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Abstract
Wehave developed a continuous-variable quantumkey distribution (CV-QKD) system that employs
discrete quadrature-amplitudemodulation and homodyne detection of coherent states of light.We
experimentally demonstrated automated secure key generationwith a rate of 50 kbpswhen a quantum
channel is a 10 kmopticalfibre. TheCV-QKD systemutilises a four-state and post-selection protocol
and generates a secure key against the entangling cloner attack.Weused a pulsed light source of
1550 nmwavelengthwith a repetition rate of 10MHz. A commercially available balanced receiver is
used to realise shot-noise-limited pulsed homodyne detection.Weused a non-binary LDPC code for
error correction (reverse reconciliation) and the Toeplitzmatrixmultiplication for privacy
amplification. A graphical processing unit card is used to accelerate the software-based post-
processing.

1. Introduction

Quantumkey distribution (QKD) offers secure communication based on the fundamental laws of quantum
physics [1]. In contrast to public key cryptography that is currently in wide-spread use andwhose security relies
on the computational difficulty of solving amathematical problem [2], the security ofQKD can be guaranteed
even if an eavesdropper has an infinite computational power [3]. QKD enables two parties, usually called Alice
and Bob, to share a secret key that is unknown to third parties by sending quantum states fromAlice to Bob [4].

Continuous-variable (CV)QKD is different from the standardQKD system in themethod for detecting
weak optical signals [5–11]. This feature gives an advantage toCV-QKD in terms of practical implementation. In
the standardQKD system, weak light is detected by a single photon detector thatmeasures the particle nature of
light: themeasured observable has a discrete spectrum [4]. The detector is usually custombuilt forQKD,
requires cooling, and expensive, and it is sensitive to stray light. On the other hand, in theCV-QKDweak light is
detected by a homodyne detector thatmeasures wave nature of light: themeasured observable has continuous
spectrum. A homodyne receiver is commercially available, works at room temperature, is low cost and small and
insensitive to stray light because the local oscillator (LO) itself works as a spectral, temporal and spatialmode
filter. Since bothCV-QKD and coherent optical communication exploit devices which operate on the same
principle, wemay be able to realise a secure and safe communication infrastructure that can offer diverse
functions ranging fromunconditionally secure communications to high-speed and high-security data
transmission in a unifiedway, and seamlessly integrate them into coherent optical communication systems [12].

However, in terms of security analysis, the security proof of CV-QKD is relatively difficult comparedwith
the discrete variable (DV)QKD that uses a single photon detector. In the case ofDV-QKD, one can intuitively
understand its safety as follows: if Alice sends only a single photon andBob detects the photon, an eavesdropper
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cannot read the information encoded on the photon because a single photon cannot be divided. EvenwhenAlice
may sendmultiple photons, using the so-called tagging ideawhichwas proposed byGottesman, Lo, Lütkenhaus
and Preskill [13], it is possible to use the idea of single photon case to the practical case usingweak coherent
pulses. On the other hand, in the case of CV-QKD, Bobmeasures the amplitude of the electromagnetic field, and
the amplitudemight be divided by an eavesdropper. Indeed, it was pointed out that CV-QKDprotocols require
that the transmission of the optical line betweenAlice andBob is larger than 50% [14], because if the
transmission is less than 50%, Eve can obtain higher signal-to-noise ratio than Bob by replacing the lossy
channel with her lossless channel and splitting a fraction of the signal with a ratio of larger than 50%.
Fortunately, it is known that this apparent 3 dB loss limit can be beaten by using appropriate recipes [15]. One
recipe is the post-selection [15, 16]. Post-selection is an intrinsic procedure inDV-QKD: if no photon is
detected, the corresponding time slot is discarded. InCV-QKD, Bob can postselect a subset of data by selecting
only time slots for which his homodyne detector outputs a high absolute value and themutual information
betweenAlice and Bob is high. Another recipe is the reverse reconciliation (RR) [6], inwhich the reconciliation
procedure is reversed: Alice’s data is corrected tomatch Bob’s data rather than Bob’s data being corrected to
matchAlice’s. In this case, Eve has to guess whatwas received by Bob rather thanwhat was send byAlice, and
Alice is advantageous than Eve in guessing Bob’smeasurement results. Some another recipes such as
multidimensional reconciliation [17] and repetition code [18]were propose to improve the performance of
CV-QKD.As the bit error rate is crucial when evaluating the security ofDV-QKD, an excess noise is crucial in
CV-QKD. It is known that if the excess noise of a quantum channel is Gaussian and two times larger than the
transmission of the channel, no formof optical communication that uses coherent states and homodyne
detection can be secured quantummechanically since there is a realistic intercept-resend attack [19].

CV-QKDprotocols can be classified into two types by themodulationmethod of coherent states sent by
Alice. One is Gaussian-modulation protocol [6, 14] and the other is discrete-modulation protocol [16, 20]. In
the former protocol, Alice’s state preparation can be formally described in an entanglement based schemewhere
Alice hasCV entanglement [21]. Heid et al pointed out that all collective attacks are unitarily equivalent if the
quantum channel can be verified as being symmetric andGaussian, then secure key rate in the collective attack
scenario can be calculated by choosing the entangling cloner attack (see section 3) as an optimal attack including
post-selection [22]. Security analysis for the former ismore advanced than for the latter, and recently a
composable security proof including finite-size settingwas reported [23]. Various reconciliationmethods for
the former protocol have been studied [17, 18, 24, 25]. As for the latter discrete-modulation protocol, it was
reported that secure long-distanceQKD is possible if the quantum channel can be verified as being linear
[20, 26]. The former protocol ismore advanced than the latter also in experimental implementation. In 2009, a
field test of the formerCV-QKDprotocol was demonstrated over 9 km fibrewith 8 kbit s−1 key generation rate
in the SECOQCproject [27]. Recently, a long-distance experiment over 100 kmwas reported by controlling
excess noise [9]. In a field implementation of CV-QKDnetwork, computed key rates of 0.25, 2, 6, 10 kbps for
17.52, 15.34, 19.92, 2.08 km link, respectively, were reported using a 500KHz pulse train [28].

In this paper, we experimentally demonstrate the discrete-modulation (four states)CV-QKDprotocol
proposed in [5] over a 10 km singlemodefibre (SMF) and theoretically evaluate the secure key rate on the
assumption that the eavesdropper performs the entangling cloner attack [21, 22]. To our knowledge, this is the
first practical implementation of the four-state CV-QKD inwhich secure keys can be continuously generated by
programmed operation. The system is simple, can be built at low cost and operate robustly, thus addresses some
of the important challenges toward practical popularisation ofQKD [29]. On the theoretical side, we give an
algebraic formula for the key rate by usingGramianmatrices and show that reverse reconciliation (RR) gives
better key rate than direct reconciliation (DR), as shown for CV-QKDprotocols withGaussianmodulations [6].
An average photon number of theweak coherent pulse is selected tomaximise the secure key rate. On the
experimental side, we developed aCV-QKD system that can continuously generate secret key. Key generation
rate is 50 kbpswhen the quantum channel is a 10 kmoptical fibre.We use a pulsed light sourcewhose
wavelength is 1550 nmand repetition rate is 10MHz. A commercially available balanced receiver is used to
realise shot-noise-limited pulsed homodyne detection.We use a non-binary low-density parity check (LDPC)
code for error correction [34] and a fast privacy amplification algorithmusing the Toeplitzmatrixmultiplication
[35]. A graphical processing unit (GPU) card is used to accelerate the software-based post-processing.

This paper is organised as follows. In section 2, we introduce ourCV-QKDprotocol and present a set of basic
formulas to describe the performance of our protocol under a noisy channel. In section 3, we introduce the
entangling cloner attack and calculate theHolevo quantity forDR andRR. Key rates and optimised average
photon number are given in section 4. In section 5, we showour experimental implementation and in section 6
we report automatedQKDdemonstration over 10 km. Section 7 concludes this paper.
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2. Four-state CV-QKDprotocol

The protocol we are going to analyse consists of the following eight steps: (i)Alice sends Bob a quantum state Sñ∣ ,
which is randomly chosen out of four coherent states i,a a ñ  ñ∣ ∣ of a givenmode.Here, 0a > . (ii)Bob
performs ameasurement on the received statewith x-basis or p-basis randomly chosen.Here, we defined the
quadratures

x
a a

p
a a

i2
,

2
, 1=

+
=

- ( )
† †

through the annihilation operator a of themodeA. (iii)Alice andBob repeat processes (i) and (ii) sufficiently
many times. (iv)Alice reveals which basis she used in each process through a classical channel. She also randomly
chooses a part of the processes and reveals the state she sent. (v)Bob estimates the parameters of the quantum
channel using the data of the processes that Alice revealed her states. Then he selects the data to be used for key
generation in accordance with hismeasurement and the estimated channel parameters. He uses only the
processes for which hemade a correct choice of themeasurement basis. Here, the correct basis refers to the
x-basis for a ñ∣ , whereas the p-basis for ia ñ∣ . Bob informsAlice which process was selected. In the theoretical
analysis, we assume that Bob reveals also the absolute value m∣ ∣of his outcomem. (vi)Bobmakes a bit string by
assigning 0 for the negativem, while 1 for the positivem of selectedmeasurement, respectively. (vii)Alicemakes
a bit string by assigning 0 for i,a a- ñ - ñ∣ ∣ , whereas 1 for i,a añ ñ∣ ∣ . (viii)Alice andBob share a secure key by
applying error correction and privacy amplification to the bit strings obtained. The efficiency of the post-
processing could be substantially different whether one choosesDR or RR.

The role of the quadrature x, p is clearly symmetric in this protocol.Without loss of generality, therefore, we
may restrict ourselves only to the case of the correctmeasurements that Alice sends the coherent states S a= 
andBob performs the x-basismeasurements. Note that the probabilities that S a=  is given by
P P 1 2a a= - =( ) ( ) , respectively.

Let us assume that quantum channel is not ideal, but characterised by excess noise ξ and transmission η. The
probability density to obtainm conditioned by S is given by [30]

P m S e
2

1
, 22

m S 2

1

p x
=

+
- h

x
-
+( ∣ )

( )
( )

( )

when the vacuumnoise variance is 1/4.Note that

P m S P m S . 3= - -( ∣ ) ( ∣ ) ( )

It immediately follows from equation (3) that given the absolute value m∣ ∣, the protocol can be seen as a binary
symmetric channel [31]. To show this, let us define the probability ò that Aliceʼs 0 goes to Bobʼs 1.We thenfind

P m

P m P m

P m

P m P m
e1 , 4m8

1
1 a

a a
a

a a
-
+ -

=
-

- + - -
= + a

-h
x+

⎡
⎣⎢

⎤
⎦⎥≔ ( ∣ ∣∣ )

( ∣ ) ( ∣ )
(∣ ∣∣ )

( ∣ ) ( ∣ )
( )∣ ∣

which proves the claim, since from the second equality ò now reads the probability that Aliceʼs 1 goes to Bobʼs 0.
Thus, wemay use the Shannon formula and find themutual information IAB betweenAlice and Bob as

I h1 , 5AB = - ( ) ( )

where h log 1 log 12 2    = - - - -( ) ( ) ( ) is the binary entropy.
An advantage of this four-state CV-QKDprotocol is its implementation simplicity. In step (i), Alice

performs one of four kinds of phasemodulations and in step (ii), Bob performs one of two kinds of phase
modulations. Therefore, only a phasemodulator for each station is necessary as an experimental device for
modulation, and the required randomnumber is 2 bits for Alice and 1 bit for Bob. In theGaussian-modulated
coherent states CV-QKDprotocol [6–9], Alice needs also an amplitudemodulator and two random real
numbers, which are not computable in principle and experimentally she needs randombit strings longer than at
least the resolution of the digital-to-analogue converters.

3. Entangling cloner attack

We shall consider the key rate of our protocol against collective attacks assuming that the quantum channel is
Gaussian.When the quantum channel is symmetric andGaussian, all collective attacks are unitarily equivalent
[22]. Therefore, in the followingwe calculate the secret fraction against the entangling cloner attack [21]. Prior to
this, we present the details of the entangling cloner attack and evaluate the information accessible by an
eavesdropper, say Eve, in this section.
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For the entangling cloner attack, Eve prepares an Einstein-Podolsky-Rosen (EPR) state

dx dx e
x x x x

EPR
2

2 2
6Vx x V

E E
1 2

1 2 1 2
1
2

2
2

1 2

ò òp
ñ =

+ -
-¥

¥

-¥

¥
- -∣ ( )

ofmodes E1 and E2. Here x Ei
ñ∣ represents the eigenstate of a quadrature operator x of themode Ei with

eigenvalue x. The parameterV 1 is chosen in such away that

V
V

1

2

1 1

1
7

h x
h

+ =
- +
-

⎜ ⎟⎛
⎝

⎞
⎠ ( )

so as to emulate the noisy quantum channel introduced in the previous section. Eve next replaces the noisy
quantum channel with a lossless and noiseless quantum channel followed by a beam splitter of transmission η
(see figure 1). She thenmakes interference between themodeA and E2 by using the beam splitter. After Alice and
Bobmake a sufficiently long bit sequence, Eve obtains the information of the sequence by performing a collective
measurement on the states coming from E1 and E2 modes kept in her quantummemory.

Let us describe the attack in detail. Since the coherent state Sñ∣ can bewritten as

S dx e x
2

8x S
1
4 2

òp
ñ = ñ

-¥

¥
- -⎜ ⎟

⎛
⎝

⎞
⎠∣ ∣ ( )( )

and the beam splitter of transmission η leads to a transformation

x x x x x x1 1 , 9A E A E2 2 22 2h h h hñ ñ  - - ñ - + ñ∣ ∣ ∣ ∣ ( )

the state after the interference takes the formof

S dm m S mEPR , , 10A Aò yñ ñ  ñ ñ
-¥

¥
∣ ∣ ∣ ∣ ( ) ( )

where

S m dx dx S m
x x

m
x x

,
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,
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2
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with

S m e, . 12
x x m S Vx x V1

2 1 2

2

1
2

2
2

y = h- - + - - -h
h
-⎡

⎣⎢
⎤
⎦⎥( ) ( )

( ) /

To obtain this, we have changed the variable x in equation (8) to m x x x1 21 2h h= - - -( ) . Note that
S m,y ñ∣ ( ) has the following normalisation:

S m S m P m S, , . 13y yá ñ =( )∣ ( ) ( ∣ ) ( )

For later convenience, we introduce

e S m1 , 1 , 14ij
i j yñ = - - ñ∣ ∣ (( ) ∣ ∣ ( ) ∣ ∣) ( )

where i, j=0, 1 and  is a normalisation factor which implicitly depends on i j, .
Now, suppose that Bob performs the x-basismeasurement to themodeA andfind an outcomem. On this

situation, Eve has the following two strategies to attack, depending on the reconciliation Alice and Bob adopted:
(a) ForDR, Eve attacks Alice to estimate her bit. This estimation results in distinguishing

Figure 1. Schematic diagramof the entangling cloner attack. In each run of the protocol, Eve prepares anCVEPR states andmakes an
interference between her one of the EPRpair and that sent fromAlice to Bob. Eve keeps her states in quantummemory. Eve performs
a collective attack on her states kept, and obtains information on the bit sequence shared byAlice and Bob.
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(b) For RR, Eve attacks Bob, aiming at estimate of his bit. By the similar way toDR, this results in distinguishing
two densitymatrices

e e e e
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In both cases, it is known that the information accessible to Eve is bounded from above by theHolevo
quantityχ, which is given by

S S S

S S S

2 2 for DR,

2 2 for RR,
17A

0
A
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B
0

B
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c
r r r

r r r
=
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where 2 2A
0

A
1

B
0

B
1r r r r r+ = +≔ ( ) ( ) and S Tr log2r r r= -( ) ( ) denotes the vonNeumann entropy.

To compute theHolevo quantityχ, wewill determine the eigenvalues of all the densitymatrices appearing in
equation (17). Despite all these are infinite dimensionalHermite operators written as a convex combination of
projectors not necessarily orthogonal to one another, it is straightforward tofind their non-zero eigenvalues by
using scaledGramianmatrices, which is defined below.

Given a densitymatrix pi i i is j j= å ñá∣ ∣, where pi{ } is a probability distribution, the rescaledGramian
matrix G Gij= ( ) associatedwithσ is defined by

G p p . 18ij i j i jj j= á ñ∣ ( )

We thenfind the following proposition.

Proposition 1.All the non-zero eigenvalues of s are identical to all those of the associatedGramianmatrix G.

Proof. See [32]. +

This proposition reduces the calculation of theHolevo quantity tomuchmilder problems: the eigenvalue
problems of theGramianmatrices associatedwith ,i i

A Br r , and ρ. Inwhat follows, we list theGramianmatrices

and their eigenvalues. (1) For i
Ar ,G is independent of i and given by

G s
s

1 19

d

d
= -( ) ( )

whose eigenvalues are readily found to be

s
1

2
1 1 4 1 , 202 2d - -[ ( ) ] ( )

wherewe introduced
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Note that, independent ofα and η, it holds

S S . 22A
0

A
1r r=( ) ( ) ( )

(2) For i
Br , theGramianmatrix is also independent of i and takes the formof
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t

1 , 23

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whose eigenvalues are

t
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where
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21

1
2

= á ñ = á ñ = a- x h
x
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Note also that, independent ofm, it holds

S S . 26B
0

B
1r r=( ) ( ) ( )
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(3) For ρ, we obtain

G
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The eigenvalues ofG in equation (27) can bewritten as
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Plugging equations (22) and (26) into equation (17), we clearly observe that S i
Ar( ) is responsible for the

behaviour of Ec in case of theDR,whereas S i
Br( ) is responsible for the behaviour of Ec in case of the RR: the

difference between the behaviour of theHolevo quantities for theDR andRR comes from the difference between
S i

Ar( ) and S i
Br( ).

4. Secret fractions

Nowwe come to the point to evaluate the secret fraction r of the protocol under the entangling cloner attack.
Here, the secret fraction r is given by the average of the information difference:

r dm P m S I, , 31
S

òå= D
a=

( ) ( )

where

I I . 32AB cD = - ( )

Here, the integral is taken over the regionwhere I 0D . Thismeans that we perform a post-selection to the
parameter regionwhere the accessible information of Alice andBob exceeds that of Eve. This corresponds to the
selection in step (v). Note that the joint probability density P m S,( ) satisfies
P m S P m S P S P m S, 2= =( ) ( ∣ ) ( ) ( ∣ ) , since P 1 2a =( ) .We also note that

I I , 33m S m S, ,D = D - -∣ ∣ ( )

since s t u, , , are symmetric with respect to the conversions S S - and m m - , respectively. By using
equations (3) and (33), we can rewrite the secret fraction r as the following simpler form

r dm P m I. 34ò a= D( ∣ ) ( )

Figure 2 shows the optimised secret fractions in the cases ofDR andRR, respectively. In the short distance
less than 10 km, these two schemesmake not somuch difference in the secret fraction. In contrast to this, in a
longer-distance, RR clearly yields the better secret fraction thanDR, as shown in aCV-QKDwithGaussian
modulations [22]. Unlike the secret fraction, however, the associated average photon number inDR shows the
similar behaviour to that in RR (see figure 3).

The information difference ID at the optimal case is of interest, since it determines howmanymeasurement
outcomes should be chosen by the post-selections. From figure 4, we observe the followings. First, there is at
most one non-zero zero point such that I 0D = in both the schemes. Thus, it turns out that the post-selection
should be performed over the outcomeswhose absolute values are larger than this zero point. Note that this
post-selection scheme is exactly the same as that in [5] introduced so as to reduce the bit error rate of sifted keys.
Second, RR requires almost no post-selection in the short distance less than about 20 km for the excess noise

0.02x = when the error correction is ideal, whereasDR requires post-selection for the several distanceswe
examined. Third, the zero point forDR is in general larger than that for RR. This implies that the former yields
the smaller secret fraction, consistent with the direct evaluation of r.
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Let us define the post-selection rate p as

p dm P m S, . 35
S

òå=
a=

( ) ( )

Figure 5 shows p at the parameters that optimise the key rate of figure 2. RR almost attains p=1 in the short-
distance region, in parallel to the observation drawn from figure 4. The behaviours of p in the both
reconciliations are basically same to those of the optimal r, respectively.

Figure 2.Optimal key rate r for theDR (left) andRR (right).We evaluated the key rate for every 5 km and interpolated them. The key
rates shownhere have the excess noise 0.005, 0.01, 0.02x = and decrease as ξ increases. In this section, fibre loss is assumed to be 0.2
dB/km.

Figure 3.Average photon number 2a that optimises the key rate r for DR (left) andRR (right).We optimised average photon number
in 0.1 step for every 5 km and interpolated them.

Figure 4. Information difference ID at 10 km (blue), 20 km (red), 30 km (yellow) and 40 km (green) for DR (left) andRR (right). In
the post-selection process, the quadratures for I 0D < are discarded. The amplitudeα is optimised so as tomaximise the secret
fraction r. Excess noise is assumed to be 0.02x = .
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After the post-selection, average bit error rate reads

q
p

dm P m dm P m
1

, , , 36
R R
ò òa a= + -

- +

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )

where R R,- +( ) is the region of the negative (positive)mwith I 0D when S ,a a= -( ). Figure 6 shows clear
contrast of the behaviour of q depending on the reconciliation scheme:DRhas q 10 2= -( ) atmost, whereas
RRhas q 10 1= -( ). Thus, we find that to attain the optimal key rate in RR, it is essential to employ an error
correction codewhichworks under considerably high bit error rate.

Secure key generation rate Nsecure is expressed using the secret fraction r by the following equation:

N f r, 37secure pulse sys est prh h h= ( )

where fpulse is a repetition rate of the light pulse, sysh is the operating efficiency of theQKDmachine, 1 esth- is
the fraction used for parameter estimation, prh is the efficiency of theQKDprotocol. In the present
implementation, f 10pulse = MHz, 0.3sysh ~ due to the slow data transfer rate explained below, esth = 0.5. And

prh is the probability of correct basismeasurement and it is set to 0.5.

5. Experimental implementation

Infigure 2, we observe that even thoughRRoffers higher secret fraction, when the distance is longer than 30 km,
the secret fraction is sensitive to the value of excess noise.Howeverwhen the distance of a quantum channel is
shorter than 20 km, the secret fraction is insensitive to excess noise. This insensitivity relaxes the requirements
for the experimental system andmakes stable key generation easier. The target of the present implementation is
this relatively short-distance operation [33].

Figure 7 shows the schematic of our optical setup. The optical system includes Alice’s and Bob’s apparatus,
and quantum channel. All of components in the optical system including a homodyne receiver are off-the-shelf
fibre components and commercially available.We use aDFB laser of 1550 nmwavelength as a light source.
Repetition frequency of the light pulse is 10MHz and the pulse duration is 5 nsec. The optical configuration is a

Figure 5.Post-selection rate p defined through equation (35) for DR (left) andRR (right) as a function of distancewith excess noise
0.005x = (blue), 0.01 (red), 0.02 (yellow). The amplitudeα is optimised so as tomaximise the secret fraction r.

Figure 6.Bit error rate q after post-selection defined through equation (36) for DR (left) andRR (right). The excess noise is ξ=0.005
(blue), 0.01 (red), 0.02 (yellow), respectively. The amplitudeα is optimised so as tomaximise the secret fraction r.
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polarisation and time divisionmultiplexed interferometer. In order to stabilise the relative phase between the
signal and LOpulse, we packaged the interferometer part of Alice’s and Bob’s components with thermal
insulationmaterials. Light pulse from the laser is split by a beam splitter of 1:99 ratio.Weaker light is used as the
signal light and stronger light is as the LO. The signal light is randomly phasemodulated into one of four states by
a phasemodulator (PM), then attenuated to an appropriate intensity by a variable optical attenuator (VOA). The
signal and LO light enter an optical fibrewith orthogonal linear polarisations and alsowith a time delay of about
50 nsecwith each other. Since the polarisation is notmaintained in the quantum channel, a polarisation
controller (PL) is placed at the entrance of Bob’s apparatus. Then, the LO and the signal are split by a polarising
beam splitter (PBS). The LO light is randomly phasemodulated by a PM: Bob randomly selects x-or p-
measurement. Finally, the signal and LO are combined at a half beam splitter, and two outputs incident to two
optical paths and reach balanced photo detectors and the quadrature amplitude of the signal light ismeasured by
homodyne detection. TwoVOAs in front of photo detectors are used to balance the light intensity of two
outputs.

Figure 8 shows the schematics of ourCV-QKD system. Each station consists of three blocks; the optical
systemblock, a control block, and a personal computer. From the optical block of Alice, quantum signals are
sent to Bob, and they are received by the optical block of Bob. The components such as VOAs in optical blocks
can be controlled by applying voltages from control blocks. The control blocks contain commercially available
FPGAboardswith daughter boards that performAnalogue-to-Digital conversion (ADC) andDigital-to-
Analogue conversion (DAC) and are used to control the optical components in optical blocks. The FPGAboards
operate with amaster clock of 100MHzwhich is generated by an oscillator. This clock is sent fromAlice’s block
to Bob’s block by 1310 nm light using Small Form-factor Pluggable (SFP)modules. The quantum signal and the
clock light are transmitted over the same path bywavelength-divisionmultiplexing (WDM). The control blocks
are also equippedwith ICs for generating randomnumbers. The randomnumber generator ICs can generate
physical randomnumbers at 1Mbps. Pseudo-randomnumbers can be generated by FPGAs for 10 MHz
operation. Personal computers (PC) and the FPGAboards are connected byUSB cables. The output of the
homodyne receiver is recorded by anADCboard connected to a PCI-express bus of the PC. PCs are also
equippedwithGPU cards to accelerate the software-based post-processing.We use non-binary LDPC code [34]

Figure 7.Optical systemof the CV-QKD system. PM: Phasemodulator, VOA: Variable optical attenuator, HBS:Half beam splitter,
OSW:Optical switch, PBS: polarising beam splitter, PLC: Polarisation controller.

Figure 8. Schematics of theCV-QKD system. Each station consists of three blocks; optical system block, control block, and a personal
computer. Personal computer operates the optical systemblock via control block.Quantum signal and synchronisation signal are sent
through the opticalfibre for quantum communication byWDM.
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for error correction (RR) and a fast privacy amplification algorithmusing the Toeplitzmatrixmultiplication [35]
(see appendix). Alice’s station andBob’s station are enclosed in two 19-inch rackmounts as shown infigure 9.

Figure 10 shows the noise characteristics of the commercially available balanced receiver (General
photonics, BPD-001-50) used for homodyne detection. In thefigure on the left, the variance of the output
voltagewhen the photo detectors are irradiated only by the LO is shown as a function of the average power of the
LO light. As the average power of the LO increases, the variance of output voltage increases linearly. This linear
dependence indicates that shot-noise-limited homodyne detection is possible using the commercial receiver.
When the average power of the LO is 0.1 mW, the shot noise level is about 10 times larger than the dark noise of
the receiver.

In the time domain, correlation betweenmeasured values of theN-th pulse and the (N+ 1)-st pulse was
investigated in order to knowwhether adjacent pulses could bemeasured independently. In the right offigure 10
we observe an isotropic distribution and the correlation coefficient of the data is less than 0.01, indicating that
each pulse light can be independentlymeasured.

Infigure 11, typical distributions of the voltage output of the homodyne receiver for four kinds of relative
phase between the signal and LO are shown in a semi-log scale.We can see that these distributions arewell
represented byGaussian distribution. The average values of the amplitudem for 90 and 270 degrees data are
almost zero, and those for 0 and 180 degrees data are plus andminus values, respectively.

6. Automated operation of CV-QKD system

In the key generation operation, Alice sends 106 pulses at a time and a half of them is used for the parameter
estimation: In the parameter estimation, themean values and variances of themeasurement results for four

Figure 9.Picture of theCV-QKD system (left: Alice, right: Bob). TheCV-QKD system is enclosed in two 19-inch rackmounts.
Displays on the racks are used formonitoring purpose and optional.

Figure 10.Noise performance of the balanced receiver. The variance of the output voltagewhen only the LO is input (left). Correlation
of adjacentmeasurements (right).
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kinds of relative phases are calculated. From these values, excess noise and transmissivity of the quantum
channel can be evaluated. In addition, the relative phase offset between the signal and the LO is obtained and this
offset value is used to stabilise the phase offset. At present, this procedure can be repeated every 0.3 seconds; the
repetition time is limited by the transfer time of randomnumbers fromAlice’s FPGAboard toAlice’s PC
through aUSB cable. By improving the transfer rate, three times faster operationwill be possible.

6.1.Optical phase tracking
The optical system shown infigure 7 is basically aMach-Zehnder interferometer. The relative phase between the
signal and LO should be kept stable with higher accuracy than thewavelength of the light. Especially in the case
of CV-QKD, the relative phase variationmust bemade very small in order to keep excess noise small.

The relative phase offset between the signal and LO can be estimated relatively easily in four-state CV-QKD.
Infigure 12, the effect of phase offset is schematically shown. Let be the average value of themeasured voltage for
the relative phase i j 2ijq p p= ´ + ´ (i j, 0= or 1) m m cosij A ijq f= +( ), here mA is the amplitude of the
signal andf is the phase offset. Then, from themeasured average valuesmij, the amplitude mA is calculated as

m m 2A ij
2= å and the phase offsetf is calculated as the average of arccos m mij A ijq-( ) . This phase offset

value is fed to the voltage of the phasemodulator in Bob’s optical box. Typical phase fluctuation after
stabilisation is 0.05 radian. Excess noise can be kept less that 0.02 formost of the time.When the phase offset is
suddenly increased, such data are discarded.

6.2. Real-time key generation
In a real operation, it is necessary to take account the efficiency of the error correction in the secret fraction.
When the error correction efficiency f is not unity, themutual information betweenAlice and Bob is given as

I fh1 . 5’AB ¢ = - ( ) ( )

Then the secret fraction ismodified to r dm P m Iò a¢ = D ¢( ∣ ) , where I IAB cD ¢ = ¢ - and the integral is taken
over the regionwhere I 0D ¢ . The compression factor of the classical post-processing, rcomp, is defined as the

Figure 11.Histogramof homodyne detected signal amplitude for four kinds of relative phase between the signal and the LO.

Figure 12.Optical phase tracking. Four coherent states are shown on the complex planewhen the relative phase between the signal
and LO is shifted byf (left). Frequency distributions of quadrature-phase amplitude for four relative phases (right).
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ratio of the secret fraction to the post-selection rate p:

r r p. 38comp = ¢ ( )

Table 1 shows numerical examples of the post-selection rate and the compression factor. In this numerical
calculation, the channel loss is 0.2 dB/km, the error correction efficiency is f=1.3, and the signal photon
number 2a∣ ∣ is optimised.

Figure 13 shows an example of key generation results. This is the data when theCV-QKD systemwas
installed in theNICT facility and connected to the TokyoQKDnetwork [36, 37]. The quantum channel is a 10
kmoptical fibre. Sift key rate is about 300 kbps and secure key rate is about 50 kbps.

We performed RRusing non-binary LDPC code [34]. The error correction efficiency parameter was set to be
1.3 although the code can operate stably evenwhen the f parameter is 1.08 and error rate is 0.15. The speed of
error correction is about 300 kbps per thread using aGPU (GTX680). Privacy amplificationwas performed by
Toeplitzmatrixmultiplication [35]. Its calculation complexity can be reduced to O n nlog( ) for an input length
n by exploiting the FFT algorithm.

In an automated operation, the compression factor is calculated by using a linear approximation function
for numerical calculation shown in table 1, that gives the compression factor as functions of transmissivity and
excess noise. Herewe assume that Eve cannot control Bob’s receiver which has optical loss and excess noise.We
also assume that Eve’s knowledge about the sift keywhenBob has an ideal receiver is smaller than her knowledge
about the sift keywhenBob uses a lossy and noisy receiver because in the RREve has to infer lossy and noisy
signal in the latter situation. Under these assumptions, theHolevo quantity in the former situation,χ, should be
larger than that in the latter situation, c¢:

. 39c c¢ ( )

In addition, we assume that themutual information betweenAlice and Bob in the latter situation, HAB¢ , is larger
than that in the former situation, HAB:

H H . 40AB AB¢ ( )

This assumption onmutual information can be satisfiedwhen the error rate in the latter case (actual experiment)
is set be smaller than that in the former case (ideal calculation) by increasing the threshold of post-selection.
When equations (39) and (40) are satisfied, the following equation holds;

Table 1.Post-selection rate and compression factor. Error correction
efficiency f is set to be 1.3.

Excess

noise

Distance

(km)
Photon

number p rcomp

0.5% 1 4.3 0.960208 0.648948

5 2.7 0.820866 0.349567

10 2.2 0.64053 0.214132

1% 1 4.2 0.956934 0.624086

5 2.7 0.817244 0.336959

10 2.2 0.631302 0.203932

2% 1 4.1 0.952484 0.578773

5 2.8 0.818266 0.310443

10 2.3 0.624872 0.182115

Figure 13.Automatic key generation by ourCV-QKD system that employs the four-state CV-QKDprotocol and reverse
reconciliation. TheCV-QKD systemwas installed in theNICT and connected to the TokyoQKDnetwork. The quantum channel is a
10 kmopticalfibre.
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I H H I. 41AB ABc cD ¢ = ¢ - ¢ - = D ( )

Thatmeans the compression factor shown in table 1 can be safely used for the actual experiment where Bob uses
a lossy and noisy receiver. In the experiment, the post-selection ratewas kept about 0.4which is smaller than the
numerical calculation shown in table 1.

7. Summary

Wedescribed the security and experimental implementation of the four-state CV-QKDprotocol using post-
selection.We evaluated the secret fraction of the protocol against a collective attack both forDR andRR. As the
quantum channel becomes longer, RR yields better secret fraction thanDR.When the distance is shorter than 30
km, the secret fraction is insensitive to the value of the excess noise and thismakes experimental implementation
easier.

We experimentally demonstrated automated secure key generationwith a rate of 50 kbpswhen a quantum
channel is a 10 kmopticalfibre. A commercially available balanced receiver is used to realise shot-noise-limited
pulsed homodyne detection.We use a non-binary LDPC code for error correction and the Toeplitzmatrix
multiplication for privacy amplification. AGPU card is used to accelerate the software-based post-processing.
Real-time stabilisation of relative phase between the signal and LOhas been demonstrated. The present CV-
QKD system is simple and can be built at low cost, and it is possible to achieve better performance in the future.
We believe the present implementationwillmake a significant contribution toward practical popularisation
ofQKD.
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Appendix

In this appendix, we explain details of software-based post-processing used in our system.

Error correction by a non-binary LDPC code
Non-binary LDPC codeswere invented byGallager [38] and it was found byDavey andMacKay that it can show
better performance than binary LDPC codes [39]. In the case of the LDPC codes, it is necessary to choose
properly from a collection of codes that are optimised formultiple error rates. By utilising a rate-compatible
non-binary LDPC codewhich supports a wide-range of rates, it is possible to simplify the error-correction
systemwhile achieving efficient information reconciliation [40].

Details of the error correction procedure used in the present CV-QKD system is as follows. After Bob and
Alice obtained their sifted keys, i.e. after step (vi) explained in section 2, Bob has an n-bit binary string
Y Y Y Y, , , ,n

n
T

1 2= ( ) andAlice has X X X X, , , ,n
n

T
1 2= ( ) . They know an estimate of bit error rate of their sift

keys. In the reverse reconciliation scenario, the goal of the error correction is for Alice to reproduce a string Y
nˆ by

conversationwith Bob over a public channel. The content of the conversation depends on Y n, and c Y n( )
denotes the content of the conversation. The error correction should have the following properties:

• the probability of Y Yn n¹ ˆ is sufficiently close to zero; and

• themutual information I Y c Y;n n( ( ))) is as small as possible.

The second property is important because Alice and Bobmust subtract I Y c Y;n n( ( ))) bits from the corrected
key during the privacy amplification procedure as I Y c Y;n n( ( ))) is the amount of information leaked to Eve
during the conversation over the public channel.We can use a good error correctionmethod by saving the
number of bits in c Y n( )while enabling Alice to decode Y n from Xn and c Y n( ).

Schematics of the reverse reconciliation by an asymmetric coding is shown infigure 14 [40]. The encoder
only usesY n for generating the codeword f Y n( ). The decoder uses both f Y n( ) and Xn. In the reverse
reconciliation, Bob has Y n andAlice has Xn. Therefore, Bob generates the codewords f Y n( ) from Y n and sends
f Y n( ) to Alice. ThenAlice uses the decoder for recovering Y n. The amount of information leaked to Eve is
estimated as I Y f Y H f Y;n n n ( ( )) ( ( ) the number of bits in f Y n( ). If the length of f Y n( ) is shorter, upper
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bound on the leaked information is smaller. LDPC codes can be used for the asymmetric coding [41]. At some
fixed rate, the information bits are encoded as a syndrome of an irregular LDPC code. The information can be
estimated by an efficient algorithm, belief propagation decoding, with a help from the syndrome and the
correlated information. However, in an actualQKD system, the bit error rate of the sift keysmayfluctuatewith
time. In this case, the encoder and decodermust be equippedwithmultiple LDPC codes: each irregular LDPC
code of channel coding rateRc is designed to have lower decoding error probability over channel with H Y X( ∣ )
which is as close to the bound R1 c- as possible. A rate-adaptive error correction schemewith a set of optimised
irregular LDPC codes formultiple channel coding rateswere proposed by Elkouss et al [42]. However, since the
number of LDPC codes equipped is limited in an actualQKD system, Alice and Bob have to use one of the LDPC
codes equipped thatmay have degraded performance for the actual sift-key data. This degradation leads to the
so-called saw effect [42].

A rate-compatible coding uses only a singlemother LDPC code and can solve the issue of the saw effect. Two
of the authors of this paper (KKandRM) and Sakaniwa proposed an error correction scheme in conjunction
with rate-compatible non-binary LDPC codes [40]. The (2,dc)-regular non-binary LDPC code on theGalois field
GF(2p)with 2 64p  are empirically known as the best performing error-correction codes. In the present CV-
QKD implementation, we use a (2, 3)-regular non-binary LDPC code onGF(256). Themain shortcoming of
non-binary LDPC codes is decoding complexity.We use an programme that usesGPUs for faster processing.
The programme can be downloaded fromone of the authors (KK)web site [34].

Privacy amplification using Toeplitzmatrixmultiplication
Privacy amplification is a procedure to extract randomnumbers unknown to third parties by applying a random
hash function to a random sourcewhichmay be partially leaked to third parties. This procedure is realisedwith a
help of another auxiliary random sourcewhich is public and called a random seed. Themost typical random
hash function for this purpose is the universal2 hash function, and themostwidely used of it is the one using the
(modified)Toeplitzmatrix [35]. The hash function using the Toeplitzmatrix allows an efficient implementation
with complexity of O n nlog( ) for input length n andwith a short seed length.

The Toeplitzmatrix is amatrix whose diagonal elements are all same. It is parametrised by
r r r r, , , , , 0, 1n

n
1 2 1

1= Î-
-( ) { } as

T r

r r r
r r r

r r r

. 42

m m n

m m n

n m

1 1

1 2

1 2 1

=

+ -

- -

- -



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For example, amultiplication of a 3×4Toeplitzmatrix and a four-element vector z z z z z, , , T
1 2 3 4= ( )

outputting a three-element vector y y y y, , T
1 2 3= ( ) is written as
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r r r r
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This can be embedded in amultiplication of a squarematrix and a vector by concatenating extra elements to
vectors y z, as

y
y
y

r r r r r r
r r r r r r
r r r r r r
r r r r r r
r r r r r r
r r r r r r
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z
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( )

As explained in appendix C of [35], amultiplication of a square Toeplitzmatrix and a vector can be performed by
three calculations, i. e., two discrete Fourier transforms (DFT), a convolution and an inverse Fourier transform.
Since the complexity of aDFT is O n nlog( ) using the FFT algorithm and the complexity of convolution isO(n),
the total complexity of themultiplication is O n nlog( ).

Figure 14. Schematics of reverse reconciliation by asymmetric coding.
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