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Abstract
Epilepsy, a chronic non-communicable disease is characterized by repeated unprovoked seizures,
which are transient episodes of abnormal electrical activity in the brain.While Electroencephalo-
graphy (EEG) is considered as the gold standard for diagnosis in current clinical practice,manual
inspection of EEG is time consuming and biased. This paper presents a novel hybrid 1DCNN-Bi
LSTM feature fusionmodel for automatically detecting seizures. The proposedmodel leverages spatial
features extracted by one dimensional convolutional neural network and temporal features extracted
by bi directional long short-termmemory network. Ictal and inter ictal data isfirst acquired from the
longmultichannel EEG record. The acquired data is segmented and labelled using smallfixed
windows. Signal features are then extracted from the segments concurrently by the parallel
combination of CNNandBi-LSTM. The spatial and temporal features thus captured are then fused to
enhance classification accuracy ofmodel. The approach is validated using benchmarkCHB-MIT
dataset and 5-fold cross validationwhich resulted in an average accuracy of 95.90%,with precision
94.78%, F1 score 95.95%.Notablymodel achieved average sensitivity of 97.18%with false positivity
rate at 0.05/hr. The significantly lower false positivity and false negativity rates indicate that the
proposedmodel is a promising tool for detecting seizures in epilepsy patients. The employed parallel
path network benefits frommemory function of Bi-LSTMand strong feature extraction capabilities of
CNN.Moreover, eliminating the need for any domain transformation or additional preprocessing
steps,model effectively reduces complexity and enhances efficiency,making it suitable for use by
clinicians during the epilepsy diagnostic process.

1. Introduction

An epileptic seizure is the occurrence of sudden and
uncontrolled electrical activity in the brain, which
leads to unusual behaviour and sensations, sometimes
loss of awareness. According to the World Health
Organization (WHO), approximately 50 million peo-
ple across the world are diagnosed with epilepsy, and
approximately 80% of them are living in developing
countries. Of this, approximately 8 million people
have epilepsy who are living in India. Studies show that
compared to the general population, risk of an
epileptic patient for Sudden Unexpected Death in
Epilepsy [SUDEP] is approximately 24-fold [1]. It

accounts for 0.5% or higher of the global disease
burden, a time-based measure which combines lost
years due to prematuremortality and the years lived in
less-thanoptimal health. Epilepsy has a significant
impact in economy in terms of health care needs, lost
work productivity and premature death. To date, the
condition has primarily been managed with anti-
epileptic medications and surgery. There are no antic-
onvulsant treatments available today that can fully
treat and cure epilepsy [2]. However, timely identifica-
tion of seizures and effective interventions can miti-
gate the detrimental consequences of epilepsy [3].

Electroencephalography (EEG), a non-invasive
electrophysiological technique that records electrical
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activity from the brain, is a commonly used diagnostic
tool for epilepsy. Even though EEG is considered the
most accurate and promising test in diagnosing epi-
lepsy, the signal often contains large fluctuations due
to the functional behaviours of the brain. Hence find-
ing and marking traces through the visual analysis by
human experts is always challenging. Also, inadequate
training and human errors resulting from the cumber-
some process of visually inspecting EEG may lead to
misinterpretation and inaccurate diagnosis. There-
fore, the necessity of a rapid accurate and effective sys-
tem for the processing of long-term EEG recordings
has become inevitable to reduce the misinterpreta-
tions, which would certainly reduce the workload of
epileptologists and improve the quality of life of epi-
leptic patients [4].

In the past few years, many studies have been con-
ducted and a number of techniques have been devel-
oped to detect seizures, given the impact of this
problem. Traditional machine learning methods use
manual feature extraction techniques by dividing the
signal into different sub-bands or components in
either time, frequency, or wavelet-based domain.
These hand-crafted features form the input to the
model. Akut extracted and processed EEG signal fea-
tures using wavelet transform [5], whereas Yang et al.
[6] used short time Fourier transform (STFT) for the
feature extraction. For instance, after extracting fea-
tures using discrete wavelet transform (DWT) and
K-meansmethod, Orhan et al. usedmultilayer percep-
tron (MLP) for classification [7]. Similarly, after
extracting features from wavelet decomposition coef-
ficients, Jareda et al. explored Support VectorMachine
(SVM) andK-Nearest Neighbour (KNN) classifiers for
realisation of their EEG based seizure classification
technique [8]. In another research [9], discrete wavelet
transform has been used for feature extraction and
SVM with radial basis function was used for training
and classification. They showed that the gray wolf
optimizer SVM approach can enhance the diagnosis of
epilepsy. In anothermethod [10] proposed by Chakra-
borty et al. two entropy-based methods such as Multi-
scale Dispersion Entropy (MDE) and Refined
Composite Multiscale Dispersion Entropy (RCMDE)
were explored for extracting the statistical features.
SVM is used for feature classification. Before inputting
to SVM they employed ANOVA for selecting the sig-
nificant features. On top of that,Wang et al. used sym-
let wavelets to decompose the signal into different
frequency bands. Statistical features extracted from 5
sub bands were used for three class classification of
EEG signals using gradient boosting machine techni-
que [11]. Additionally, principal component analysis
was employed for reducing the dimensionality of fea-
tures in the model. However, because of the non-sta-
tionary nature of EEG signals and artifacts during the
acquisition time, statistical components change across
subjects and these domain-based methods are suscep-
tible to variations in seizure pattern. Also, these

algorithms do not eliminate requirement of manual
feature selection and hence it is required to have
expertise in signal processing and data mining to
develop an accurate seizure detectionmodel using tra-
ditionalmachine learningmethods [12].

Kukker et al. proposed a reinforcement learning
based seizure classification method [13, 14] eatures
were extracted using Hilbert Huang transform. In
their proposed fuzzy-Q learning approach genetic
algorithm was also employed for optimisation of the
model. Meanwhile, EEG signal features were created
from fuzzy lattices in the form of Kinetic Energy from
which highest seven lattices were utilised to train the
classifier [14]. Reinforcement learning algorithms
exhibit good classifier performance, albeit choosing
right learning rate and domain expertise is critical for
the effectiveness of themodel.

In recent studies, deep learning techniques are
exploredmore in seizure detection or prediction tasks.
It is found from studies that automated extraction of
features prior to classification significantly enhances
performance than manually extracting and inputting
signals to the classifier. For instance, Hossain et al.
developed a two-dimensional CNN model to extract
spatial and temporal EEG signal characteristics. They
have attained an accuracy of 98.05% with their 9
layered network [15]. In Acharya et al.'s work [16], a
deep convolutional neural network model consisting
of 13 layers for automatic seizure detection was devel-
oped. They have achieved an average accuracy of
88.7% with a specificity of 90% and a sensitivity of
95% [16]. Khan et al. proposed a three-class model
with CNN architecture of 6 convolutional layers for
classifying the wavelet transformed input to pre-ictal,
ictal and inter-ictal classes [17]. The output resulted in
an average FPR of 0.142/h. Similarly, Zhou et al. pro-
posed a patient specific seizure detection system using
CNN [18]. On top of that Jana et al. proposed a two-
dimensional CNN architecture for automatic feature
extraction and classification of seizures. By using a
channel selection algorithm they reduced the number
of channels from 32 to 6 which effectively reduced the
complexity of themodel [19]. CNNwith stacked auto-
encoders was used in Li et al.'s seizure classification
and detection task [20]. In the same vein
researchers explored different CNN architectures in
their seizure detection algorithms [21–24 . The CNN
based method however, is unable to remember past
time series patterns,making it difficult to directly learn
the most significant and representative features from
time series of 1D EEG signals. It also has difficulties in
extracting the global relevance of the data even if it has
good feature capturing ability for noisy and non-sta-
tionary signals [25].

Studies have shown that recurrent neural network
(RNN) architecture acquires the temporal features of
sequential data more efficiently and can learn long
term dependencies thus remembering information
from the past [26, 27]. Long Short-Term Memory
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(LSTM) is an RNN architecture [28] commonly used
to deal with time series data such as EEG. It considers
the long-term dependencies of data ignoring the local
spatial information [29]. Shekokar et al. proposed a
3-layer LSTM network for seizure detection model
[30]. In the same concern, Singh et al. used spectral
feature-based LSTM network in their epileptic seizure
detection model [31]. By using FFT they derived spec-
tral power and mean spectrum amplitude features for
23 channel EEG signals.Whereas Duan et al. proposed
bidirectional gated recurrent unit to predict seizures
effectively [32]. In the same concern an RNN classifier
is presented byNajafi et al. for the classification of focal
and generalised epilepsy [33]. They utilised Pearson’s
rank correlation coefficient in selecting discriminative
features that are extracted after the discrete wavelet
transformation of signals. These studies have utilised
temporal dependencies of LSTMnetworks in their sei-
zure classification tasks to achieve good performance.
Given the efficacy of CNN and LSTM in processing
EEG signals, few researchers utilised stacked serial
CNN and RNN structures to extract the temporal and
spatial features [34, 35]. However, informationmay be
lost in the middle layers of neural network with this
kind of stacking, resulting in poor classification per-
formance [36].

In our study we combined the capabilities of CNN
and LSTM to form a spatio-temporal feature fusion
network as a parallel feature fusion model (CNN-
BiLSTM) for the efficient classification of epileptic
EEG signals. With no preprocessing steps the model
gives a very positive result for seizure detection. The
organizational structure of this paper is: section 1
reviews previous works on seizure detection, section 2
describes the materials and methods including the
dataset, preprocessing, model architecture and evalua-
tion indicators. The results and discussions are inclu-
ded in section 3 and section 4 describes conclusion.

2.Materials andmethods

2.1. EEGdataset
A multichannel EEG dataset from open source CHB-
MIT database collected by Children’s Hospital Boston
is used in this study [37–39]. It is a collection of scalp
EEG recordings from 22 paediatric patients (5males in
the age range of 3–22 and 17 females of 1.5–19 age.
24th case is unknown and chb 21 is recorded 1.5 years
after the record of chb01. See table 1 for details) with
refractory epilepsy. The dataset contains 664.edf files
which includes a total of 976.55 h of EEG signals
among which 198 seizures were recorded. All the
signals were collected using international 10–20 sys-
tem of electrode position sampled at 256 Hz, 16-bit
resolution. 18 or more channels were used in each
record. For the uniformity in analysis only channels
which are common in all the cases is used in the study.
The channels include ‘FP1-F7’, ‘F7-T7’, ‘T7-P7’, ‘P7-

O1’, ‘FP1-F3’, ‘F3-C3’, ‘C3-P3’, ‘P3-O1’, ‘FP2-F4’,
‘F4-C4’,‘C4-P4’, ‘P4-O2’, ‘FP2-F8’, ‘F8-T8’, ‘T8-P8’,
‘P8-O2’, ‘FZ-CZ’, ‘CZ-PZ’.

2.2.Methodology
The proposed model works in two phases. In the first
phase dataset undergoes segmentation and normal-
isation to acquire ictal and interictal segments from
long EEG records of each patient. Seizure onset and
offset times are annotated by the domain experts in the
database. Based on the annotation, ictal and interictal
signals are first identified. Ictal segments are defined as
the signals during seizure and interictal segments are
defined as the signal between two seizures. Successive
seizures with time difference greater than 30 min are
considered as separate events, otherwise they are taken
as single seizure event. Additionally, patients who have
seizures lasting lesser than 15 s are excluded from the
seizure detection task. Interictal segments are
extracted at intervals of atleast one hour apart from
preceding ictal segments.

Considering that the deep learning models require
large dataset for its robust performance, we applied
data augmentation technique during extraction of
EEG segments from continous EEG records. More-
over, a major challenge with seizure datasets is sig-
nificant class imbalance with much reduced number
of ictal segments compared to interictal segments. To
adress this challenge, overlapping sliding window
technique with an 80% overlap for ictal and 0% over-
lap for interictal signals is employed. Raw EEG signals
are slided horizontally in the direction of time series

Table 1.Details of theCHBMITdataset used in the study.

Patient Id Sex Age

Number

of seizures

Number

of

channels

Seizure

duration

(s)

Chb01 F 11 7 23 499

Chb02 M 11 3 23 175

Chb03 F 12 7 23 409

Chb04 M 22 4 23 382

Chb05 F 7 5 23 563

Chb06 F 1.5 9 23 147

Chb07 F 14.5 3 23 328

Chb08 M 3.5 5 23 924

Chb09 F 10 4 23 280

Chb10 M 3 7 23 454

Chb11 F 12 3 23 809

Chb12 F 2 21 18 1515

Chb13 F 3 12 23 547

Chb14 F 9 8 18 117

Chb15 M 16 20 18 2012

Chb17 F 12 3 18 296

Chb18 F 18 6 18 323

Chb19 F 19 3 23 239

Chb20 F 6 8 23 302

Chb21 F 13 4 23 303

Chb22 F 9 3 23 207

Chb23 F 6 7 23 431
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with a step time of 6 s as shown in figure 1. Window
size is fixed at 30 s in each slide. This technique effec-
tively expanded original dataset while preserving ori-
ginal distribution of features. The final dataset
consisted of 21 instances, resulted in total of 2344
datapoints/samples including both ictal and interictal
segments. Each of thus extracted raw EEG signal is
standardised using z score normalisation to reduce
feature variances and to accelerate the convergence of
themodel.

In the second phase, normalised segments for the
selected 18 channels are fed into the proposed model
for epileptic seizure detection. The framework com-
bines two deep learning architectures: convolutional
neural network (CNN) and bi directional long short-
term memory network (Bi-LSTM) in two pathways
(pathway 1 & 2) as shown in figure 2. The CNN comp-
onent is responsible for extracting spatial features
from the input EEG signals, while Bi-LSTM captures
temporal features.

In pathway 1 as shown in figure 3, two convolu-
tional layers are used for spatial feature extraction.
Each convolutional layer is activated by ReLU activa-
tion function to introduce non linearities into the
model. The first convolution layer comprises 16 filters
with kernel size of 3 and stride of 1, while second con-
volutional layer comprises 32 filters with the same ker-
nal size and stride. These layers are followed by
pooling layers to reduce dimensionality of feature
maps. Size and stride of pooling layer is set to 2. Max
pooling used in conv 1 extracts the most prominent
features within local regions however retains all spatial
features. Global average pooling in CNN2 computes
the average activation of learned features to have a

global representation of entire feature map. Lever-
aging different pooling layers benefits from capturing
local and global representations of the data, enhancing
generalization ability and computational efficiency of
the model. Batch normalization layer is used then to
reduce overfitting and to stabilize the training process.
Finally, a dense layer with 32 number of neurons, acti-
vated by ReLU function is used after flattening the fea-
ture maps, to extract the hierarchical features from
input signal. Dropout rate of 0.25 is also used in path-
way 1 (convolution block) to increase the training sta-
bility of themodel.

Convolution process in this paper is given by

a X W b. 1i j c m l c m c i i, , 1

3
, , , ( )å= +

=

where l = j+m-1. X represents the input datapoints,
W is the convolutional kernel weights, b represents the
bias and a is the output activations. i is the number of
filters, j the number of sampling points per channel
and c is the number of channels.

LSTM networks have the ability to capture long
term dependencies and store the network’s temporal
state. A bidirectional LSTM is employed in pathway 2
as in figure 4. Two LSTM layers with 64 and 32 num-
ber of units for each is employed to capture temporal
information in both positive and negative directions.
The data is fed into the Bi-LSTMblock simultaneously
with the CNN block leveraging the parallel processing
capability of the model. Mathematically LSTM can be
defined as

i W h X b. 2t i t t i1( ) [ ] ( )s= +-

f W h X b. 3t f t t f1( [ ] ( )s= +-

W h X btanh . 4t c t t c1ć ( [ ] ) ( )= +-

c f c i. . 5t t t t t1 ć ( )= +-

o W h X b. , 6t O t t o1( [ ] ( )s= +-

h O c.tanh 7t t t( ) ( )=

where it represents the input gate which decides how
much new information is to be added to the cell state.
ft represents the forget gate that determines which
information is to be forgotten from the previous node.
Ct represents the cell state at time t and ćt represents
new information, referred as candidate cell state. ht
represents hidden state at time step t. This state retains
the relevant information from input sequence and
serves thememory function. ot is the output gate of the
LSTM. The bidirectional LSTM layer concatenates the
forward and backward hidden states. Wi, Wf , Wc, Wo

are the weight matrices bi, bf, bc, bo are corresponding
biases and σ represent sigmoid activation func-
tion [40].

Flatten layer is used to reshape the output feature
maps obtained from Bi-LSTM which is then further
passed to fully connected layer with 10 neurons acti-
vated by ReLU function. As in pathway 1, batch nor-
malization layer is used to increase the training
stability.

Afterward, the spatio-temporal features thus
obtained fromCNNandBi-LSTMare concatenated to

Figure 1.Windowing process - Slidingwindow technique
used in themodel for a 60 s segment is shown. Awindowwith
a length of 30 s slides over EEG ictal datawith a step size of 6 s.
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form a complete sequence. Finally, these fused features
are input into fully connected layer with single neuron
and sigmoid activation function, transforming the
neuronal output to a bounded range between 0 and 1.

The CNN-BiLSTM parallel combination ensures
that both architectures have its own path in capturing
important spatial and temporal information. Without
intersecting or affecting each other, they concurrently
extract features thereby avoiding possible loss of infor-
mation as seen in serial architectures. All parameters
used in our model were chosen empirically through
experimentation to avoid overfitting and to reduce
complexity of themodel.

2.3. Evaluation indices
The performance of the model is evaluated using
accuracy, precision, sensitivity, specificity, f1 score as
defined below.

Accuracy 8TP TN

TP TN FP FN
( )= +

+ + +

Precision 9TP

TP FP
( )=

+

Sensitivity 10TP

TP FN
( )=

+

Specificity 11TN

TN FP
( )=

+

F Score1 12

a

2

precision recall

1 1 ( )=
+

where TP is true positive (number of samples correctly
classified as positive), TN is true negative (number of

Figure 2.Overview of the proposed hybridCNN-BiLSTM seizure detectionmodel.

Figure 3.Details of convolutional block used in pathway 1.

Figure 4.Details of Bi-LSTMBlock used in pathway 2.
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samples correctly classified as negative), FP is false
positive (number of samples incorrectly classified as
positive), and FN is false negative (number of samples
incorrectly classified as negative) for the given number
of n samples. In general, accuracy is the overall
correctness of the model whereas precision focus on
accuracy of positive predictions. While sensitivity
measures the ability ofmodel to capture positive cases,
f1 score provides balance between precision and recall
(sensitivity). Receiver operating characteristics curve
(ROC) and precision recall curve is also plotted to
further evaluate the performance ofmodel.

3. Results and discussion

Our model is implemented in python 3.10 using
Google Collaboratory notebook Tesla T4 GPU. We
combined CNN and Bi-LSTM architectures to obtain
a hybrid model leveraging spatial and temporal
features of EEG. Unlike previous methods that com-
bine these methods serially, we used a parallel
architecture to give input simultaneously to CNN and
Bi-LSTM, allowing extraction of different aspects of
EEG signals concurrently. In serial architectures where
one block is used after another, there may occur
information loss as the layermay not capture complete
information from the signal, before passing it to the
next layer. Parallel processing ensures that no infor-
mation is lost during feature extraction through
independent access of blocks. After normalisation and
segmentation of input, fixed length EEG segments are
directly fed to CNN and Bi-LSTM blocks. The
algorithm does not involve any domain transforma-
tion steps or other preprocessing techniques which
increases model complexity. We applied 5-fold strati-
fied cross validation method to increase the reliability
of the results and to obtain a better error estimation.
Each fold of the model is trained and evaluated
independently with 100 epochs and batch size of 32.
Training and testing instances in a single fold
remained distinct from those used in other folds and
in each fold the performance metrics are estimated
independently. Average of these kmatrices determines
overall performance of themodel.

Performance learning curves such as accuracy,
ROC, precision recall for every five folds is depicted
from figures 5(a)–(c) respectively. We obtained an
average accuracy of 95.90 for the 5 folds as shown with
false positivity rate of 0.05/h. The ROC Curve
(figure 5(b)) plotted between sensitivity and false posi-
tivity rate provides a comprehensive evaluation of
classifier performance on attaining balance between
true positive and false positive classifications. Closer
the ROC curve to the upper left corner, the higher the
overall performance of the model. The area under the
curve (AUC) is an aggregate measure of model’s per-
formance to discriminate between seizure and non-
seizure classes. The higher AUC score obtained in
every folds indicates that the model has higher

probability to distinguish between two classes present
in target samples. Furthermore, the AUC of precision
recall curve depicted in figure 5(c) represent that
model could identify groups of signals with seizure
more readily at low false positive rate and low false
negative rates.We obtained average precision of
94.78%, average sensitivity of 97.18% with average
specificity as 94.62%, average f1 score of 95.95% and a
false positivity rate of 0.05/hr.

Our model is trained using binary cross entropy
loss function and optimised using Adam optimiser
with learning rate of 0.001. The optimisation curve
(loss curve) for each of the k folds is shown in
figure 5(d). For every folds, curve exibited a consistent
trend of steady decrease, indicating that the model is
learning effectively as well as errror between predicted
labels and true labels decreasing over epochs.

The performance comparison of classifiers
between papers is challenging as there is no standard
rule for the system development. However we com-
pared our results with similar CNN-LSTM models
and summarised in table 2. Approach proposed by
Shahbai et al. employed frequency domain transfor-
mation for the signal during preprocessing step. They
have used a very short 10 s window of EEG signal for
STFT 2D representation and utilised 2D CNN—
LSTM [41] to extract the spectral spatial and temporal
features. Addition of domain transformation and two
dimensional CNN and LSTM layers adds complexity
to themodel. On evaluating themodel using CHBMIT
dataset they achieved high sensitivity of 98.21, but with
FPR of 0.13/h.

Although researchers used a different dataset for
theirmodel [42–45, 49, they explored CNN and LSTM
architectures in implementation. Additionally, these
studies utilised common evaluation metrics which
enables a meaningful comparison with our results.
Though the model proposed by Sakim et al. [42]
achieved sensitivity of 78.2%, specificity was not com-
petative, meaning that the model outputs more false
alarms [42]. The 1DCNN-RNN model proposed by
Roy et al. yielded an accuracy of 82.27%, however sig-
nificant overfitting issues are pointed out in the paper
[43]. On comparing our results with similiarmodels as
shown in in table 2, it is observed that our model
achieved higher performance in terms of accuracy and
sensitivity [44, 45. Liang et al. andBhattacharya carried
out their experiments using CHBMIT dataset [46, 48].
Obviously results obtained by Liang [45] and Bhatta-
charya [48] with 84% and 97.74% sensitivity at FPR
0.2/h respectively, are much better than others, how-
ever, model proposed in these studies are highly com-
plex with increased number of 2DCNN and LSTM
layers. CNN-LSTM architecture in Hussain et al.'s
work combined 6 channel data into a feature vector to
form input to CNN [48]. The reliable and most dis-
criminative spatial features with epileptic seizure that
are captured by CNN are then fed to LSTM. However
the serial architecture of CNN-LSTM may have
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Figure 5.CNN-BiLSTMmodel learning curves for 5 folds usingCHBMITdataset. (a)Accuracy curve for each fold (b)ROCcurve for
each fold (c)Precision recall curve for each fold (d)Loss curve for each fold.

Table 2.Comparison of our results with other works.

Work Dataset Model Acc Precision Sen Spec F1 score FPR

[41] CHB -MIT 2DCNN-LSTM N/A N/A 98.2 N/A N/A 0.13

[42] TUSZ CNN-LSTM N/A N/A 78.2 N/A N/A 0.629

[43] TUH CNN-RNN 82.27 N/A N/A N/A N/A N/A

[44] TUH CNN-LSTM N/A N/A 30.83 N/A N/A N/A

[45] Clinical CNN-LSTM 92 N/A 88 N/A N/A N/A

[46] CHB -MIT CNN-LSTM 99 N/A 84 99 N/A 0.2

[47] SNUH-HYU&CHB-MIT 1DCNN-2DCNN 83.2 N/A 79.2 88.0 N/A N/A

[48] CHB-MIT CNN-LSTM N/A N/A 97.74 N/A N/A 0.2373

[49] Freiburg CNN-LSTM 93.99 N/A 94.36 94.13 N/A N/A

Thismodel CHB -MIT 1DCNN-BiLSTM 95.90 94.78 97.18 94.62 95.95 0.05
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significant information loss, which may lead to inac-
curate results. Park et al. have used two datasets in
their 1D-2D CNN seizure detection model (SNUH-
HYU&CHB-MIT).

The feature maps generated by 1D convolutions
for each channel is concatenated to perform 2D con-
volution. They have identified the spatio temporal
correlation using 10,20,30 s of EEG segments from
both datasets. The model yielded accuracy of 83.2%
but at sensitivity of only 79.2% [47]. In addition, most
of the above mentioned studies are patient specific
which cannot be generalised to new unseen data. Our
proposed model is not patient specific and fits well to
new unseen data with low false positivity rate of 0.05/
hr, that it can be generalised to use.

4. Conclusion

In this paper a novel hybrid 1DCNN-BiLSTMmethod
is proposed for seizure detection from multichannel
EEG signals. Themethod can be utilised as an effective
tool to reduce the workload of epileptologists and also
to improve the quality of life of epileptic patients.
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