This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
ACCEPTED MANUSCRIPT

Enhancing ECG signal classification through pre-trained stacked-CNN embeddings: a transfer learning approach

and

Accepted Manuscript online 19 April 2024 © 2024 IOP Publishing Ltd

What is an Accepted Manuscript?

DOI 10.1088/2057-1976/ad40b0

10.1088/2057-1976/ad40b0

Abstract

Rapid and accurate electrocardiogram (ECG) signal classification is crucial in high-stakes healthcare settings. However, existing computational models often struggle to balance high performance with computational efficiency. This study introduces an innovative computational framework that combines transfer learning with traditional machine learning to optimize ECG classification. We use a pre-trained Stacked Convolutional Neural Network (SCNN) to generate high-dimensional feature embeddings, which are then evaluated by an array of machine learning classifiers. Our models demonstrate exceptional performance, particularly when utilizing embeddings from SCNNs trained on diverse datasets. This underscores the importance of data diversity in improving classifier discrimination. Notably, Multilayer Perceptrons (MLPs) stand out for their ability to balance computational efficiency with strong performance, achieving test F1-scores of 0.94 and 1.00 in multi-class and binary tasks on the CinC2017 dataset, and 0.85 and 0.99 on the CPSC2018 dataset. Our approach consistently outperforms existing methods, setting new benchmarks in ECG classification. The synergy between deep learning-based feature extraction and traditional machine learning through transfer learning offers a robust, efficient, and adaptable strategy for ECG classification, addressing a critical research gap and laying the groundwork for future advancements in this crucial healthcare field.

Export citation and abstract BibTeX RIS

During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully protected by copyright and cannot be reused or reposted elsewhere.

As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript will be available for reuse under a CC BY-NC-ND 3.0 licence after the 12 month embargo period.

After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/3.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required. All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record.

10.1088/2057-1976/ad40b0