challenges, the
implementations of the optical delay line based [9, 10] andmeasurement feedback based [11, 12]CIMs have
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been realized. Stimulated by the experimental success, its applications including drug discovery [13], image
processingwireless communication are investigated.

As ametaheuristic algorithm, theCIM can be interpreted as amathematicalmodel to solve combinatorial
optimization problems using recurrently updated neuronswith nonlinear activation function (with linear
growth and nonlinear saturation of amplitudes [14]). From this point of view, there have been related and
interesting approaches bymathematicalmodels of the neurons (e.g., [15, 16]) and their networks (e.g., [17]).
Hopfield developed the optimization algorithmby using such neural networks [18]. ThenHopfield andTank
extended it to the continuous valuedmodel to improve the performance and applied it to the combinatorial
optimization problems [19, 20]. Simulated annealing (SA) is proposed in the same period [21].

Here, we try to clarify the relative performance of ourCIMagainst a family of classical neural network
approaches and SA for combinatorial optimization problems especially forMAX-CUT. This paper is organized
as follows. In section 2.1, we describe the basic concept and experimental configuration of CIM. In section 2.2,
we describemodels of neural network algorithm for the combinatorial optimization problems followed by
section 2.3 to describe suitable hardware implementation. Then the numerical experiments are performed in
section 3.We discuss the results and other possibilities of implementations in section 4. Finally, we conclude the
paper in section 5.

2.Method

2.1. Coherent Isingmachine (CIM)
We intend to solve combinatorial optimization problems bymapping the cost function (1) to the energy of an
Ising spin system. CIM is initially proposed as an injection-locked laser system [4], followed by the proposal
using aDOPO system [8]. So far, several experimentalmachines are demonstratedwith
n 4, 16, 100, 2048= -pulse systems [9–12]. Since the originalMAX-CUThas binary variables, we use a bistable
optical device, DOPOat the output stage of computation, while an analog optical device, degenerate optical
parametric amplifier, at the solution search stage of computation.

Figure 1 depicts the schematic of themeasurement feedback basedCIM [11, 12]. Here we describe the typical
experimental configurations in [12]. TheDOPOpart consists of a 1 kmopticalfiber (round trip time of 5μs)
with an externally pumped periodically poled lithiumniobate waveguide. The pulsed pump laser, at the 1 GHz
repetition rate of 5000 times as the cavity circulation frequency, generates 5000 individual DOPOpulses in a
singlefiber ring cavity. A segment of them (2000 pulses) is used as the signal pulses for computation and the
remaining portion (3000 pulses) is used for the cavity stabilization.

Figure 1.Experimental schematic of a coherent Isingmachine implemented on a fiberDOPOwith an FPGAmeasurement feedback
circuit.
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The feedback circuit stores the interaction strength for each pair ofDOPOpulses. A portion of optical pulse
is picked-off by a beamsplitter (numbered as 1 in thefigure 1) andmeasured by balanced homodyne detectors.
Themeasured values ofDOPOpulse amplitudes are fed into an analog–digital converter, followed by field
programmable gate arrays (FPGAs). Here, 1 GHz repetition rate of signal pulses is downclocked to 125MHz
(8 parallel) and themeasured amplitudes cĩ are sliced into the digital signals of 5 bits. Then 2 FPGAs sumup the
coupling effect from the other vertices (in the given topology) J cj ij jå ˜ for the ith pulse. The feedback pulse train is
modulated in intensity and phase by this output electrical signal after a digital–analog converter. The feedback
pulse is injected to the signal DOPOpulse running through themain fiber ring cavity via a beamsplitter#2.

TheDOPO is operated near the oscillation threshold by crossing the pump rate frombelow to above the
threshold in the case of [12]. In the beginning, theDOPO is biased at below the threshold inwhich all phase
configuration is established so as a superposition state and the quantumparallel search is implemented [22].
Then, the external pump rate (or the feedback) strength is gradually increased, and once thewhole system
reaches the oscillation threshold, it selects a particular phase configurationwhich corresponds to the near-
optimal solution of the original optimization problem.

The dynamics of the CIMcan be simulated by the quantummaster equation. Instead of numerically
integrating themaster equation for theDOPOdensity operator, we can expand the density operator by
the quasi-probability function in the phase space. One quasi-probability function need for this purpose
is the positive P ,a b( ) representation in terms of the off-diagonal coherent state expansion, a bñá∣ ∣. The
Fokker–Planck equation for P ,a b( ) is derived from themaster equation and then the c-number stochastic
differential equations forα andβ are obtained using the Ito calculus (see [23] for detail). Another quasi-
probability function used for this purpose is the truncatedWigner representation W a( ). The corresponding
c-number stochastic differential equations are derived in [22].Wewill use the latter approach in this paper to
evaluate the performance of theCIM.

2.2. Classical neural networks
Wedescribe in this section the classical neural networkmodels to solve the same combinatorial optimization
problems, which are summarized in the table 1.

2.2.1. DerandomizedHopfield network (HN)
Hopfield implemented a classical neural networkmodel solving combinatorial optimization problems in his
1982 paper [18], which is referred to theHN.The neuron in thismodel has the discrete output values x 1i = 
with a simplemajority voting update rule:

x J xsgn , 2i
j

n

ij j
1

å¬
=

⎛
⎝
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⎞
⎠
⎟⎟ ( )

whichwill execute asynchronously. The spin index i is selected randomly in the original paper butwe
derandomized it to enhance the speed, i.e., the spin indices from i=1 to i=n are updated sequentially.
Simultaneous updates introduce the instability or periodic solution into the system. Since the update is local and
deterministic, the systemwill converge into the nearest localminimum,which is determined by the initial state.
Note that themodel is originally proposedwith 0, 1{ }-binary neurons, but for comparison, we use equivalent

1, 1+ -{ }-valued neurons.

2.2.2. Simulated annealing (SA)
While theHNwill often get stacked at poor localminima, Kirkpatrick et al introduced a stochastic spin update
strategy in SA algorithm tomimic thermal annealing [21]. The probability of stochastic spin flip is governed by
the Boltzmann factor in theMetropolis–Hastings procedure as follows:

P E Texp , 3i= -D( ) ( )

Table 1.Classical neural-network approaches for combinatoral optimization problems.

Deterministic Stochastic

Binary DerandomizedHopfield network (HN) Simulated annealing (SA)
Analog Hopfield–Tank neural network (HTNN)
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even if the energy difference toflip the ith spin

E x J x2 4i i
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makes the total energy increased, namely E 0iD > . The spin index i is selected randomlywhile temperatureT is
gradually decreased.

2.2.3. Hopfield–Tank neural network (HTNN)
Hopfield andTank proposed another neural network approach using an analog valued neuron x 1, 1i Î -[ ],
which is referred to theHTNN [20]. The time evolution of theHTNN is described by ordinary differential
equations (ODEs):
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where f (x) is a nonlinear sigmoid function. In this study, xtanh( ) is used as f (x). In the extremely high linear gain
limit, i.e., when the slope of the sigmoid function around 0 is steep, thisHTNNmodel becomes close to theHN
model described above. The parameters in later section are optimized as the neuron decay rate 6a = and the
synaptic connection strength 0.1b = to achieve the best performance for the givenMAX-CUTproblems. The
numerical integration of (5) is performed by the Eulermethodwith the discrete time step t 0.01D = .

2.3.Hardware used for Implementation of classical neural networks
Herewe describe the hardware configuration needed to implement the classical neural networks, whichwill be
used in the benchmark section.Note that all codes are implementedwithC++6.

2.3.1. CPU (for SA andHN)
SA andHNare iterative updating algorithms for discrete spins.We can achieve CPU implementation efficiently
by SIMDbitwise operations in parallel7. In this paper, wemainly used Intel XeonE3-1225 v3@ 3.2 GHz
(Haswell architecture shipped in 2013). Note that the performance of SA is slightly improved from the previous
paper, inwhich SA is run on an older processor (Intel XeonX5650@2.67 GHzWestmere architecture shipped
in 2010) [12].We did not use any accelerators forHNand SA in this study since it is already parallelized by SIMD
operations inCPU and the cache hit rate is high enough as 98.8%.

2.3.2.MIMDmany core processor PEZY-SC (forHTNN)
SinceHTNN is based onODEs (a continuous-valued continuous-time system) and requires floating-point
arithmetic, it is better to parallelize by accelerators.We used aMIMDmany core processor PEZY-SC@
733MHzwith 1024 cores and 8192 threads on a chip (the architecture is shown infigure 2), which is set in
Shoubu or Satsuki supercomputers at Riken (Japan).We parallelizedmatrix-vectormultiplication and neuron
updates in 8192-thread parallel. The couplingmatrix is efficiently stored as a 1 bitmatrix (since J 1ij =  has no
empty entry) and neuronal states as floating points (32 bit float). Note that it was 1.4 times faster than storing
matrix values in 32 bits. The benchmark of the hardware itself is shown in appendix A.1.

3. Results

Wecompared the performance ofHN, SA,HTNN, andCIMby solving theMAX-CUTproblems on a dense
graph. The particular problem instance is a complete graph, inwhich all pair of vertices are connected and edges
areweighted by 1, 1+ -{ } in uniformdistribution.We used the identical instance for n=2000 as in [12] and
generated a larger instance of n=20 000 in the samemanner. Figure 3 shows the performance on the complete
graph, while the detailed computation time to target and the hardware configurations are summarized in table 2.

We ran 100 different trials for the same problem instance (except for CIM experiment, which consists of 26
trials). Each solid line in the figure 3 indicates the ensemble average of all trials, while the lower and upper shaded
lines indicate the best andworst case envelopes, respectively. Here, parameters for SA andHTNNare optimized
to achieve the shortest computation time to the target which is obtained by the SDP relaxation algorithm [7]. The
computation time to the SDP-produced target is shorter in the order of CIM,HN, SA,HTNNon the instance.
The data fromCIM infigure 3(a) are noisy due to experimental noise, but it canfind better solutions than the

6
WeusedUbuntu 16.04.4 withGCC5.4.0 (CPU) andCentOS 7.1.1503withGCC4.8.3 (PEZY-SC).

7
The code is available here https://github.com/haribara/SA-complete-graph

4

QuantumSci. Technol. 2 (2017) 044002 YHaribara et al

https://github.com/haribara/SA-complete-graph


target in all 26 trials. HN is faster than SA sinceHNcan be regarded as a derandomized version of SA.Note that
in theworst case, HNcannot reach the target (it fails 3 times in 100 trials as it can be seen partly in theworst case
infigure 3(a)). It can be understand thatHTNNperformsmuch slower thanHN/SA since it solvesODEswhich
deals with the analog variables. Note thatHTNNachieves lower energy than SA in figure 3 but the performance
of SA heavily depends on temperature scheduling.We optimized to reach the target shorter but slower
scheduling ends up lower energy generally.

The computation time to the SDP target is in the same sequence when the number of vertices increases to
N=20 000.Here the cavity round trip time of CIM is assumed to be 10μs. Then the relative speed-up of CIM is
raised to 2–3 orders ofmagnitude compared to other implementations.

Figure 2. (a)Hierarchical architecture of a PEZY-SCmany core processor. There are 1024 processing elements (PE) packed in a single
PEZY-SC chip. (b)Each PE core handles 8 threads independently.

Figure 3.Energy descent when solving 1, 1+ -{ }-weighted (a) n=2000 and (b) n=20 000 complete graphs. Each thick line is the
ensemble average of 100 trials (except for CIM experiment, which consists of 26 trials), while the lower and upper shaded error bars
show the best andworst envelopes for each computationalmodel. The gray dotted line is the target values n60 278- and

n1841 216- for n=2000 and 20 000, respectively, which are obtained by the SDP relaxation algorithm [7]. In theCIM simulation
of n=20 000, the cavity round trip time is assumed to be 10 sm .
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4.Discussion

In this section, wewill add the two discussions to justify the above conclusions:

• Validity for the hardware selection, and

• Optimization for PEZY-SC implementation forHTNN.

4.1. Validity for the hardware selection
HTNN is apparently efficient on PEZY-SC than onCPU,which is shown in appendix A.1.On the other hand, we
did not use any accelerator forHNand SA in this study. This is because we do not expect significant speed-up by
naive implementation since they are already parallelized by SIMDoperations inCPUand the cache hit rate is so
high as 98.8% (measured by perf command in Linux). Generally, asynchronous update inHN/SA seems to be
not suitable for parallel implementation.

4.2.Optimization for PEZY-SC implementation forHTNN
We tried to optimize the implementation by storingmatrix data efficiently. Since the given adjacencymatrix has
only the 1 bit entry (J 1ij =  ), we packed each value in 1 bit. This contributes the 1.4 times speed-up than
having a 32 bit floatmatrix for n=2000. But putting the data in localmemory does not contribute to significant
speed-up since its bottleneck in computation is not inmemory transfer. There is a possibility of speed-up if we
replace themultiplication by the selector. Rather, it is possible to scale out for parallel distributed processing by
usingmultiple PEZY-SC chips in Soubu supercomputer, especially when the problem size is larger.

5. Conclusion

In this paper we compared the performance of theCIM implemented onDOPOs and FPGAs against the family
of classical neural-network-based algorithms:HN, SA andHTNN. To accelerate the performance of the classical
neural networks,HN and SA are implemented onCPUwith bit operations andHTNN is implemented on a
many core processor PEZY-SC. It is shownon the n=2000 complete graph that the experimental CIMcan
achieve faster computational time thanHN (13.0 times for the best case and 6.97 times for the average), SA (29.6
times for the best case and 12.1 times for the average) andHTNN (99.2 times for the best case and 36.7 times for
the average). To estimate the performance on a larger instance, we performed numerical simulations on
n=20 000 graph, inwhich the relative CIMperformance is 173, 433 and 3600 times faster thanHN, SA and
HTNN in average, respectively, where the 2 km fiber ring cavity with 10μs round trip time is assumed for CIM.
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Appendix

A.1. Processor performance of PEZY-SC
We show the elapsed time for theCIM simulation by the following c-number stochastic differential equations
[22, 24]
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implemented on different processor configurations. Note that the simulation by the Langevin equation is
simplified version andwe employed thismodel to contrast the processor performance (detailed simulations are
reported in [25, 26]). Here, CPU indicates serialized calculation on a single thread, CPU+GPU indicatesmatrix-
vectormultiplication is off-roaded toGPUwhile other part of differential equation is calculated on the same
processor as CPU, PEZY-SC indicates that all processes are paralellized.We conclude that is it preferable to
implementHTNNonPEZY-SC thanCPUorGPUwhichwe listed in the table A1 since the Langevin equations
are similar toODEs ofHTNNexcept for randomnumber generation.
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