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Abstract

Cardiac electrical changes associated with ischemic heart disease (IHD) are subtle and could be
detected even in rest condition in magnetocardiography (MCG) which measures weak cardiac
magnetic fields. Cardiac features that are derived from MCG recorded from multiple locations on the
chest of subjects and some conventional time domain indices are widely used in Machine learning
(ML) classifiers to objectively distinguish IHD and control subjects. Most of the earlier studies have
employed features that are derived from signal-averaged cardiac beats and have ignored inter-beat
information. The present study demonstrates the utility of beat-by-beat features to be useful in
classifying IHD subjects (n = 23) and healthy controls (n = 75) in 37-channel MCG data taken under
rest condition of subjects. The study reveals the importance of three features (out of eight measured
features) namely, the field map angle (FMA) computed from magnetic field map, beat-by-beat
variations of alpha angle in the ST-T region and T wave magnitude variations in yielding a better
classification accuracy (92.7 %) against that achieved by conventional features (81 %). Further, beat-
by-beat features are also found to augment the accuracy in classifying myocardial infarction (MI)
Versus control subjects in two public ECG databases (92 % from 88 % and 94 % from 77 %). These
demonstrations summarily suggest the importance of beat-by-beat features in clinical diagnosis of

ischemia.

1. Introduction

Cardiovascular diseases are one of the major causes of
death in developing countries with an age-standar-
dized global average of 235 per one Lakh population
and of which, mortality attributed to ischemic heart
disease (IHD) alone is 115 per one Lakh population
[1]. The global prevalence rate of IHD is currently
estimated to be 1655 per one Lakh population and is
expected to exceed 1845 per one Lakh population by
2030 [2]. These alarmingly increasing numbers have
raised global concerns and since an unattended IHD
might cause myocardial infarction (MI), an early

diagnosis at the stage of ischemia is considered
quintessential. While the electrical manifestations
pertaining to MI are straight forward to be detected in
ECG, signal variations at an early stage in IHD are
subtle in nature and could only be detected under
stress conditions [3]. In this context, noninvasive and
noncontact technique of measuring weak magnetic
fields generated by cardiac electrical activity, namely,
the magnetocardiography (MCQ) is sensitive in mea-
suring ischemic changes under rest itself [4—8]. Recent
studies justify the choice of MCG in emergency wards
to reduce the triaging time to be helpful in the clinical
management of IHD [9].

© 2024 IOP Publishing Ltd
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Figure 1. Photographs of the MCG experimental setup used for data collection and the measurement grid (a) 37-channel SQUID-
based MCG set up consisting of liquid Helium cryostat mounted on a nonmagnetic gantry with a subject positioned for measurement
(b) Photograph of the hexagonal measurement grid pasted on the chest of a subject marked with sensor positions.
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Various studies have reported qualitative differ-
ences in magnetic field maps generated from the spa-
tial-temporal distribution patterns of MCG of subjects
with [HD against healthy controls [5, 10]. A more
objective way to distinguish subjects with IHD is
achieved by machine learning (ML) classifiers using
time domain, frequency domain, spatial distribution
measures and information theory parameters quanti-
fied from the ST-T region of the MCG cardiac beats as
feature sets [11-19]. Most of these MCG studies have
reported deriving cardiac features from representative
signal-averaged cardiac beat by averaging several car-
diac cycles of the time series to achieve an improve-
ment in the signal-to-noise ratio (SNR) of features.
However, the averaging process is known to destroy
inter-beat cardiac variations [20]. The existence of
beat-by-beat variations in ST-T region (the signal
region of interest to measure ischemic variations) of
the cardiac cycle is reported in MI subjects [21, 22].
Considering the proven sensitivity of MCG in detect-
ing IHD (which precedes MI), it is persuading to
explore the significance of inter-beat dynamics of
MCG time series in ML classification of IHD in addi-
tion to that of the conventional features. Further, this
study details the importance of inter-beat features in
classifying MI and healthy controls by exclusively
demonstrating their roles on ECG time series taken
from two public databases.

The paper is organized as follows: a brief introduc-
tion to the experimental set up employed in this work
for the collection of MCG data, MCG signal proces-
sing and measurement of features for ML classification
are discussed in section 2. Results on the utility of stan-
dard and the beat-by-beat features in the ML classifi-
cation of IHD in MCG and their utility in MI detection
demonstrated on two ECG databases are detailed in
section 3. Section 4 discusses the comparison of the
results with recent reports in the literature. Finally, the
conclusions are presented in section 5.

2. Materials & methods

2.1. Experimental setup and data collection

Figure 1 shows the photographs of the MCG system
and measurement grid used in this work for data
collection. Figure 1(a) shows the MCG system which
consists of thirty-seven superconducting quantum
interference device (SQUID) sensors populated in an
insert as a hexagonal array positioned inside a cryostat
filled with liquid Helium [23, 24]. The setup is kept
inside a moderate magnetically shielded room (MSR)
to attenuate low and high-frequency electromagnetic
ambient noise. The coupling of the input flux to the
SQUID sensors is achieved by superconducting first-
order axial gradiometers [24]. The setup has an average
noise floor of 22 femto Tesla/v/Hz (of 37 channels) at
abandwidth of 0-300 Hz. The sensor outputs of all the
measurement channels are digitized at a sampling rate
of 1000 Hz. Figure 1(b) shows the paper grid contain-
ing the actual positions of sensors in the array marked
with anatomical landmarks which define the bound-
ary of the heart. Each measurement session lasts for
5 min with subjects lying relaxed in a non-magnetic
bed. MCG signals are simultaneously digitized, and
stored for offline analysis.

2.2. Subject groups

MCG data of two groups of subjects are used in this
analysis, a healthy group (n = 75) and IHD group
(n = 23). The healthy group consists of young
volunteers (57 Male, 18 female of age group 30 £ 7
years). The volunteers of the control group do not have
history of any cardiovascular disease, neither reported
of any complaint associated with cardiac health.
Further, no significant abnormal electrical changes are
observed in their ECGs as interpreted by a cardiologist
and are hence designated as ‘healthy controls.” The
subjects of IHD group (14 Male, 9 female of age group
45 £ 25 years) are selected based on a clinical
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examination. Coronary blocks are suspected on these
subjects based on horizontal or down-sloping ST
segment (> 100 pV) in treadmill ECG test following
the clinical criteria for diagnosing IHD [3]. MCG is
recorded from all these subjects before subjecting
them for coronary angiogram. MCG of subjects who
are later confirmed to have ischemia due to one or
more significant blocks (> 70 %) in coronary arteries
based on invasive angiogram alone are considered for
the ML classification problem. Institutional human
ethics committee constituted by JIPMER, Puducherry,
India had granted approval (JIP/IEC/2016/29/963
dated 08.09.2016) for this study. Informed consents
are obtained from all the participants of this study.

ECG data of healthy and MI subjects collected
from PTB MI database [25], healthy controls (n = 50)
and subjects with MI (n = 50) and another ECG data
of subjects with MI (n = 62) and healthy controls
(n = 23) from European ST-T database [26] are used
to independently test the efficacy of inter-beat features
proposed in this study.

2.3. MCG pre-processing

The raw MCG time series of all the SQUID channels
showed cardiac features with SNR varying between
9-28 dB across the measurement channels (15 & 8 dB,
mean =+ standard deviation). The SNR is computed by
measuring the peak-to-peak magnitudes of prominent
R wave in every MCG channel and the portion of time
segment before the onset of P wave (where no cardiac
activity is present). An epoch-based de-noising scheme
discussed in an earlier work [20] is used to remove
low-and-high-frequency artefacts to facilitate beat-by-
beat computation of MCG parameters. The method
involves segmenting the whole time series in every
channel into ensemble of several beats (epochs); each
containing a full cardiac cycle aligned with reference to
R wave. The time registries of cardiac features across
the epochs are then utilized to select common fiducial
points before P wave and after T wave by using spline
interpolation technique to estimate and subtract drift
from each epoch. The baseline-corrected epochs are
automatically categorized in to beat groups based on
correlation measure. Each beat group is individually
subjected to principal component analysis (PCA) to
remove uncorrelated high-frequency (HF) noise. The
PCA-corrected beats are then restored to their original
beat numbers in the cardiac time series. By this way,
the de-noising is achieved without affecting the beat-
by-beat information of the cardiac beats.

Figure 2 illustrates the pre-processing of MCG
time series measured from a subject with IHD show-
ing apparent beat-by-beat variations in ST-T region,
but corrupted by low-and- high-frequency noisy var-
iations. The green trace in figure 2 is the raw MCG
time series and the baseline-corrected epochs are
shown as red traces and the same with HF noise elimi-
nated by PCA are shown as black traces (superposed

S Senthilnathan et al

over red traces). It could be seen that the de-noised
beats (black traces) exhibit conspicuous variations in
ST segment and the T wave which are essential to be
utilized for this study. A significant improvement in
SNR (~ 15-25 dB) is achieved by this epoch-based de-
noising method [20]. The procedure is also applied on
ECG time series to improve the quality of the cardiac
time series for easy extraction of features.

2.3.1. Cardiac features of importance for ML
classification

2.3.1.1. Choosing cardiac features for this study

A variety of features have been used by researchers in
IHD detection, and they basically probe the temporal
and spatial heterogeneity of ventricular repolarization
that are expected in ischemia [3]. This includes QT
dispersion, spatio-temporal parameters of MCG in
terms of magnetic field map (MFM) orientation
angles, viz., field map angle (FMA) and current angle
(CA) and the proportion of de-and-repolarization,
magnitude of ST segment etc, These features are
widely reported to be used for ML classification in the
literature [5, 11, 13, 14]. In addition, two inter-beat
measures namely the beat-by-beat alpha angle and the
T wave magnitude variations proposed by Hasan and
co-workers [22] are also included in this work. Hence,
the following set of eight features are computed from a
cardiac beat of MCG measurement channels.

2.3.1.2. Measurement of features

Figure 3 shows an overlay plot of de-noised MCG beat
of a cardiac cycle measured across 37 channels and the
following points describe the computation of each of
the feature employed in this work:

(1) Rimax/Tmax: Measurement of the tallest R and T
waves across MCG channels as indicated in
figure 3(a).

(2) QT dispersion (AQT): Measurement of the differ-
ence between the shortest and the longest QT
values in the thirty-seven traces of MCG wave-
forms as illustrated in figure 3(b).

(3) ST Elevation (STT) and depression (ST|): The
portion of the cardiac cycle after the QRS-offset
within a time interval ~ 60-80 ms is taken as the
ST segment in this study and any vertically
upward or downward variation in its magnitude
is respectively taken as ST elevation and ST
depression about the time segment before P wave
which is taken as the baseline reference.

(4) Magnetic field map-based features at T wave peak:
MFM is a spatio-temporal visualization generated
by joining roughly equal values of magnetic field
values across measurement locations on the chest
at any instant of time on the cardiac cycle [23].
The filed map used here is the one generated at the

3
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Figure 2. De-noising of MCG time series using epoch-based method. Raw MCG (green trace), Baseline-corrected epochs (red trace),
epochs with high-frequency noise eliminated (black traces).
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Figure 3. Measurement of features from de-noised cardiac beats for ML classification (a) Overlay plot of a cardiac beat of MCG in
thirty-seven measurement locations on the chest. Maximum amplitude values of R and T waves are indicated to measure the feature
Rinax/ Timax (b) Magnified view of the plot in (a) showing the extraction of maximum and minimum shift in the ST segment and the

measurement of the difference in QT intervals.

T wave peak time instant and is shown in figure 4
with the orientation angles viz., CA and FMA that
define the field distribution pattern. Taking a
spatial derivative on the field distribution pattern
gives pseudo current vectors which signify the
current dipole vectors [8]. The dipole vector with
maximum current density represents the actual
current source and the angle subtended by the
chosen current vector with the central-line of
the sensor array represents the CA. Similarly, the
angle subtended by the line-joining the negative
and a positive maximum value of the field map
with the central-line is FMA [10] as indicated in
figure 4.

(5) Beat-by-beat variations in alpha angle (A« angle):
A set of fiducial points viz., the QRS-onset, T wave
peak, and T wave offset are identified in a chosen
measurement channel using an open-source
ECGdeli software toolbox [27]. The individual

epochs of the de-noised ECG/MCG cardiac time
series are subjected one-by-one for the subse-
quent computation of alpha (o) angle. Figure 5
illustrates alpha angle measurement from the beat
epoch of a channel. Calculation of o angle
requires formation of a triangle by measuring the
Euclidian distances of QRS-onset, T wave peak,
and T wave offset in every cardiac beat [22]. In
order to calculate the Euclidean distances in
forming the vertices of the triangle, every cardiac
beat (in figure 5(a)) is represented in a magnitude
and time normalized modified scale to have equal
weights on the X and Y-axis as shown in
figure 5(b). The time axis is re-referenced based
on the instant of R wave and the magnitude axis to
their maximum values. As shown in figure 5(c),
the angle subtended by the vertices of the triangle
between the QRS-onset and T wave peak and that
of the T wave offset is the alpha angle and could be

4
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angles (FMA) are also indicated.

Figure 4. Measurement of MFM-based features at T wave peak instant. Pseudo current density vectors, current (CA) and field map

0 0.05
Xinm

calculated by law of cosines following a method
described in earlier works [22, 28]. The alpha
angle measured in every beat is compared against
that measured for the consecutive beat and their
absolute values of differences are stored in a beat-
by-beat manner. The overall difference in «
shown in figure 5(c) is then expressed as a
deviation from its mean value expressed in
percentage.

(6) Beat-by-beat variations in T wave magnitude
(AT): Beat-by-beat variations in the magnitude
of T wave are also expressed as a percentage
variation like alpha angle.

Since computation of spatial orientation features
such as FMA and CA from voltage distribution maps
in ECG necessitates multiple measurements over the
chest, only six features could be used in the case of the
two public ECG data sets for MI versus controls.

2.3.2. Machine learning (ML) classifiers

Eight machine learning models are chosen in this
study, namely, logistic regression (LR), Naive Baye-
sian, K-nearest neighbor (KNN), gradient boosted
decision tree (GBDT), support vector machine (SVM),
random forest (RF), extended gradient boost (XG
Boost), and Adaptive boosting (Ada Boost) classifiers.
Choice of this set of classifiers is to have a combination
of classical models and advanced algorithms to meet
the primary requirements of better accuracies and the
suitability of classifiers for a limited and an imbalanced
dataset [29]. All the eight classifiers are used in ‘k’ fold
cross validation approach, where in the whole data set
is split in to ‘k’ folds and the training and testing are
repeated and the overall performance of the classifier
is obtained as the average of each fold. ‘k’ is fixed as 6 in

Table 1. List of hyper parameters for ML classifiers.

SI.No. ML classifier Important hyper parameters

1. KNN No. of Neighbors =5
2. GBDT Learning rate = 0.06
Random No. of estimators = 100, Random

Forest state =42
XG Boost
AdaBoost

Random state = 42
Maximum depth = 1, No. of estima-
tors = 50, Random state = 42

oo

this study. Scikit-learn library of Python open-source
software 3.9.10 (Python software Foundation, Dela-
ware, USA) [30] is used for the classification problem.
Table 1 lists hyper parameters of some of these
classifiers used in this work chosen based on the
suggestions in literature to get the best possible
classification [29]. Standard evaluation measures of
classifiers viz., Sensitivity (Se), Specificity (Sp), Positive
predictive value (PPV), Negative predictive value
(NPV), Accuracy (Acc) and F1-Score (F1) are com-
puted for each classifier and are compared.

3. Results

3.1. ML classification of IHD and control subjects
inMCG

Table 2 presents the classifier outputs of the first four
best outcomes obtained in this work. The two columns
of each classifier shown in the Table represent the
outcomes pertaining to the conventional choice of
features (without beat-by-beat features) and an optimal
choice of features (viz., AT, Ao, and FMA). This
optimal choice of features is chosen based on higher
values of area under the receiver operating characteristic
curve (AUROC) (> = 0.70) when all the eight features
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Figure 5. Measurement of beat-by-beat features from MCG time series (a) De-noised cardiac epochs (b) Time scale of the epochs re-
referenced to R peak instants and amplitude values normalized about maximum values (c) Formation of triangle by joining the
fiducial points, QRS-onset, T peak and T offset and calculation of alpha angle and T wave variations in two representative beats by law
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Table 2. Comparison of performance of ML classifiers for the conventional and optimal choice of features in MCG.

SVM XG Boost AdaBoost RF

CA,FMA, AT, CA,FMA, AT, CA,FMA, AT, CA,FMA, AT,

STT, AQT, Aa, STT, AQT, Aa, STT, AQT, Aa, STT, AQT, Aa,

R/T FMA R/T FMA R/T FMA R/T FMA

Se (%) 56 71.4 55 50 80 63 82.6
Sp (%) 85 90.7 87 93.4 85 92.2 85 95.9
PPV (%) 45 68.2 55 77.2 50 72.7 65 86.3
NPV (%) 89 92 87 94.6 85 94.6 92 94.6
Acc (%) 79 86.6 77 90.7 77 89.6 81 92.7
F1 (%) 50 69.7 50 79.1 50 76.2 63 84.4

are tested for their individual performance as given in
the supplementary information. As shown in table 2,
since the conventional choice of features (without beat-
by-beat features) could be computed even from signal-
averaged MCG waveforms if employed could deliver
only inferior performance (92.7 versus 81 %). Random
forest classifier achieves the best outcomes among the
four classifiers. Figure 6 depicts the variations in
performances of RF classifier for different combinations
of the feature sets and the best outcome corresponds to

the set of features, AT, Aa, and FMA. It is also to be
noticed that the two beat-by-beat features i.e., AT, Aa
alone could not achieve the best performance and only
their combination with the conventional MCG-MFM
feature, namely the FMA gives the best outcome. RF
could correctly classify 19 out of 23 THD subjects (True
positive) and 3 are misclassified (i.e., False positive).
Similarly, the classifier could correctly identify 71 out of
75 healthy controls (i.e., True negative) and 4 are
misclassified (i.e., False negative).

6
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Figure 6. Performance of RF classifier for classifying IHD and healthy controls for varying combinations of MCG feature sets.
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3.2. ML classification of MI in ECG
Tables 3 and 4 list the performances of four best
classifiers in classifying MI against controls in the two
public ECG databases. Like table 2, the conventional
and an optimal choices of feature sets are guided by the
AUROC curves of respective cases as given in the
supplementary information. XG Boost and Ada Boost
are found to outperform other classifiers respectively
in the two ECG-MI datasets and like MCG, the
optimal choice which include the beat-by-beat fea-
tures alone could achieve the best outcomes (92 %
Versus 88 in PTB-MI and 94 % Versus 77 % in
European ST-T). It is clear from all these cases, the
beat-by-beat features augment classification accuracy.
For the PTB-MI database, XG Boost could cor-
rectly classify 45 out of 50 (MI subjects) and 5 are mis-
classified (i.e., False positive), 47 healthy controls
could be correctly identified (True negative) and 3 are
misclassified (False negative). Similarly, in European
ST-T database, Ada Boost classifier could correctly
identify 23 out of 24 MI subjects (True positive) and 1
is misclassified (False positive). Twenty-two out of 24
are correctly identified as healthy (True negative) and
two are misclassified (False negative). Figure 7 shows
the variations in performances of the respective best
classifiers applied on the data from the two ECG data-
bases (figures 7(a) and (b) respectively). In accordance
with the results obtained in MCG, the optimal choice
of the feature set inclusive of beat-by-beat and some
conventional features only could offer the best classi-
fier outcomes in MI Versus controls.

4. Discussion

4.1. MCG results
Extraction of relevant features in ST-T region using
highly sensitive modality like MCG signals is posed with

a challenge of not missing subtle variations associated
with ischemia (where the modality has an inherent
sensitivity to record them) and further in choosing a
correct set of features that aids in objective classification
of healthy and IHD subjects. The present work has
attempted to accomplish this task with a set of conven-
tional and inter-beat features. Table 5 compares the ML
classification achieved in the present study against some
of the reported works on ML detection of ITHD in MCG.
The following observations are made from table 5:

(a) The classification accuracy of the present work is
better than that achieved in most of the earlier
works except a few reports [12, 16]. However, the
accuracy of the present work is comparable with a
study performed with the highest number of
features (164 features, the highest number used so
far in this subject area of research in MCG) [16],
i.e., 92.7 % versus 94.03%.

(b) The sensitivity that could be obtained in this work
(82.6 %) requires further improvement as com-
pared to most of the earlier works, but the
obtained specificity (95.9 %) is higher than the
other reports except that found in the work of
Steinisch and co-workers [12] that has achieved
the best classifier outcomes in ML identification
of IHD using MCG and the only study which has
used inter-beat features in MCG to our knowl-
edge. However, it is to be noted that the number
of cases considered for classification by Steinisch
and co-workers [12] is small (4 IHD and 6
controls), and hence, the comparison of the
present results on MCG may not be straightfor-
ward. Nevertheless, that work had classified
individual beats of normal and ischemic subjects
to improve the sample size and is worth investi-
gating for a comprehensive assessment. Hence, it
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Figure 7. Performance of XG Boost and Ada Boost classifiers for classifying MI and healthy controls for different combinations of
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Table 3. Comparison of performance of ML classifiers for the conventional and optimal choice of features in PTB-MI ECG.

LR RE XG Boost GBDT

AQT,ST1, Ao, AQT,  AQT,ST, AaAQT, AQT,ST!, Ao, AQT,  AQT,ST, A« AQT,
R/T AT, STt R/T AT, STt R/T AT, STt R/T AT, STT

Se (%) 74 82 88 91 86.5 93.8 75 90.2

Sp (%) 92 89 44 88 89.5 90.4 76 90

PPV (%) 94 90.2 88 86 90 90 76 90.2

NPV (%) 66 80 44 92 88 94 74 90

Acc (%) 80 85.1 80 89 88 92 75 90

F1 (%) 83 86 88 89 88 91.7 76 90.2

Table 4. Comparison of performance of ML classifiers for the conventional and optimal choice of features in European ST-T ECG.

Bayesian XG Boost RF AdaBoost
AQT,STT, AQT,STT, AQT, STT, AQT, STT, AQT,STT, AQT, ST, AQT,STT, AQT,STT,
ST|,R/T AT, Aa ST|,R/T AT, Aa ST|,R/T AT, Ao ST|,R/T AT, Aa
Se (%) 71 91 68 86 72 85 76 92
Sp (%) 88 88 75 78 74 92.2 78 96
PPV (%) 92 88 79 75 75 92 79 96
NPV (%) 63 92 63 88 71 83 75 92
Acc (%) 77 90 71 81 73 88 77 94
F1 (%) 80 89 73 80 73 88 78 94

stands as one of the limitations of the present
work. Secondly, apart from spatial and temporal
features, indices based on entropy measures have
not been considered in this work. It is possible
that inclusion of such information theory-based
features and its beat-by-beat computation might
further improve the classifier outcomes.

4.2. Results from ECG databases

Tables 6 and 7 present the comparison of the perfor-
mance of some of the recent works which have used the
same two ECG public databases in classifying MI and
healthy controls. All the reported works in the Tables

have used individual cardiac beats and inter-lead ECG
features in some sense similar to the inter-beat features
used in the present work. It could be seen that the
classifiers used in the present work with chosen feature
sets are comparable with the performance of all these
reported works and have achieved reasonable outcomes
with a only a few, but optimal selection of conventional
and inter-beat features that are derived directly from
any clean ECG/MCG time series.

Hence, as a general observation, an internal con-
sistency could be seen in the performance of the beat-
by-beat features in identifying ischemia in MCG and
ECG. These results summarily highlight the

8



Table 5. Comparison of the results of ML detection of IHD using MCG.

Sl.no Reported works Features Classification approach Se % Sp % Acc%

1. Steinisch eral (2013)[12] Signal entropy of QRS and ST-T in every beat Multi-Layer Perceptron (MLP) 99 98 98

2. Chaikovsky etal (2017) [15] 32 features inclusive of geometric measures from current arrow maps KNN 93 89 91

3. Taoetal (2019)[16] 164 features (time domain, frequency domain, information theory-based XG Boost 97.7 — 94.03

parameters)

4, Huang et al (2020) [17] 10 features derived from MFM MLP—Model 1 89.8 88.9 89.5
MLP—Model 2 91.4 87.7 90.0

5. Huetal (2022) [19] Current arrow map-based features Deep learning-Residual network — — 90.02

6. Taoetal (2022)[18] Automated delineation and extraction of MFM-based features Convolutional neural network and Transformer encoder in Deep learning 73.2 91.4 87

architecture
7. Present study FMA, Ao, AT Random Forest classifier 82.6 95.9 92.7
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Table 6. Comparison of results on ML classification on PTB-MI database.

Sl.no Reported works Features ML classifier Se% Sp%  Acc%
1. Yangetal (2022) [31] Beat to sub waves bands = cascaded CNN to extract LR 92 88 91
features
SVM 92 81 90
2. Chauhan et al Formation of 3D Tensor from beats, leads and samples KNN 96.1 98.5 97.9
(2023)[32]
3. Present study AQT, AT, ST, Aa XG Boost 93.8 90.4 92.1

Table 7. Comparison of results on ML classification on European ST-T database.

Reported works Features ML classifier Se% Sp%  Acc%
1. Tsengetal (2016) [33] AST, ST slope, T magnitude, ST area, J80 Sparse representation 96 96 —
amplitude, T /R ratio convolution
2. Kayikcioglu et al Time and frequency distribution-based fea- Weighted- kNN 95.7  98.1 94.3
(2020) [34] tures from multilead ECG
3. Present study AQT, AT, Ao, R/T AdaBoost 92 96 94
involvement of beat-by-beat features in augmenting Conflict of interest

the detection capability of early (IHD) to a matured
state (MI) of ischemic conditions. However, there is a
lot of scope to further improve the diagnostic out-
comes. MCG being a safe, sensitive and a noninvasive
modality, ML detection of ischemia under rest condi-
tion underscores its clinical application in effectively
prioritizing subjects for an efficient clinical
management.

5. Conclusion

The use of beat-by-beat cardiac features in ML classifi-
cation of ischemia and MI has been demonstrated using
MCG and ECG of subjects. Since the signal variations of
IHD are weaker than the more pronounced manifesta-
tions of MI, the sensitivity of MCG in measuring these
variations are observed to be effectively probed by the
chosen set of features and their individual and com-
bined roles are evaluated. These results are important
since IHD are ahead in the time evolution of Ml and ML
models would offer better diagnostic outcomes if
equipped with features which contain early signatures
ofischemiain the ST-T region.
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