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Abstract
This article presents recent progress and a comprehensive overview of stretchable interconnects based
on printable nanocomposites. Nanocomposite-based inks for printed stretchable interconnects have
been categorized according to dispersed fillermaterials. They comprise of carbon-based fillers and
metal-based fillers. Benefits in terms of excellent electrical performance and elastic propertiesmake
nanocomposites the ideal candidates for stretchable interconnect applications. Deeper analysis of
nanocomposites-based stretchable interconnects includes the correlation between the size offillers,
percolation ratio,maximum electrical conductivity andmechanical elasticity. The key trends in the
field have been highlighted using curve fittingmethods on large data collected from the literature.
Furthermore, awide variety of applications for stretchable interconnects are presented.

1. Introduction

Recent years have witnessed a paradigm shift in the
electronics industry towards the development of
flexible and stretchable electronics. Development of
flexible and stretchable devices has enabled new path-
ways and interaction mechanisms for applications
such as wearable electronics [1, 2], consumer electro-
nics [3], electronic skin (E-skin) [4, 5] and robotics [6–
8], etc. However, realization of such devices with
traditional materials such as silicon is a challenge
owing to their intrinsic properties such as brittleness
that limit their ability to stretch or bend [9, 10].
Although recent studies on silicon micro/nanostruc-
tures [11–14] and ultra-thin chips [15, 16] have
demonstrated the feasibility of silicon-based flexible
electronics. In this regard, stretchable interconnects
are interesting as they can provide traditional rigid
electronic systems an extra degree of freedom while
retaining the performance of original rigid devices. In
applications such as electronic or tactile skin in
robotics, the stretchability can improve conformabil-
ity with various curved parts [10].

The field of stretchable electronics has been widely
reviewed in terms of materials and applications. For
example, Bao et al reviewed the development of
stretchable electronics in context with e-skin [17, 18].
Rogers et al focused on various materials and

geometries for stretchable electronics [19–21]. Many
other reviews have focused on different geometries
and the role of materials is not much covered [22, 23].
Materials such as rubber-like nanocomposites have
been extensively reviewed by researchers in terms of
their electrical properties, synthesis and fabrication
technologies [24, 25], but their role in stretchable elec-
tronics has not been reviewed yet. This review article
bridges this gap and extends the discussion on nano-
composites towards stretchable electronics. Further-
more, we also discuss the correlation between the
electrical andmechanical properties of the rubber-like
nanocomposite, which were not discussed before.
This article presents a detailed discussion on printable
nanocomposites that can be used as stretchable
interconnects.

In terms of historical perspective, the need and
interest for the development of flexible electronics can
be traced back to the 1960s, as shown in figure 1. The
need to capture solar energy in space application and
the energy crisis of late 1960s were the motivating fac-
tors for research on flexible electronics [26]. The shift
from rigid to flexible solar panels was driven by the
benefits of flexible panels such as a larger active area,
lighter weight and more resistance to thermal and
vibration shocks [26]. New applications such as flex-
ible ribbons/wires in computers led to further growth
in the use of flexible electronics. More recently,
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applications such as robotics and soft robotics [27],
prosthetics [28], implantable electrodes [1], and wear-
able systems [29] etc, have led to significant growth in
the field of flexible electronics. This is evident from the
exponential increase in the number of publications in
this field in last fifteen years (figure 1). By incorporat-
ing a degree of flexibility, the performance of multi-
functional electronic systems could be extended for
various applications. However, applications where
large deformation is experienced, it is imperative to
have stretchability. As an example, large deformation
is experienced at complex surfaces such as the knees
and elbows of a humanoid robot where the need for
tactile skin has been highlighted by many researchers
[10, 28, 30, 31]. However, flexible electronics with
such large deformations and similar performance as
traditional silicon-based electronics is not there yet.
For this reason, the stretchability of tactile skin with
rigid electronic components connected via stretchable
interconnects has been explored as a solution in such
cases. Likewise, stretchable electronics with islands of
rigid electronic chips on flexible substrates and con-
nected with each other via stretchable interconnects
has been explored for wearable and biomedical appli-
cations [1, 32–34]. The stretchability also improves
conformability of electronics with the body and thus
improves the reliability of the measurement of vital
health parameters via wearable systems. New materi-
als such as graphene could add a new dimension to this
research through features such as transparency and
high electrical conductivity [35]. These advances have
also led to the exponential growth in the field of
stretchable electronics, especially in the past decade, as
can be seen from figure 1. It can be noted that the
growth in stretchable electronics is expected to surpass
that in flexible electronics. This is perhaps due to the
increasing number of applications requiring stretch-
able electronics. In terms of the actual number of pub-
lications, flexible and stretchable electronics are

expected to attract about 15 000 and 5600 papers,
respectively, by the year 2020.

This article is structured as follows: section 2 gives
a general overview of stretchable interconnects and
various structural geometries and materials are briefly
discussed. Since these topics have been reviewed in
past, the discussion of these topics has been intention-
ally kept brief and covered to serve the purpose of pre-
senting a complete story. Section 3 describes different
printing technologies to fabricate stretchable inter-
connects. Section 4 presents various materials for
printable interconnects with a particular focus on the
electrical and mechanical properties of nanocompo-
sites. Then, several applications of stretchable inter-
connects, including those based on nanocomposites
and various geometries are presented in section 5.
Section 6 summarizes the review with key observa-
tions and future research directions.

2. A general overview of stretchable
interconnects

Generally, stretchable systems can be obtained in two
ways: (a) engineered shapes, and (b) rubber-like
materials that are intrinsically stretchable. Figure 2
summaries various types of methods for stretchable
interconnects from these two categories along with the
maximum possible elongation achieved for each of
them. Engineered geometries such as helical wires
have been widely used for stretchable interconnects
for a long time. The idea of helical conductive wire is
straightforward; it resembles the structure of a spring
or wire connecting a telephone receiver to its base in
recent years [36, 37]. The helical shape makes the wire
stretchable (rather expandable) and allows the tele-
phone receiver to bemoved away from the base.While
telephone wires have vanished, thanks to the advent of
wireless technology, the techniques of stretchable
wires have found new applications, such as in a
stretchable tactile skin. Expandable spiral electrodes,

Figure 1.The trend from the accumulated number of publications during 1965 to 2020. The data was extracted fromWebof science
by searching keywords such as flexible electronics and stretchable electronics.
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obtained by winding the copper wires around an
elastic nylon line, have been used to obtain large-area
tactile skin [38]. Conductive thread-based clothing has
been used in stretchable wearable electronics [39, 40].
Likewise, stretchable fabrics with knitted tactile sen-
sing materials or tactile sensitive fabrics have been
reported for stretchable tactile sensing [30, 41]. The
fabrication of such stretchable systems often requires a
core that can be chosen as the elastic thread. Then the
conductive wire is wound around the core under a
precise control in pitch and winding speed to build the
helical shape. The wire can either be commercial
copper wires [37] or elastic polymeric wires coated
with highly conductive material (e.g. AgNW [36]).
Depending on the winding pitch and wiring material,
the failure strain of such designs can reach up to 100%
with an increased resistance by 70% [36]. However,
the large diameter of winding coil narrows the
scalability of such geometries.

Another engineering technique for obtaining
stretchable structures involves realizing conducting
layers in ‘wavy’ or serpentine shapes [42–45]. Com-
pared to the limited scalability possible in helical coil
and threads, the geometry of in-plane ‘wavy’ design
and buckled film can be easily scaled down to the
microscale by microfabrication technology (figure 2).
With a careful design of its ‘wavy’ amplitude, the cur-
vature and the width, the optimized structure can be
applied up to 90% strain with a negligible influence on
electrical response [45]. The out-of-the-plane ‘wavy’
structure or the buckled film can either be deposited
along with the buckled substrate [46] or partial-free
standing on the substrate [11, 47]. The stretchability of

wavy structures on buckled substrates mainly relies on
the degree of pre-straining of the substrate which is
limited due to the substrate’s stretchability, on the
other hand, the interconnects that are partial-free
stand on the substrate can have a higher degree of
stretchability benefit from the releasing from the sub-
strate scheme. In this way, the stress generated at the
interface between the conducting film and soft sub-
strate can be avoided and this allows the film to have a
longer possible elongation. Another strategy for
stretchable conductors is to fabricate net-shaped con-
ductive structures by releasing a pre-strained elastic
substrate with conductive materials lying on it. Taking
advantage of this technique, different stretchable con-
ductors, such as metal-coated net films, wavy one-
dimensional metal ribbons or two-dimensional metal
membranes have also been demonstrated [48].

Stretchability of interconnects can also be enhanced
by engineering the topography of the substrate. One
such example is implementing mini-valleys on the sur-
face of a soft substrate followed by metal coating. This
results in a structure with a stable electrical behavior
over a repeatable cyclic stretching [49]. Other than
implementing mini-valleys on the surface of the sub-
strate, the honeycomb lattice architecture or sponge-
like structure is designed by introducing vias or air
pores to the substrate. The conductive sponge can
either be achieved by electrodeless-plating on commer-
cially available PU sponge [50] or carbon nanotube
sponge [51]. Recent research on multilayer graphene
sponge has also generatedmuch interest [52]. However,
the idea of using conductive sponge for stretchable
interconnects has several limitations including the size

Figure 2.Various designs in engineered geometries of stretchable interconnect which are sorted according to theirmaximum
elongations (stretchability)with respect to the scale of the structure size achieved by different patterning technologies.
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of pores in the sponge, which decides both the mini-
mum dimension of the interconnects and the stretch-
ability of the interconnects. With smaller pore size the
interconnect structure could be finer, but at the same
time less stretchable. Further, there are challenges rela-
ted to the integration and soldering of such structures as
the pores in the structure do not allow seamless integra-
tion as in conventional electronics. Some technologies
can realize a very fine structure of interconnects. For
example, the nano-mesh structure fabricated by grain
boundary lithography. This nanoscale structure can
withstand strain up to 160%. However, after 1000
cycles’ test, the resistance changed significantly [53].
Another example is the nano-accordion structure,
which is made of Al doped ZnO. This structure can be
elongated up to around 53%, but in the meantime the
resistance changed dramatically [54].

A truly stretchable conductor should be like rub-
ber—stretching and regaining the original shape after
release, and ideally with negligible variation in
the conductivity. Such interconnects are discussed
in details in the following sections of this review.
Few examples of this type of (non-ideal) stretchable
conductor include elastic conductors based on Single-
Walled Carbon Nano Tubes (SWNT)-PDMS compo-
site films embedded in PDMS or coated with
dimethylsiloxane-based rubber [55–58]. In these
interconnects, the nanotubes carry the electricity and
the rubber provides the stretchability. These con-
ductors allow uniaxial and biaxial stretching of 70%–

100%—without mechanical or electrical damage. The
microfluidics approach is yet another interesting alter-
native that has been developed in recent years to
obtain stretchable conductors. In this approach, the
wires are replaced with conductive liquid confined in
microfluidic channels [59]. These approaches are not
yet at a stage where they can be employed in large area
integration. Nonetheless, recent advances in material
engineering, highlighted in this article, do raise hope.

3. Technologies for printed stretchable
interconnects

Printing technologies are widely used for the develop-
ment of flexible and stretchable electronics as they
offer a cost-effective fabrication alternative to lithogra-
phy-based approaches [60]. As illustrated in figure 3,
these technologies encompass a number of methods
including microcontact printing, transfer printing,
spray coating, inkjet printing and screen printing [60].
An excellent overview of various printing technologies
for flexible electronics is given in [60]. The technolo-
gies most relevant to stretchable interconnects are
briefly described here. These printing techniques are
preferred over other patterning techniques such as
photolithography and electron beam lithography for
the development of large area electronics applications
owing to their low cost and fast processing speed,
whichmake them attractive in terms ofmanufacturing
[60]. The materials, which are compatible with print-
ing technologies, range from conductors, dielectrics,
and semiconductors in the form of dispersed solution,
colloids and paste. The concept of printing technology
is to spread and pattern the ink/paste directly on the
substrate with the help of specific printing equipment.
For instance, microcontact printing involves a pre-
fabricated stamp gaining contact with the conductive
ink first and this is followed by contact with the target
substrate under specific pressure, as described in
figure 3(a). The reported resolution can reach a line
width of 314 μm with a space of 286 μm [61]. The
stamp in the process can be repeatably used. However,
with an overload contact pressure the stamp can easily
pick up excessive ink, which affects the final resolution
of the printed structures. More precise patterns with a
minimum structure of up to 5 μm resolution can be
achieved with the help of a Nanoimprint machine
[62]. Another popular printing technology is spray
coating (figure 3(c)). This technology utilizes a nozzle
to spray solution-based materials on the substrate.

Figure 3.Printing technologies including (a)microcontact printing, (b) transfer printing, (c) spray coating, (d) inkjet printing, (e)
screen printing.

4

Flex. Print. Electron. 2 (2017) 013003 WDang et al



Spray coating has the advantage of efficient material
usage but the resolution can be poor. It is often used in
combination with other printing technologies such as
contact printing or transfer printing [63–66]. Com-
pared to spray coating, inkjet printing can realize a
versatile pattern directly from graphical designs
(figure 3(d)). The achievable resolution by spray and
inkjet printing is hugely dependent on parameters
such as the diameter of the nozzle and the distance
between the targeting substrate, etc [67, 68]. The
limitation of the nozzle diameter restricts the size of
the particle in the ink used for these printing
technologies. In this regard, solution-based or colloid-
based ink is preferred for homogeneous coating and
the relevant printing technologies are called screen or
stencil printing. Screen printing utilizes a paste-like
ink which is more viscous compared to spray and
inkjet printing. As shown in figure 3(e), the setup of
screen printing comprises of a stencil, squeegee, a press
bed and the substrate, The resolution is limited by the
mesh size from the stencil, the viscosity of the ink, the
surface energy of the substrate and the speed of
printing etc [69, 70]. The viscosity of the ink has to be
carefully controlled to avoid the over-spreading of
printed ink and to control the printing resolution.
Currently, the highest resolution of this technology is
about 50 μm [71].

4.Materials for printed stretchable
interconnects

4.1. Intrinsic conductive and elastic interconnects
Traditionally, metals such as gold and copper have
been preferred for interconnects and electrodes,
owing to their high electrical and thermal conductiv-
ity that permits an influx of large current and fast
transmission of signals. However, when it comes to
stretchability the metals have been found to have
limited use as they are not elastic enough [46, 72]. For
example, the metal interconnects exhibit an elastic
modulus of about 100 GPa.On the other hand, highly
stretchable elastomers such as PDMS and PU etc,
which are often used as highly stretchable substrates,
exhibit an elastic modulus below 1MPa. For this
reason, the use of metal for a stretchable interconnect
application has been achieved through engineered
geometries described in section 2. The stretchable
interconnects that act like rubber, i.e. stretching and
regaining the original shape after release, with
negligible variation in the conductivity, offer an
interesting alternative. These interconnects are based
on various nanocomposites, which are made by
mixing a variety of conducting filler materials in a
matrix of soft and rubbery materials. A comparison
of the elastic modulus and electrical conductivity of
various insulating polymers, metal and carbon-based
filler materials is given in figure 4. While mechan-
ical stretchability and electrical conductivity are

prerequisites for stretchable interconnects, the inter-
action between the conductor and polymer substrate
is crucial as well. Huge differences in elastic modulus
between the substrate and conducting materials can
lead to a highly concentrated stress at the interface
and thus can have unreliable operation [46]. In order
to mitigate this effect, novel conductive materials
that can balance the mechanical stretchability and
electrical conductivity are in high demand. A few
examples of intrinsic conductive and stretchable
materials are presented in figure 5.

Organic conductive polymers have emerged as
popular candidates for filler materials, owing to their
acceptable electrical conductivity and mechanical
softness [6]. Some of the widely used organic con-
ductors include Polyaniline (PANi) [73] and Poly(3,
4-ethylenedioxythiophene): poly(4-styrenesulfonate)
(PEDOT:PSS) [74]. They have modest electrical con-
ductivity (∼100 S cm−1) and are soft enough for up to
10% stretching without any cracks in the film [74].
Furthermore, being transparent they can be used in
optoelectronic device applications [75, 76]. The elec-
trical conductivity of these conductive polymers is
limited. In the case of PEDOT:PSS, the highly con-
ductive PEDOT grains are surrounded by excess
weakly ionic-conducting PSS. Although the PSS ions
help PEDOT to be easily dispersed in water, it sepa-
rates PEDOT from establishing a conductive path
[77]. A secondary doping can improve the electrical
conductivity of the resulting PEDOT:PSS film [75, 78]
and the maximum conductivity can be in the order of
1000 S cm−1, which is still low in comparison with
metals. An example of PEDOT:PSS, replacing ITO in
solar cells is given infigure 5(a) [79].

Another type of filler material is the ionic-Hydrogel
electrode, which is made of PAM-Aam (LiCl) and is
highly elastic and electrically conductive [80]. The elastic
modulus of ionic-hydrogel electrode filler material is
lower than an elastomeric substrate such as Ecoflex.
Therefore, the substrates deposited with ionic-hydrogel
electrodedonot showanyphenomenonof delamination
even when they are stretched up to 500%. Besides con-
ductive polymers, liquidmetals such as eutectic gallium-
indium (EGaIn) incorporated within microchannels in
an elastic polymeric substrate [81] are also investigated
for stretchable interconnect applications. The use of
EGaIn as stretchable interconnects to connect LEDs is
shown in figure 5(b) [82]. Although they result in a reli-
able and robust interconnect system, the complexity
associated with fabrication and encapsulation of micro-
channels in such structure limits their use. Another pop-
ular group of materials for stretchable interconnects is
the conductive nanocomposite. These nanocomposites
have highly conductive fillers dispersed within the elastic
polymer matrix and their electrical conductivity can be
tuned by varying the load volume of the filler material.
The achieved electrical conductivity can reach up to the
level of 106 Sm−1 and the stretchability can be up
to 100% [83]. A few examples of screen printed
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nanocomposites for stretchable interconnects are shown
in figures 5(d)–(e) [71, 84]. The conductive nanocompo-
sites show strong advantages over the organic polymer,
ionic hydrogel and the liquid metal in terms of electrical
conductivity and mechanical elasticity. This article is

focused on a composite based on a variety of conductive
fillers which is composed of metal-based fillers, carbon-
based fillers and semi-conductor-based fillers. A detailed
study of these materials is presented in the following
section.

Figure 4.Comparison of the elastic property of variousmaterials (including insulating polymers, organic conductive polymer,metals
and carbonmaterials) for stretchable interconnects with electrical conductivity.

Figure 5. (a) FlexibleOPVbased on PEDOT:PSS. Reprinted from [79], copyright 2011, with permission fromElsevier. (b) Liquid
metal interconnected LED, [82] JohnWiley& Sons. © 2013WILEY-VCHVerlagGmbH&Co. KGaA,Weinheim. (c) Ionic
Hydrogel-based stretchable electrode. From [80]. Reprintedwith permission fromAAAS. (d)Commercially available AgNW-based
screen-print ink, [71] JohnWiley& Sons. © 2016WILEY-VCHVerlagGmbH&Co. KGaA,Weinheim. (e) Stretchable interconnects
based on screen-printed silver paste. Reproduced from [84]. CCBY 4.0.
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4.2. Nanocomposite-based stretchable electrode
Conductive nanocomposites benefit from the high
electrical performance of fillers dispersed in the elastic
polymer matrix. The synthesis of these nanocompo-
sites with an appropriate mix of fillers in the polymer
matrix is critical in terms of performance. The
synthesis process requires three following essential
elements: the conductive filler, the binder (polymer
matrix) and the solvent [71]. To make sure the fillers
are homogeneously dispersed in the matrix, an appro-
priate solvent is selected to de-bundle the fillers.
Simultaneously, the sonication power and duration
should be tuned to transduce the energy for dispersing
the filler homogenously without breaking them [85].
In general, the electrical behavior will be enhanced if
the loading ratio of fillers is increased. However, the
elastic modulus of the resulting composite is also
increased in the process and therefore a trade-off is
needed between the elastic modulus and electrical
conductivity. The following sub-sections describe the
theory governing this trade-off and a comparison of
various nanocomposites based on a variety of con-
ductive fillers.

4.2.1. Percolation and tunneling theory
The conductivity of nanocomposites varies as a result
of the variations in filler concentration [10]. The
conductivity is governed by the percolation theory,
which is represented by [60, 86]:

p p p p, for 1c
t

c0s s» - >( ) ( )

Where s is the bulk conductivity of the composite, 0s
is the conductivity of the filler, p weight percentage of
the filler and t the critical exponent. The critical
percentage pc of the filler is defined as the percolation
threshold. This critical fraction is achieved when a
continuous electrical path is built, as illustrated in
figure 6 [86]. Several parameters affect the value of the
percolation threshold and these include the dimension
of filler, morphology of the filler, and the synthesis
method of the nanocomposite. Many numerical
simulation and mathematical modelling studies have
been done to investigate the effect of the filler’s

dimension on the percolation threshold of the nano-
composite [87–89]. In Balberg et al’s theory, a denser
composite system can be modelled as a lattice-like
system and its percolation threshold is strongly
dependent on the density and dimension of the fillers
[90]. Some researchers have performed studies based
on aMonte Carlo simulation that regards a percolated
network as a statistic problem. Both studies suggest
that the percolated threshold is proportional to the
reciprocal of the particle’s aspect ratio [91] and can be
mathematically written as:

p r, 2c r

L

D

1µ = ( )

The experimental results obtained from various
nanocomposites and plotted in figures 7(b) and (c) are
in line with the above theoretical relationship between
the percolation threshold and the aspect ratio. Extend-
ing this relationship further, figure 7(a) also shows the
correlation between the maximum conductivity and
aspect ratio of fillers among various nanocomposites.
The global conductivity of the percolated network
within the polymer matrix depends on the con-
ductivity of the filler, the contact resistance between
the overlapped fillers and conductivity of the electron
tunnelling effect through the nearby fillers [92]. The
distance of the tunnelling effect d .tunnel can be esti-
mated as:

d m E8 3tunnel e= D ( )

Where,  is the Planck’s constant, me is the mass
of electron and ED is the difference in work function
between filler and polymer matrix. However, this tun-
nelling effect can be ignored if the wrapped polymer
between adjacent nanowires is thicker than a cutoff
distance dcutoff [92].

4.2.2. Elastic modulus of compositematerials
The studies estimating the elastic modulus of compo-
site materials can date back to the 1970s [93]. The
general form for the elastic modulus of a nanocompo-
site is described as [94]:

Figure 6. Schematic diagramof the theory of a percolated network and tunneling effect between adjacent nanowires.
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Where M represents the elastic modulus of com-
posite and M1 and M2 are the modulus of polymer
matrix and filler respectively. f is the volume fraction
of fillers and A is a critical parameter defined by the
geometry of filler and the Poisson’s ratio of polymer
matrix. This general equation skips some factors such
as the sediments and aggregations of fillers, but it gives
a fair estimation of the mechanical property of the
resulting composite.

4.2.3. Carbon-based nanocomposite
Carbon particles are often used as conductive fillers
because they are widely available, have high electrical
conductivity and low cost. Many studies on carbon-
based composites in stretchable interconnects are
listed in table 1. It can be noted that graphite is one of
the most widely used carbon fillers for stretchable and
conformable electrodes. In order to achieve the
desired level of electrical conductivity a large amount
of fillers are used, which also leads to the degradation
of stretchability in graphite-based composites [95]. On
the other hand, owing the high aspect ratio of CNTs,
the conductivity of CNT-based nanocomposites can
be higher with a much lower percolation threshold

[96]. However, due to the strong Van der Waal forces
among carbon fillers, they tend to bundle and entangle
together which leads to an inhomogeneous conductiv-
ity and high load ratio. By evaluating the maximum
conductivity of various nanocomposites, it is observed
that the group of Graphene Nanoplatelets nanocom-
posites exhibit superior conductivity with a low
percolation ratio. This is because graphene has large
surface area of 2630 m2g−1 and high electrical con-
ductivity 7200 s·m−1 [97].

4.2.4.Metal-based nanocomposites
Metal-based composites generally comprise of metal-
lic nanoparticles or nanowire (NWs) as fillermaterials.
They are popular owing to their higher conductivity
compared to carbon-based fillers. Silver flakes are
often found in commercially available conductive
inks. Recently, stretchable and conductive silver-based
inks have been commercialized as well [84]. The
reported silver ink shows a high conductivity in the
range of 103–104 S cm−1, as shown in table 2. The high
aspect ratio AgNW further enhances the electrical
conductivity. However, the maximum conductivity of
the AgNW nanocomposite does not indicate a strong
correlation with the aspect ratio of NWs. In general,
the percolation ratio of AgNWnanocomposites is low.

Figure 7.Plot of data points collected from tables 1 and 2. (a)Correlation between themaximumconductivity and aspect ratio of
fillers from various nanocomposites. (b)Correlation between the percolation ratio and aspect ratio among various nanocomposites.
(c)The trend of the percolation ratio and stretchability with respect to the aspect ratio for carbon-based nanocomposites. (d)The
mapping of data points with the elasticmodulus against themaximumconductivity.
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Table 1.Comparison of various nanocomposites based on carbon fillers with respect to properties such asfiller size, percolation ratio,maximumconductivity andmechanical elasticity.

Material (Filler-polymermatrix) Filler size Aspect ratio (L/D) Percolation ratio Maximum conductivity ElasticModulus Elongation Reference

Graphite-PDMS 25.4 μm — 11.1 vol.% 1.8 S cm−1 5.1 GPa 0.71% [95]

Graphite-PDMS 10 μm — 12 vol.% 2×10−6 S cm−1
— — [98]

Graphite-Epoxy D: 10 μm, — 1.3 vol.% 1 S cm−1 5.56 GPa — [99]

t: 0.1 μm

Graphite-PUa D: 10 μm, — 1.7 vol.% 1×10−5 S cm−1 7.14 GPa — [99]

t: 0.1 μm

Graphite-Epoxy 4–44 μm — 20 vol.% 3.3×10−2 S cm−1
— — [100]

Graphite-Phenolic Resin < 1 μm — 15 vol.% 66.7 S cm−1 1.3 MPa — [101]

Graphite-PPb 21.3 μm — — 20.16 S cm−1
— — [102]

Graphite-PVDFc 21.3 μm — — 0.56 S cm−1
— — [102]

Graphite-LDPEd 2.1–82.6 μm — 2.1 μm→13.5 vol.% 1 S cm−1
— — [103]

82.6 μm→25.5 vol.%
eEG-PANI L: 400 nm, — 0.91 vol.% 35 S cm−1

— — [104]

t: 10–40 nm
fGNP- PEg L: 39–115 nm — 0.51, 1.2, 2.4 vol.% — — — [105]

t: 3.6–7.1 nm
hG-ODA-PDMS t: 2.7 nm — 0.63 vol.% 2×10−6 S cm−1

— — [97]

Graphite-PSi D: 6.5 μm, — 3.5 vol.% 1×10−5 S cm−1
— — [106]

t: 100–300 nm
jMWCNT-PDMS L: 1–25 μm — 2.1 vol.% 0.1 S cm−1 1.43 MPa 45% [96

MWCNT-PDMS L: 5–15 μm

D: 60–100 nm 125 0.72 vol.% 2×10−4 S cm−1
— — [107]

MWCNT-PDMS L: 30–50 μm 2285 0.3 vol.% 1×10−3 S cm−1 2.18 MPa 50% [108]

D: 15–20 nm

MWCNT-PDMS L: 10–30 μm 666 2.9 vol.% 6.5×10−2 S cm−1
— 40% [61]

D: 20–40 nm

MWCNT-PDMS L: 1–2 μm 30 1.91 vol.% 0.8 S cm−1 7.38 MPa 1.2% [109]

D: 40–60 nm
kCNF-PU L: 30 μm 260 0.42 vol.% 1.72×10−5 S cm−1 56 MPa 450% [110]

D: 80–150 nm

a PU: Polyurethanes,
b PP: Polypropylene,
c PVDF: Poly(vinylidene fluoride),
d LDPE: Lowdensity polyethylene,
e EG: Exfoliated graphite,
f GNP: GrapheneNanoplatelets,
g PE: Polyethylene,
h G-ODA: Alkyl-functionalized graphene,
i PS: Polyester,
j MWCNT:Multi-walled carbon nanotube,
k CNF: CarbonNanofiber.
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With a minimum ratio of 0.005 vol.%, their con-
ductivity can reach 2.3×10−2 S cm−1 [111]. On
average, the stretchability of AgNW nanocomposites
can reach 115%,whichmakes AgNWnanocomposites
good candidates for stretchable interconnects. Some
other metallic NW-based composites show a similar
performance to AgNWs. Although metal-NWs have
the advantages of higher conductivity with a lower
elastic modulus suitable for stretchable interconnects,
they are not free from challenges. For example, since
metallic NWs are manufactured in a solution-based
method the insulating ligands in the solvent should be
removed to obtain a low contact resistance between
adjacent NWs. Usually, a post-treatment process such
as thermal annealing is introduced for this purpose
and this poses a challenge for devices on polymeric
substrates. The idea of introducing a conductive
polymer PEDOT:PSS to realize the nano-soldering
process among wires dramatically improves the
performance of interconnects [112]. Other solutions,
such as a hybrid system with AgNWs and other
materials (CNTs [113] and Graphene [114]) also show
a highly stretchable and conductive performance.

4.3.Discussion4.3.1.
Studying the data from tables 1 and 2, the correlation
amongmany factors such asmaterial type, aspect ratio
of fillers, percolation ratio, and elastic modulus in the
nanocomposite can be established. As shown in
figure 7(a), even with a similar aspect ratio of the filler,
the maximum achieved conductivity of a metal-based
nanocomposite is several orders higher than a carbon-
based nanocomposite. This is due to the high electrical
conductivity of metal. From the plots, it is clear that
themaximum conductivity does not show any reliance
on the filler’s aspect ratio. However, the aspect ratio
has a strong effect on the percolation ratio as shown
in figure 7. Viewed from the data illustrated in
figure 7(b), the four data points from the carbon-based
nanocomposite are all composed of MWCNTs with
PDMS and this excludes the influence of material
property. The trend, indicated in dashed line, shows a
reciprocal relation between the aspect ratio of the filler
and the percolation ratio, which matches with theor-
etical relationship in equation (2). In contrast, the
metal-nanocomposites do not reveal any such trend.
Within a large range of aspect ratio of metal fillers
(100–1000), nanocomposites have a low percolation
ratio (<1 vol.%). This could be attributed to the fact
that the metal fillers, as compared to the carbon fillers,
do not get entangled due to their straightness and
passive oxide structure. The SEM images in figure 8
compare the CNT with metal NWs. It can be seen the
CNT has a tortuousmorphology while the AgNWs are
straight. The influence of the filler’s aspect ratio is not
only reflected in a reduced percolation ratio, but also
in the improved stretchability. If the parameter of
stretchability is added into the diagram between the

aspect ratio and percolation ratio of the carbon-based
nanocomposite (figure 7(c)), it is clear that the high
aspect ratio of the fillers gives higher stretchability. In
practice, there is always a trade-off. The higher the
ratio of fillers, the higher the conductivity of the
nanocomposite, and the lower the elastic property.
According to the collection of data points presented in
figure 7(d), most points of carbon-based nanocompo-
sites lie below the conductivity of 1 S cm−1 with a large
difference in the elastic modulus. In contrast, a trend
indicated by the red arrow line can be found in metal-
based nanocomposites, of which the higher conduc-
tivity leads to a higher elastic modulus. Still, a point
with high conductivity (∼10 S cm−1) and low elastic
modulus (∼40 kPa) can be found. The blue high-
lighted area indicates the region suitable for stretch-
able interconnects while the red area is the direction
that should to be avoided.

5. Application

A wide range of applications requiring stretchable
interconnects are shown infigure 9. In these applications,
only flexibility of the electronic system is insufficient to
meet the requirements as they experience large deforma-
tions during bending. The development of stretchable
interconnects to integrate multifunctional sensors and
electronics has filled this gap and in fact the field has
grown exponentially in line with the trend presented in
figure 1. Figure 9(a) shows the serpentine-shaped
stretchable interconnects realized with a MWCNT-
PDMSnanocomposite. Figure9(b)demonstrates a smart
prosthetic hand equipped with artificial skin that is able
to detect various signals such as humidity, temperature,
pressure, etc [137]. Some applications of stretchable
electronics canmake a huge difference and accelerate the
progress of medical treatment. For example, the balloon
catheter often used in surgery to eliminate blood
blockage requires up to 130% stretching when inflated.
Stretchable interconnects on such aballoon catheterwith
pressure sensors is illustrated in figure 9(c). The stretch-
able interconnects enable the overall electronic system to
withstand large deformation while giving electrical
feedback to surgeons in order to help improve the
performance of surgery [1]. Other clinically relevant
information like temperature can be monitored from
human skin in situ (figure 9(d)) [138]. In this case, a 24 h
or even longer time thermometry data can be collected
by the surgeon or clinician, which can improve medical
treatments. For applications where more precise sur-
geries and signal monitoring are required, stretchable
neural electrodes [33] have been developed. Applications
in wearable electronics formotion detection (figure 9(e))
have also benefited from stretchable electronics. These
applications have integrated electronics to wearable
cloths such as bandages and gloves [139]. Not only have
stretchable mechanical sensors have been developed,
stretchable chemical sensors have also shown promising
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Table 2.Comparison of various nanocomposites based onmetal fillers in terms of properties such asfiller geometry, percolation ratio,maximumconductivity andmechanical elasticity.

Material (filler-polymermatrix) Filler size Aspect ratio (L/D) Percolation ratio Maximumconductivity ElasticModulus Elongation Reference

Ag flakes-PU 2–3 μm — 56 vol.% 3.6×103 S cm−1
— 600% [115]

AgNW-poly(acrylate) L: 5–15 μm 83–250 — 7.84 S cm−1 16.25 MPa 50% [116]
D: 60 nm

AgPowder-PDMS 2–3.5 μm — 12.6 vol.% 6×102 S cm−1 8 MPa 150% [117]
AgNW-PUAa L: 15–25 μm 666 0.83 vol.% 4.5×104 S cm−1

— 70% [71]
D: 25–35 nm

AgNW-PDMS L: 20–50 μm 304 — 9.97×103 S cm−1
— 100% [118]

D: 115 nm

AgNW-PDMS L: 10–60 μm 388 — 8.13×103 S cm−1
— 15% [119]

D: 90 nm

Ag flakes-PU — — — 4.31×104 S cm−1
— 74% [84]

AgNW-PDMS L: 10 μm 166 — 4.69×103 S cm−1
— 150% [120]

D: 60 nm

AgNW-PDMS L: 10–60 μm 388 — 8.13×103 S cm−1
— 80% [121]

D: 90 nm

AgNW-PDMS L: 80 μm 800 3.85 vol.% 20 S cm−1
— 35% [122]

D: 100 nm

AgNW-poly(TBA-co-AA)b L: 20 μm 333 — 5.6×102 S cm−1
— 160% [123]

D: 60 nm

AgNW-PLAc L: 8 μm 133 0.13 vol.% 0.27 S cm−1 3048 MPa 3% [124]
D: 60 nm

AgNW-MCd
— — 0.29 vol.% 3.3×102 S cm−1 5519.9 MPa — [125]

AgNW-PEDOT:PSS L: 10–30 μm 222 2.5%Areal fraction 104 S cm−1
— — [126]

D: 90 nm

AgNW-PEDOT:PSS L: 50–100 μm 7500 — 0.73×103 S cm−1
— 120% [127]

D: 10 nm

AgNW-PEKKe L: 10–100 μm 211 0.59 vol.% 1 S cm−1
— — [128]

D: 120–400 nm

AgNW-PCf L: 10 μm 85 0.005 vol.% 2.3×10−2 S cm−1
— — [111]

D: 117 nm

AgNW-PA11g L: 30–60 μm 180 0.59 vol.% 2.7 S cm−1
— — [129]

D: 200–300 nm

AgNW-PS L: 10–60 μm 333 0.489 vol.% 10 S cm−1
— — [130]

D: 70–140 nm

AgNW-SBSh L: 30 μm 200 9 vol.% 1.2×104 S cm−1
— 100% [83]
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Table 2. (Continued.)

Material (filler-polymermatrix) Filler size Aspect ratio (L/D) Percolation ratio Maximumconductivity ElasticModulus Elongation Reference

D: 150 nm

CuNW-PVAi-PDMS L: 20 μm 333 — 8.1 S cm−1 37.5 kPa 60% [131]
D: 60 nm

CuNW-GFRHybrimerj L: 35 μm 700 — 4.8 S cm−1
— — [132]

D: 50 nm

CuNW-PS L: 3 μm 120 0.25–0.75 vol.% 10−6 S cm−1
— — [133]

D: 25 nm

CuZr-PDMS — — — 1.32×104 S cm−1
— 70% [134]

NiNW-P(VDF-TrFE)k L: 50 μm 250 0.75 vol.% 1 S cm−1
— — [135]

D: 200 nm

AuNW-P(VDF-TrFE) L: 45 μm 225 2.2 vol.% 1 S cm−1
— — [136]

D: 200 nm

a PUA: Polyurethane acrylate,
b Poly(TBA-co-AA): Poly(tert-butylacrylate-co-acrylic acid),
c PLA: Polylactide,
d MC:Methylcellulose,
e PEKK: Poly(ether ketone ketone),
f PC: Polycarbonate,
g PA11: Polyamide 11,
h SBS: Styrene butadiene styrene,
i PVA: Poly(vinyl alcohol),
j GFRHybrimer: Glass-fabric reinforced plasticfilm,
k P(VDF-TrFE): Poly(vinylidene difluoride)- trifluoroethylene.
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results. The complete stretchable device shown in
figure 9(f) is able to give an epidermal analysis of biofluids
like sweat and is able to undergo stretching [140, 141].
Regarding consumer electronic applications, stretchable
displays have been developed by interconnecting rigid
inorganic light emitting diodes (ILED) with non-copla-
nar stretchable interconnects [142]. For a multi-
functional wearable system, the serpentine-shaped

stretchable interconnects allow rigid electronic compo-
nents including signal detection electrodes, inductive
power, amplifier and data transmission coil to form a
stretchable network as shown in figure 9(h). Such
networks enable an efficient method of data collection.
Even weak electrophysiological signals can be detected
and transmitted. Furthermore, this network is robust
against any stretching and twisting movement [143].

Figure 8. SEM images of (a) a carbon nanotube. Reprinted from [144], copyright 2013, with permission fromElsevier. (b)AgNWs.
Reproduced from [145]. © IOPPublishing Ltd. All rights reserved.

Figure 9. (a) Stretchable interconnects based on aMWCNT-PDMSnanocomposite. (b)Artificial skin for a prosthetic hand. Reprinted
by permission fromMacmillan Publishers Ltd:Nature Communications [137], copyright 2014. (c)Balloon catheter integratedwith
electrodes and temperature sensors. Reprinted by permission fromMacmillan Publishers Ltd:NatureMaterials [1], copyright 2011.
(d)Thermalmonitoring sensor system for human skin. Reprinted by permission fromMacmillan Publishers Ltd:NatureMaterials
[138], copyright 2013. (e) Strain sensor integratedwith a bandage and glove. Reprinted by permission fromMacmillan Publishers Ltd:
NatureNanotechnology [139], copyright 2011. (f) Stretchable chemical sensor for sweat detection [141] JohnWiley & Sons. © 2014
WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim. (g) Stretchable display based on an inorganic LED. From [142]. Reprintedwith
permission fromAAAS. (h) Stretchable circuits for EEG signal detection and transmission. From [143]. Reprintedwith permission
fromAAAS; and (i) a stretchable transistormatrix. From [55]. Reprintedwith permission fromAAAS.
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Interconnects to forma stretchable circuit canbe realized
by intrinsic conductive and stretchable materials as
shown in figure 9(i). The circuit signals are transmitted
through SWNT-based bit/word bus lines. The resulting
circuit can be mounted on an arbitrary curved surface
and can be further applied on the arm or the joint of a
robot [55].

6. Conclusion

This article presents an overview of the various technol-
ogies and materials that have been used for stretchable
interconnects. In particular, our focus has been on
printable nanocomposites as they enable systems with
intrinsic stretchability and excellent electrical conductiv-
ity.With innovativedesigns these interconnect structures
could allow electronic systems to withstand strain up to
200%. By incorporating intrinsic and stretchablemateri-
als, the tolerable strain can be even larger. Among the
various materials, rubber-like nanocomposites draw
major attention because of their high electrical perfor-
mance and softness. The filler-polymer matrix system is
summarized according to the filler materials, which
includes carbon-based and metal-based fillers. Due to
the difference in the morphology, size, and electrical
conductivity of dispersed fillers, the trends in percolation
ratio, maximum electrical conductivity and elastic mod-
ulus of resultant nanocomposites between carbon-based
andmetal-based nanocomposites exhibit different beha-
viors. In general, high aspect ratio NWs are preferred as
fillers for nanocomposites as they allow one to maintain
a low electrical percolation threshold and high stretch-
ability. Comparedwithmetal-basedfillers, carbon-based
fillers have advantages in terms of low cost and less
degradation (oxidation, etc) during processing. If metal-
based fillers are dealt with carefully, they can be
more suitable for stretchable interconnect applications.
The in-depth analysis of printed nanocomposite-based
stretchable interconnects presented in this paper will
offer an excellent guide for researchers in this field and
flexible electronics in general.
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