
Biomedical Physics & Engineering
Express

            

TOPICAL REVIEW • OPEN ACCESS

Drug-delivery nanoparticles for bone-tissue and
dental applications
To cite this article: Taisa Higino and Rodrigo França 2022 Biomed. Phys. Eng. Express 8 042001

 

View the article online for updates and enhancements.

You may also like
Progressive enhanced photodynamic
therapy and enhanced chemotherapy
fighting against malignant tumors with
sequential drug release
Yibo Yang, Xin Zhang, Zhimin Bai et al.

-

Discovery of a low order drug-cell
response surface for applications in
personalized medicine
Xianting Ding, Wenjia Liu, Andrea Weiss
et al.

-

Controlled, Stepwise Assembly of Highly
Potent Drugs on Single-Wall Carbon
Nanotubes
Sumin Jin, Kris Noel Dahl and Mohammad
F. Islam

-

This content was downloaded from IP address 18.118.126.241 on 08/05/2024 at 00:01

https://doi.org/10.1088/2057-1976/ac682c
https://iopscience.iop.org/article/10.1088/1748-605X/ad46bb
https://iopscience.iop.org/article/10.1088/1748-605X/ad46bb
https://iopscience.iop.org/article/10.1088/1748-605X/ad46bb
https://iopscience.iop.org/article/10.1088/1748-605X/ad46bb
https://iopscience.iop.org/article/10.1088/1478-3975/11/6/065003
https://iopscience.iop.org/article/10.1088/1478-3975/11/6/065003
https://iopscience.iop.org/article/10.1088/1478-3975/11/6/065003
https://iopscience.iop.org/article/10.1149/MA2020-016656mtgabs
https://iopscience.iop.org/article/10.1149/MA2020-016656mtgabs
https://iopscience.iop.org/article/10.1149/MA2020-016656mtgabs
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjsuujard5KWtDBZ3pcnBl9uOSsyu7dzXPBYgK6EbM_7DRKatAJrdoyh3z9VpJ1gKl9y9yeXoMfOYKL3vdHXowKsxfGkxdg2ykN508KWqwMs_8w-bTgZQ23s8K0j6Eb6Nd_lJawY-IW3tz9iRCIx_t20_KrlVMxyoLaIGI-e8TfDJuq-g-3ss9IHZarDZvVKv7aAeDZcbn2SiEoIzFhTl9Tf6fmxv7Zy3vrUUN27HXCrmuTsRCjMx-FCS2qenc9z46iAavylm3ureZpA0pwin76gBlhY-_pV8-tLb96CoYDPnFxejpFaYaAV4bjxlre0-k5YCq7bvtXPopT-Ffx4FB2NXiozkWw&sig=Cg0ArKJSzCIk1hP0NRt8&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://www2.sunnuclear.com/l/302621/2024-04-18/zjkv1


Biomed. Phys. Eng. Express 8 (2022) 042001 https://doi.org/10.1088/2057-1976/ac682c

TOPICAL REVIEW

Drug-delivery nanoparticles for bone-tissue and dental applications

TaisaHigino1 andRodrigo França1,2

1 Biomedical Engineering Program,University ofManitoba,Winnipeg, Canada
2 Dental Biomaterials Research Lab,Department of RestorativeDentistry, College ofDentistry, University ofManitoba,Winnipeg, Canada

E-mail: rodrigo.franca@umanitoba.ca

Keywords: bone treatmentmaterials, nanosystems, nanoparticles, dentalmaterials, biomaterials

Abstract
The use of nanoparticles as biomaterials with applications in the biomedical field is growing every day.
These nanomaterials can be used as contrast imaging agents, combination therapy agents, and targeted
delivery systems inmedicine and dentistry. Usually, nanoparticles are found as synthetic or natural
organicmaterials, such as hydroxyapatite, polymers, and lipids. Besides that, they are could also be
inorganic, for instance,metallic ormetal-oxide-based particles. These inorganic nanoparticles could
additionally presentmagnetic properties, such as superparamagnetic iron oxide nanoparticles. The
use of nanoparticles as drug delivery agents hasmany advantages, for they help diminish toxicity
effects in the body since the drug dose reduces significantly, increases drugs biocompatibility, and
helps target drugs to specific organs. As targeted-delivery agents, one of the applications uses
nanoparticles as drug delivery particles for bone-tissue to treat cancer, osteoporosis, bone diseases,
and dental treatments such as periodontitis. Their application as drug delivery agents requires a good
comprehension of the nanoparticle properties and composition, alongside their synthesis and drug
attachment characteristics. Properties such as size, shape, core-shell designs, andmagnetic
characteristics can influence their behavior inside the human body andmodifymagnetic properties in
the case ofmagnetic nanoparticles. Based on that,many different studies havemodified the synthesis
methods for these nanoparticles and developed composite systems for therapeutics delivery, adapting,
and improvingmagnetic properties, shell-core designs, and particle size and nanosystems
characteristics. This review presents themost recent studies that have been presentedwith different
nanoparticle types and structures for bone and dental drug delivery.

1.Nanoparticles

As medicine and biomedicine face numerous techno-
logical developments, nanoparticles (NPs) appear as
promising resources for diagnoses and treatments.
This technology leads to the development of systems
in the size of cells andmolecules present in the human
body [1]. Due to their small size, shape, and surface
properties, the use of nanoparticles in medicine
includes features such as targeted delivery, contrast
imaging, combination therapies, tissue engineering,
bone and dental repair, and hyperthermia [2–4].
Furthermore, the use of nanoparticles as drug delivery
agents presents multiple advantages. Firstly, nanopar-
ticles can encapsulate medicinal agents and improve
their biocompatibility. Once encapsulated, drugs can
be transported to specific sites of action and released at
organs or tissues at ease and controlled discharge. It

reduces the required dose for the treatments and
avoids ingestion, preventing undesirable side effects
and aggression of organs such as the liver, kidney, and
heart. Besides that, they can be produced on a large
scale and reduce the toxic effects of medications [5–8].
Cancer therapies are one of the most studied applica-
tions of drug delivery nanoparticles [9], mainly
because they turn the process of cancer cells treatment
faster and less aggressive for patients, reducing treat-
ment’s toxicity leading to the potential use of currently
limited medications for tumor therapies [10, 11].
Usually, nanoparticles employed in cancer treatments
present magnetic properties and structures formed by
polymers and lipids [12], facilitating the loading of
drugs. In addition, radiation therapy or ultrasound
techniques can also bemodified by nanoparticles [13].
Moreover, studies have proposed them as great
options for bone-target in bone cancer treatments,
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osteoporosis, bone regeneration, and dental applica-
tions and treatments Moreover, studies have proposed
them as great options for bone-target in bone cancer
treatments, osteoporosis, bone regeneration, and dental
applications and treatments [5], presenting a potential
formany other oral environment applications.

Nanoparticles are synthesized in different compo-
sitions, sizes, and structures and exhibit various prop-
erties depending on their purpose and necessity. Some
of the most common drug delivery nanoparticles
include polymeric nanoparticles, polymeric micelles,
liposomes, silica, gold, silver, platinum, cerium, and
titanium solid-lipid nanoparticles [14]; besides that,
they can be classified as inorganic NPs, or organic NPs
[15], which could show magnetic properties. Figure 1
presents some examples of the most used nano-
particles for drug delivery and bone treatments.

Many investigations have recently modified NPs
properties and features to enhance their benefits and
applications. While on the one hand, some results
indicate better biocompatibility of the nanoparticle
due to coating changes, on the other hand, some types
of modifications could lower properties related to
magnetism in magnetic nanoparticles, for instance.
This review aims to analyze some recent developments
reported in drug delivery nanoparticles for bone and
dental applications; and the different types of nano-
particles synthesized to be used as drug delivery agents
for bone and dental targets, comparing types, obtained
results, and characteristics.

2.Nanoparticles in bone treatments

One of the body’s most important organs is bone; it
sustains and protects organs and regulates hormones.
Unfortunately, bone tissue may be affected by diverse
diseases and skeletal disorders that affect mobility and

lead to death. Usually, treatments require administer-
ing high drug doses and concentrations, which could
provoke adverse effects. Nanotechnology and nano-
particles for highly localized treatments are an alter-
native to manage the delivery of these therapeutic
agents and diminish toxicity in the blood [16].

NPs’ innovative uses have various purposes in
bone therapies. For instance, their small size, large sur-
face area, facility to modify surface roughness, and
wettability can effectively sustain bone regeneration
when aligned with good cell adhesion and prolifera-
tion [17]. Furthermore, other investigations have
shown that due to their potential formodification, dif-
ferent product types, and properties possibilities,
nanoparticles can emerge as great therapeutic approa-
ches and parts of scaffolds incorporating the compo-
site properties and enhancing therapeutics’ delivery
[18–22]. Although commercial options are not avail-
able so far, the use of nanotechnology as therapeutic
carriers is rising in different bone diseases applications
such as bone regeneration, osteosarcoma, osteo-
porosis, and cancer treatments [23–25].

Although rare, osteosarcoma bone cancer origi-
nates from mesenchymal cells and requires che-
motherapy and surgery. It is fully understood that
conventional chemotherapy has a significant issue: its
toxicity and body system side effects. That being said,
NPs as tumor-target drug delivery agents could be
used as an option to achieve a controlled release in the
body [26]. The use of nanoparticles as drug vehicles
remains a challenge because of nanoparticles’ lack of
cancer cells target capability; however, studies have
designed efficient and smart nanocarriers that could
differentiate normal healthy cells from tumor cells.
Mesoporous Silica nanoparticles (MSNs) loaded with
doxorubicin (DOX) can have the addition of a poly
(acrylic) acid (PAA) layer to increase pH sensitivity

Figure 1.Drug delivery nanoparticles and some of theirmost common applications.

2

Biomed. Phys. Eng. Express 8 (2022) 042001 THigino andR França



and biocompatibility, and also have the addition of a
target ligand, such as concanavalin A (ConA). This
procedure could bind NPs to cell-surface glycans,
highly present in cancer cells, selecting tumor cells for
a highly localized treatment. Studies have shown that
this system could preserve the viability of healthy cells
and increase the medicinal effect against tumor cells,
compared to the free drug [27].

Another disease that treatments could be favored
from MSNs is osteoporosis. A deterioration in the
bone tissue characterizes this skeletal disorder due to a
low bone mass, directing, consequently, to a high fra-
gility in bones. It could be devastating for older
patients, which are the most affected by osteoporosis,
since a vertebral fracture, for instance, could lead to
death or morbidity. Treatments typically include frac-
ture prevention but are related to long drug exposure,
leading to possible harms [28, 29]. So, to enhance and
stimulate bone regeneration, a research study incor-
porated nanoceria, cerium in the formof oxideNPs, as
a radical scavenger in MSNs, due to the silica release
and reduced osteoclast activity due to nanoceria prop-
erties. These nanoparticles could decrease the usage of
drugs and damaging side effects [30].

Bone infections, such as osteomyelitis, could be
treated with nanoparticles too. Formulations using
magnetic and gelatin nanoparticles loaded with genta-
micin have a therapeutical potential to release the drug
with a controlled profile and accelerate osteomyelitis
recovery due to very localized treatment [31].

3.Nanoparticles in dental treatments

The use of nanoparticles in the dentistry field can
enhance treatments at atomic and molecular levels.
Thus, this technology usually applies NPs with a size
range between 10 and 100 nm to improve the proper-
ties of conventional materials by adding functional
groups pursuing advancements in diseases prevention,
diagnosis, and treatments [32]. The study of nanopar-
ticles applications in the dental field has reached areas
such as dental implants, preventive and antibacterial
nano dentistry, restorative dentistry, tissue regenera-
tion, periodontics, oral cancers, dentin hypersensitiv-
ity, drug delivery, and others [33–36]. Some very
common nanoparticles studied in these areas are
titanium, silver, gold, iron oxide, silica, chitosan,
zirconia, and zinc [37–39]. Furthermore, when
employed as drug delivery agents in the oral environ-
ment, NPs can enhance dental restoration, antifungal
and antibacterial action, and periodontal treat-
ments [35].

Dental caries, a worldwide known problem that
affects individuals of all ages, is a condition in which
NPs could work as useful tools to reverse cavities
caused by microbial colonization and demineraliza-
tion. Usually, treatments include adding a fluoride
agent in the affected cavities to help remineralize the

tooth and prevent bacterial activity. Applying this
agent in nanoscale could produce smaller treatment
systems that are less sensed by patients and con-
centrate in a particular area [34, 40]. Calcium fluoride
(CaF2) nanoparticles have been studied in bioadhesive
films to overcome the limitations of conventional
treatments and prevention methods such as tooth-
paste andmouth rinses that have a brief enduring per-
iod in the mouth. This application can increase the
contact period of fluoride agents in affected areas and
suppress bacterial and biofilm generation. In the
study, CaF2 nanoparticles embedded in thiolated chit-
osan (TCS) biofilm were tested as potential treat-
ments. After in vitro tests, the system showed a drug
release time of up to 8 h and 28% of mucosal mem-
brane permeation in 6 h after ex vivo tests, showing
facilitation of fluoride agents delivery by nanoparticles
application in bioadhesives [41]. The fluoride loading
in chitosan nanoparticles was also investigated as a
possible option for oral environment drug delivery by
using sprays or mouthwash. Studies showed that even
small amounts of fluoride could present a constant
release in themouth [42].

Another common dental disease triggered by bac-
terial pathogen and immune system response that
leads to the release of toxins is periodontal disease. In
its chronic stage, immune cells are activated, and the
release of pro-inflammatory cytokines and reactive
oxygen species leads to bone and periodontal fibers
degradation. Therefore, the use of oral drugs such as
anti-inflammatories and antibiotics is often necessary
within invasive surgeries, leading to discomfort and
adverse side effects. Nanoparticles delivering localized
drugs could be an efficient and less invasive treatment
method [43]. For instance, Backlund et al developed
silica nanoparticles with the potential to release exo-
genous nitric oxide to overcome periodontal patho-
genic bacteria [44].

Similarly, a fungal infection caused by Candida
albicans, known as oral candidiasis, with existing treat-
ments based on expensive and very unpleasant medi-
cines with uncomfortable and harmful effects if
swallowed, could have its challenges suppressed by the
use of nanotechnology [45]. One of the main active
agents of oral candidiasis treatments is fluconazole
(FLZ). Although this agent interacts very well with dif-
ferent medications when used in conventional treat-
ment methods, such as oral gels, mouth paints, and
rinses, the mouth’s remaining period is not very long.
Furthermore, adhesive nanoparticles to deliver this
agent could operate as a solution. To analyze this pos-
sibility, a study developed mucoadhesive eudragit
(EUD) with FLZ nanoparticles coated with chitosan.
The candidate nanoparticle did not exhibit cytotoxic
effects, and with good stability, ex vivo and in vivo rab-
bits’ tests results presented themselves as attractive
options to reduce overall drug dosage and side effects,
improving treatments options [46].
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The application of nanoparticles could likewise
improve endodontic treatments, also related to bacter-
ial biofilms development. For instance, research stu-
dies using silver and zinc incorporating mesoporous
calcium-silicate nanoparticles (Ag-Zn-MCSNs)
applied these nanoparticles inside dentin to analyze
adhesion and effects in the tooth. Results presented no
adverse effects of nanoparticles on dentinemechanical
properties, such as flexural strength and modulus of
elasticity, and nanoparticles could penetrate dentinal
tubules and aggregate to the surface, showing the
potential for their application as drug delivery agents
and improvement of therapies [35, 47].

Studies utilizing nanotechnology to enhance den-
tal treatments are not limited to these disorders only.
Dental implants, which are also susceptible to failure
due to bacteria, could also take advantage ofNPs prop-
erties. As the number of dental implants placed in
patients worldwide increases, with a projection of
reaching investments around 4 billion dollars by 2022,
studies to avoid failure of this body implant attached
to the bone expand too. Coating implants with nano-
particles would be an advantageous option to leave
implant parts uncoated for osteoblasts formation,
have controlled distribution for elements, and employ
their therapeutic effects for peri-implantitis preven-
tion [48–50].

Usually, plaque formation and infections due to
bacteria and fungus are failure causes of dental implants
because of the favorable environment for oral micro-
organisms. However, one study has developed silver
nanoparticles conjugated to chitosan. This natural
polysaccharide is known for its antibacterial character-
istics, while silver is inert, biocompatible, and causes no
harm to the body. In vitro analysis showed that the
developed nanoparticles significantly reduced the for-
mation of bacteria and the survival of microorganisms,
so coating titanium dental implants with them could be
a suitable alternative [51]. Another antibacterial agent
option is the use of zinc NPs. zinc peroxide nano-
particles have been studied in vitro as alternatives for
implants bacterias. Results indicated good inhibition of
bacterias such asA. actinomycetemcomitans, P. gingiva-
lis, P. intermedia, and F. nucleatum,which are favorable
for the progression of implant issues and losses. Further
studies aim to examine coating dental implants with
these NPs, as options to contain implant failure [52].
Research studies have also coated Titanium implants
with chlorhexidine-hexametaphosphate nanoparticles
due to chlorhexidine’s (CHX) good antimicrobial and
antifungal characteristics. In vitro analysis demon-
strated a soluble release of CHX and antimicrobial
effect, indicating an alternative for improving dental
implants [50]. Figure 2 exhibits some dental conditions
and infections in which drug delivery nanoparticles
could enhance therapies. Understanding the most pro-
mising nanoparticles and their recent applications and
tests can benefit biomedical materials and pharmaceu-
tical possibilities. The following sections present some

of the most recent NPs studies related to oral and bone
drug delivery.

4.Organic nanoparticles

Organic nanoparticles offer high biocompatibility and
low toxicity, characteristics that qualify them as good
options as drug delivery agents. The most studied
organic NPs are polymeric and solid lipid nanoparti-
cles; these nanocarriers can be found as polymeric
micelles, vesicles, dendrimers, and nanoparticles with
an average size from 10–1000 nm. Their easy synthesis
process, well-defined structures, changeable size, good
surface characteristics, hydrophobicity, and controlled
drug release properties are the main reasons that
entitle them as popular choices for the localized
transport of therapeutics [53–56]. These organic
nanocarriers can outstand when compared to inor-
ganic materials. They have low toxicity, high biocom-
patibility, and valuable properties to encapsulate drugs
and improve their bioavailability when referring to the
delivery of therapeutics. On the other hand, these
unique characteristics may also lead to a low-loading
capacity on some carriers and a premature release [54,
56–58]. Table 1 presents some characteristics of the
most popular drug delivery organic nanoparticles used
for bone and dental treatment.

4.1.Hydroxyapatite nanoparticles
Apatite, one of the human body’s main components,
known as hydroxyapatite (HA) in vertebrae, is a
biocompatible and bioactivemineral. It alsomaintains
osteoconductive properties, a high affinity with some
drugs, and absorbs osteoblasts. Many recent studies
have developed HA nanoparticles for different bone-
targeting applications related to therapeutics delivery
[6]. To study these nanoparticles’ in vitro behavior,
one group synthesized HANPs for in vivo applications
and radiolabelled the particles with technetium-99m
(99mTc) using hydrothermal syncretization to analyze
the NPs uptake in the bone. The produced nanoparti-
cles presented a surface area of 103.05 m2 g−1 with a
mean porous diameter of 8.14 nm. The particles’mean
size was 285.3  10.3 nm, and the 99mTc-HA NPs
presented affinity with the bones and a long residence
time in the bloodstream, with a half-life of 2 h. This
high probability of reaching the bones with a higher
affinity with bones after biodistribution analysis
showed an increased bone uptake after 4 h. Results
indicated that, even though some mice’s organs
absorbed the particles, they could have potential
applications as nanocarrier agents [80]. Besides that,
Shweta Pandey et al reported HANPs synthesized by a
wet-chemical precipitation method. The nanoparti-
cles loaded with teriflunomide (TEF) and methotrex-
ate (MTX) combined these drugs’ good properties and
efficacywhile reducing their used amount and toxicity.
The nanoparticles presented a smooth surface and
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spherical shape. So, after in vivo insertion in rat ankle,
the carriers helped reduce inflammation and
improved articular structure regeneration [81].
Another researcher reported sol-gel method produced

HAnanoparticles that could be used as zoledronic acid
(ZOL) delivery since this antiresorptive bisphospho-
nate has an excellent potential to improve bone
regeneration. Because HA has a good absorbance of

Figure 2.Drug delivery nanoparticles options for some common dental diseases and infections.

Table 1.Characteristics and toxicity ofmost used organic nanoparticles for drug delivery in Bone tissue and dental applications.

Principal organic nanoparticles

Type Characteristics Toxicity References

Hydroxyapatite -Brittle bioceramic -Non-irritating [59–62]
-Good osteoconductive and osteoinductivity -Non-toxic

-Potential as drug delivery carriers

Poly(caprolactone) -Medical approved polyester -Non-toxic

-Hydrophobic -Encapsulates and increases

drugs’bioavailability

(PLC) -Semi-crystalline [63–66]
-High blend-compatibility

Poly(lactic-co-glycolic) acid -Hydrophobic [67–69]
-Diffusible andmetabolized in the

human body

-U.S. FDA approved

(PLGA) -Negative surface charge

-Natural polysaccharide -Biocompatible [70–73]
Chitosan -Surface amine groups -Low toxicity

-Good physicochemical, and antimicrobial

properties

-Cytotoxicity in some in vitro and

in vivo

Polymer conjugated to Poly-

ethylene glycol

-Improves hydrophilicity

-Electrically neutral -Low toxicity [74–76]
(Polymer-PEG) -High stability

Lipid/Liposomes -Phospholipidsmembranes -Many FDA approved structures [77–79]
-Improving drugs’ solubilitymay formdiffer-

ent structures of phospholipids
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this drug with a strong affinity with bisphosphonates,
both agents could function as drugs, and ZOL
formulation could be reduced. The nanoparticles had
a size range between 70 and 100 nm, with a not very
regular shape before the drug loading, showing that
this synthesis method might lead to a not very good
size distribution for the nanoparticles. However,
in vivo results in rats demonstrated that this drug
formulation and localized delivery could improve
bone regeneration, and this approach could benefit
osteoporosis treatments in humans [82].

The HA nanoparticles’ potential for drug delivery
led to designing a system that simultaneously delivers
two different drugs and acts as penetrating material in
the bones by using HA nanoparticles grafted with
MTX and poly(vinyl alcohol) (PVA) by emulsion poly-
merization technique. Them, the nanoparticles were
loaded with gemcitabine (GEM), an anti-cancer drug.
The in vitro studies for the drug release presented a
conjugated release of about 25% after ten days, while
for the physically loaded nanoparticles, it was around
60%. Besides that, in vitro studies showed a tendency
to sequential delivery of GEM succeeded by MTS,
increasing the potential for treatments and increasing
therapeutics’ efficiency [83]. Furthermore, the HA
NPsmay also present potential use in the oral environ-
ment. Planning to develop a system for cell prolifera-
tion and, consequently, bone regeneration in the oral
environment Rajabnejadkeleshteri et al synthesized
strontium fluor-hydroxyapatite Nanoparticles (F-Sr-
HA) since fluorine helps in the proliferation of osteo-
blasts and strontium is known for improving gene
expression in osteoblastic cells. The group used the
precipitation technique and ph-Cycling method to
achieve these nanoparticles. After cell incubation, the
hydroxyapatite’s added elements helped increase cell
growth and differentiation, presenting potential den-
tal applications [84].

4.2. Polymeric and solid lipid nanoparticles
Some examples of polymeric drug carriers for the
delivery of therapeutics are polymeric nanoparticles,
polymer carriers, lipid nanoparticles, and lipid-poly-
mer-hybrid nanoparticles. Due to advancements in
chemistry, the synthesis of diverse polymer-nanopar-
ticles with very well-defined structures and new
polymerization methods is feasible, with the outcome
of ideal molecular weight distribution and better
properties.

When referring to polymers, polymer-drug con-
jugates with covalent conjugation and polymer nano-
particles that can use non-covalent conjugations are
achievable [85]. Simultaneously, Lipid nanoparticles
have the advantages of easy large-scale production,
biocompatibility, biodegradability, and low toxicity
potential. They also improve the potential of both
hydrophilic and lipophilic drug release [86]. Another
prospect is to employ the qualities of both liposomes

and polymers in the nanoparticles, creating lipid-poly-
mer hybrid nanoparticles. This system increases
encapsulation efficiency, has well-tolerated serum sta-
bility, and holds good targeting properties [87].

Liposomes formed by phospholipids bilayers were
studied for Curcumin encapsulation and bisde-
methoxycurcumin in nanoscale. The system was syn-
thesized by a modified thin-film hydration method,
and according to results, they exhibited great potential
for use in some osteoblasts and drug delivery treat-
ments [88]. Their dual nature allows encapsulating
hydrophilic and lipophilic drugs in the core and
bilayer. One study investigated how efficient the lipo-
somes can be using a 3D bone marrowmodel. Testing
different liposomal drug delivery systems for antic-
ancer drugs presented great potential for future thera-
pies [89]. Moreover, when attempting to update from
a tissue level to a cellular level using bone strategies,
LiposomeNPswith sizes<90 nmwere produced to be
used as siRNA carriers. These aptamer-functionalized
nanoparticles would facilitate some bone strategies,
and as CH6 aptamer facilitated siRNA entry in osteo-
blasts and liposome scape of siRNA, this first study
enhanced an RNA bone-based strategy, improving
cellular level treatments [90].

Nevertheless, liposomes may not be very stable,
and their drug loading capacity is not very high. In
order to combine their good properties with poly-
meric advantages and overcome the instability of
lipids and polymeric aggregation, Xiaoyan Wu et al
studied NPs with a core consisting of poly(D,L-lac-
tide-co-glycolide)-cholesterol with an alendronate-
polyethylene glycol-lipid shell. These nanoparticles
could be helpful for bone target and delivery of che-
motherapy medicines reducing therapy toxicity, as
proved in vitro and in vivo studies [10]. Some of the
polymeric nanoparticles drug-systems recently devel-
oped for bone targeting and dental treatments are:

4.2.1. PLGA based nanoparticles
Poly(lactic-co-glycolic) acid (PLGA) nanoparticles are
a promising nanosystem for bone treatments and
regeneration. This FDA-approved polymer is biocom-
patible, biodegradable, easy to process, and one of the
main components in copolymer nanosystems, which
helps increase hydrophilic systems’ properties. PEG-
PLGA nanoparticles, for instance, have the advantage
of avoiding hydrophobic interactions between pro-
teins and polymers, and the use of poloxamers
improves releasing control characteristics [91]. In one
study, Nazemi et al reported PLGA nanoparticles that
could sustain a controlled drug release for a more
prolonged time. The nanoparticles loaded with Dex-
amethasone (DEX) and inserted in bioactive glass
scaffolds presented smooth surfaces and a size range
smaller than 100 nm. After studies, nanoparticles did
not affect the characteristics of the scaffold, showing a
high potential nanosystem for bone treatment applica-
tions within the delivery of therapeutics [92]. Another
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report using PLGA for bone-targeting drug delivery
proposed an esterification reaction of hydroxyl of
tetracycline (TC) and PLGA carboxyl, producing TC-
PLGANPs that could be attracted to the bone through
a reaction between TC and hydroxyapatite. The results
described a spherical shape and uniform nanoparti-
cles, and in vivo studies suggested they could be very
efficient in delivering hydrophobic drugs for osteo-
porosis treatment [6]. Duong Thanh et al reported
another research involving PLGA, presenting targeted
nanoparticles produced with alendronic acid-modi-
fied lipids using a PLGA core to encapsulate the
chemotherapeutic drug Doxorubicin (DOX). The
PLGA core acted as the particle skeleton and a
reservoir for the drugs, while the lipophilic phospho-
lipid layer was a passivation layer to stabilize and direct
the nanoparticles to the target. The resulting nanopar-
ticles had high stability in a colloidal state with
adequate protein aggregation levels, also revealing that
this nanomedicine method delivers higher doses of
DOX and that alendronic acid provides a negative
surface charge and sufficient hydration to nanoparti-
cles representing a robust alternative for treat-
ments [93].

PLGA nanoparticles loaded with 17β-estradiol
(E2) coated with poly(vinyl alcohol) (PVA) were stu-
died using different synthesis methods and comparing
the best method for drug delivery nanoparticle perfor-
mance. By using a combination of antisolvent diffu-
sion with preferential solvation and an emulsification
and solvent evaporation method, the nanoparticles
presented sizes of 110 nm and 106 nm, respectively.
Then, examining skin permeability, an antisolvent dif-
fusion with solvation presented a good potential to
develop nanoparticles helpful in treating osteoporosis
[94]. Regarding dental applications, PLGA nano-
particles also could be applied to penetrate dental
structures. Loaded with chlorhexidine (CHX), they
have been investigated for restorative dentistry appli-
cations through dentinal tubules of demineralized
dentin substrates. The study synthesized the particles
using emulsion evaporation, with and without drug
loading. Results showed that non-loaded NPs’ average
size was approximately 342.76 nm larger than drug-
loaded PLGA nanoparticles. Besides that, the particles’
morphology was spherical and smooth, presenting
results of around 10% of the particles penetrating the
tubules after 60 s, improving the possibilities of ther-
apeutics delivery in dental applications[95].

4.2.2. Chitosan nanoparticles
Chitosan (CS) nanoparticles are also studied as drug
delivery nanoparticle systems. This natural polysac-
charide is biocompatible and biodegradable, facilitat-
ing cross-linking and drug encapsulation. Based on
that, CS nanoparticles have been used to encapsulate
silibinin and incorporated into alginate/gelatin scaf-
folds. The use of chitosan nanoparticles improved the
scaffold’s properties and prolonged the release of

silibinin, making this strategy a prospect for bone
treatments [96]. The use of these nanoparticles as drug
vehicles and their potential for a controlled release,
aligned with their ability to interact with cell mem-
branes, has led to various CS-related studies [97].
Recently, the synthesis of CS NPs using ionic gelation
technique and acid-base precipitation has been
reported. The study produced risedronate functiona-
lized chitosan nanoparticles (RISCNs) with a size
range between 340 and 747 nm and presented them as
excellent and beneficial options for osteoporosis treat-
ment [98]. Similarly, developed chitosan nanoparticles
loaded with minocycline have been applied in a
collagen chitosan membrane for bone regeneration
and inhibit bacteria colonization, improving future
clinical treatments options [99].

Besides that, they have also been used in systems
delivering genes for bone regeneration. For example, a
study developed chitosan-gold nanoparticles with the
gene c-Myb to be used as a coating layer in dental tita-
nium implants to release c-Myb and improve osseoin-
tegration. in vivo and in vitro tests promoted bone
formation and inhibited bone resorption. This strat-
egy could enhance bone healing options and improve
the integration of dental implants into the body [100].
Also, chitosan-polyethylenimine nanoparticles were
developed to carry the hBMP-2 gene. chitosan is a
good option for this type of delivery since it can pro-
tect the DNA from degradation. So, these particles
could be applied in a zone with defects in the bone.
The created particles presented a size around 162 nm,
and although, according to in vivo data, the system did
not fully restore the bone up to the last week of experi-
ments, this is still a start for advances in bone regenera-
tion [101].

4.2.3. Other organic drug delivery nanoparticle
One alternative employed to improve hydrophilic
systems is polyethylene glycol (PEG) as a shell or core
material. As an option for carrying hydrophobic drugs,
Jinsong Liu et al produced polyethylene glycol-poly(ε-
caprolactone) (PEG-PCL) nanoparticles linked to
(Asp)8, a biodegradable and biocompatible peptide
sequence with high bone affinity. The curcumin-
loaded (Asp)8-PEG-PCL nanoparticles were easily
permeable, accumulated in the bone niche, showed
robust antitumorigenic characteristics, and could be
good options for treatments [102]. Another study
conjugated alendronate (ALN) on PEG, creating a
hydrophilic structure. This polymer was attached to
calcium phosphate nanoparticles, and this system
could be useful in drug delivery since it has a high
affinity with bone-tissue. After in vivo tests, the
nanoparticles did not provoke hyperemia, hyperplasia,
or other concerns in the rats’ hearts, liver, kidneys, and
lungs, confirming these particles’ high biocompatibil-
ity [103]. Another polymer that appears as an option
for nanoparticles studies is poly(ethylene sodium
phosphate) (PEP.Na), which has an affinity with bone
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substrates. Furthermore, compared to conventional
polyesters, functionalization ismore straightforwardly
achieved in this material. A study synthesized choles-
teryl-terminated poly(ethylene sodium phosphate)
nanoparticles by a solvent evaporation technique; a
helpful technique for developing particles composed
of a hydrophobic end on the interior and a hydrophilic
polymer on the exterior. The Cholesteryl-PEP.Na NPs
presented a hydrophilic chain and a hydrophobic
cholesteryl end. The particles showed an affinity with
hydroxyapatite, offering great potential for carrying an
anti-cancer agent in localized treatments [104].

Poly(ε-caprolactone) (PLC) nanoparticles coated
with chlorhexidine (CHX), also called Nano-PCL/
CHX particles, were investigated as drug delivery
nanocapsules through dentinal tubules. The Nano-
capsules were synthesized by interfacial polymer
deposition. As a result, the particles presented a
smooth spherical morphology with a CHX core and a
PCL shell. Results showed that while loaded particle
size was significantly smaller than unloaded, an
increase in the loaded Nanocapsules’ drug content led
to a decrease in size. The nanocapsules penetrated the
tubules by using a gently air-blown and, with a gradual
degradation, released significant amounts of CHX.
Afterward, this system could have the potential for
prospective clinical dentistry [105]. Rudnick-Glick’s
group reported bisphosphonate nanoparticles (BP) as
another example. BP has a high affinity with HA. The
research delivered a blood half-life time of approxi-
mately 5 h, and after trials on female mice, some ther-
apeutics were found in the kidneys and lungs, showing
that reducing the number of drugs in the human
organs still needed some improvements [106].

5. Inorganic nanoparticles

Inorganic Inorganic nanoparticles as drug delivery
agents have been produced in differentmaterials. They
can include in their composition noble metals such as
gold, silver, or other metals; some examples are zinc
oxide (ZnO), copper (CuNPs), and iron oxide (Fe3O4).
Usually, they present some important characteristics
such as hydrophilicity, stability, low toxicity, response
to the immune system, availability, biocompatibility,
and inertness. In addition, these nanoparticles can also
present magnetic properties, improving particular
applications [54, 107, 108].

Even though inorganic nanoparticles present good
chemical and mechanical resistance, it is essential to
conjugate or coat them to enhance their character-
istics. These new systems facilitate drug loading,
diminish toxicity, and hamper nanoparticles penetra-
tion [57, 109], and at the same time modify the parti-
cles’ surface, as seen in figure 3. Table 2 presents some
characteristics of the most recently studied inorganic
nanoparticles for drug delivery in bone-tissue and
dental applications.

5.1. Silica nanoparticles
Silica nanoparticles can be extremely helpful in boost-
ing flavonoids’ solubility and application in human
body treatments. A study encapsulated isoliquiriti-
genin to mesoporous silica NPs to observe the drug
release in vivo. These NPs could be applied in bone
therapies for diseases such as cancer or inflammations,
enhancing therapeutic characteristics of the flavo-
noids. The nanoparticles were added to mouse bone
marrow-derivedmacrophages andmature osteoclasts,
the study presented a significant cellular uptake, and
the nanoparticles significantly diminished mature
osteoclasts. Results showed that this association led to
a much better response in inhibition of RANKL
osteoclast formation, proving the nanoparticles to
have a great potential in bone loss prevention and
inflammation treatments [123]. Another study devel-
oped silica nanoparticles coated with polyethyleni-
mine. Silica NPs have the advantage of a high loading
capacity, so the pores were loaded using osteogenic
peptide ostentation. After injection of the system in
the femoral bone marrow of mice, the nanoparticles
transported and delivered the siRNA and ostentation,
exhibiting significant efficacy and achieving an effec-
tive silencing effect. Confirming this system’s high
potential for osteoporosis treatments using gene
therapy [124].

5.2. Gold nanoparticles
Due to their high biocompatibility and low toxicity,
gold nanoparticles (AuNPs) are promising candidates
for the delivery of therapeutics in bone treatments. In
one investigation, a group created Gold NPs conju-
gated with pamidronate alongside alendronate (ALD)
and analyzed cells’ uptake and viability after the
insertion of nanoparticles. The particles exhibited
great potential for diminishing osteoclasts’ viability
and good characteristics for treating osteoporotic
conditions. Although further analysis of toxicity cell
behavior is still necessary to direct how the treatment’s
potential can change after in vivo analysis, this
approach could be promising for a novel treatment
strategy [125]. Besides that, the modification of gold
nanoparticles’ surfaces can expand their applications
as target particles in bone-tissue. A research study
developed AuNPs with ALD to facilitate the drug’s
delivery. These gold nanoparticles presented about 30
nm diameter and a synergistic effect of suppressing
and differentiation of osteoclasts better than by using
isolated ALD aftermice insertion analysis [126].When
being modified, gold nanoparticles can interact with
different functional groups, for instance, hydropho-
bic, anionic, and thiol groups. This principle was
confirmed by Donghyun Lee et alwhen gold nanopar-
ticles had their surface easily grafted with N-acetyl
cysteine (NAC), a thiol group. Since these nanoparti-
cles are good candidates for promoting bone regenera-
tion, they were encapsulated in a hydrogel of gelatine
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and tyramine with human adipose-derived stem cells
to facilitate their application in treatment spots. This
composite did not affect the advantageous differentia-
tion properties of the AuNPs, and the system’s
biocompatibility was confirmed [127]. Another
advantage of gold nanoparticles is their interaction
with other functional groups such as phosphines and
amines. In an analysis, a group synthesized gold
nanoparticles conjugated with vitamin D. The parti-
cles developed by the conjugation of Vitamin D and
thiol-functionalized polyethylene glycol presented an
average size of 60 nm, with a not very high cellular
uptake, probably due to their size. On the other hand,
conjugated nanoparticles presented good osteogenic
differentiation and no toxicity via the cell-viability test.
This approach could be a suitable carrier for osteo-
porosis treatment [128].

5.3. Non-magnetic nanoparticles
Another type of nanoparticle design was an oxygen
vacancy-rich tungsten bronze nanoparticle (NaxWO3),
produced using a pyrogenic decomposition process for
photothermal therapy. The synthesized materials were
oleic acid, 1-octadecene, ammonia, and sodium tung-
state dehydrate (Na2OW4.2H2O), resulting in nano-
crystals of a cube-like shapewith 150–200 nm in length.

These particles presented outstanding photothermal
ability and stability, helping decrease tumor cells in vivo
tests. These approaches demonstrate that powerful
techniques are under development and study, and
nanomaterials might have a significant future in
localized therapeutics [129].

5.4.Magnetic nanoparticles
Magnetic nanoparticles are created using metallic
materials and their oxides. They maintain unique
properties due to a difference in bulk materials
associated with their high surface-to-volume ratio.
Besides that, some of their properties are saturation
magnetization, coercivity, blocking temperature, and
relaxation time. These magnetic properties are influ-
enced by their syntheses and features such as particles
size, shape, and composition; and also the presence of
a core-shell design [130, 131].

Superparamagnetic nanoparticles stand among
the most investigated magnetic nanoparticles for dif-
ferent drug delivery bone-targeting applications. They
are attractive options because of their properties, char-
acteristics, and facility to be positioned and directed to
a specific area with the presence of a magnetic field
[132–134]. When this magnetic field is removed, they
present nomagnetic properties allowing better control

Figure 3. Inorganic nanoparticles surfacemodification possibilities, (a) gold, (b) iron oxide, and (c) silica nanoparticles.

Table 2.Characteristics and toxicity ofmost used inorganic nanoparticles for drug delivery in Bone tissue and dental applications.

Principal inorganic nanoparticles

Type Characteristics Toxicity References

Silica -Use growth in biomedical devices -Non-toxic [110–114]
-Anti-agglomeration properties -Studies show thatmore investigation

could be necessary

-Easily tunable

-Porous possibilities

Gold -Easily tunable -Toxicity highly [115–118]
-High surface-area-to-volume ratio dependent on particles size and cell type

-Controllable size, composition, and

functionality

Superparamagnetic IronOxideNano-

particles (SPIONs)
-Superparamagnetic -in vivo studies necessary

-High saturation field -Accumulation potential 119–122]
-Aggregation tendency -Toxicitymay be dependent on size and

coating, fate studies still necessary

-Controllable size
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for specific applications. In addition, these nano-
particles present good properties such as non-toxicity
for humans and cost-efficiency [8, 131, 135]. Besides
that, to increase NPs stability and biocompatibility
and decrease agglomeration due to their high specific
area, these particles are usually coated with biocompa-
tible materials, forming many different nanoparticles
and systems [136].

Different researches have studied using these and
other magnetic particles as drug delivery agents. In
order to enhance penetration, cell interaction, and
magnetic properties, different shell-core designs have
been studied. Common architectures in the magnetic
nanoparticles are core-shell structures with a shell of
polymer molecules, metallic nanomaterials, carbon,
silica, ligands, or proteins [137, 138].

5.4.1. Shell-core designs inmagnetic nanoparticles
One coating material used for different application
results is poly(lactic-co-glycolic) acid. Mrudhula Bas-
karan et al developed magnetic nanoparticles of
Capsaicin coatedwith PLGA. First, the group prepared
nanoparticles using a co-precipitation technique with
ferric chloride and ferrous chloride dissolved in
degassed deionized water and ammonium hydroxide.
Next, a dispersion of ethanolic solution of capsaicin
was created over the magnetic nanoparticles, generat-
ing magnetic capsaicin nanoparticles. Then, PLGA
dissolved in methylene chloride was added to the
magnetic fluid, forming a PLGA coating in the
particles. In the end, their size range was between 50
and 100 nm, demonstrating that this synthesismethod
does not provide a perfect size distribution for the
particles; however, encapsulation of the drug by PLGA
increased its solubility, therefore can be an excellent
option to increase the bioavailability of Capsaicin
in vivo [5].

Silica coating is also a possibility for these particles
coating. In order to compare magnetic properties dif-
ferences after various coating methods, Victoria et al
developed superparamagnetic iron oxide nano-
particles (SPIONs) that presented a silica-coated shell
(SPION/SiO2) and also a carbon-coating shell over
these silica-coated particles (SPION/SiO2/C) using
hydrothermal synthesis. Particles aged for one year
and presented 13 nm of size average. The group
demonstrated that the saturation magnetization
values for the coated nanoparticles were higher than
for the SPIONs before the treatments, meaning better
magnetic properties can be achieved with the correct
shell-core design. Furthermore, these results demon-
strated that the coating shell acted as a protective
agent,minimizing inter-particles dipolar coupling and
maintaining the single-domain structure of the parti-
cles. This indicates that even with the addition of a
paramagnetic weight that could decrease the magnetic
properties, the hydrothermal process presents itself as
an excellent method to compensate for the negative

contribution of SiO2/C and increases the super-
paramagnetic properties of the SPIONs [139].

It is also possible to coat magnetic nanoparticles
with the drug intended to be delivered by the system.
Dextran - iron oxide nanoparticles were synthesized
using a co-precipitation with hydrazine hydrate to
reduce NPs toxicity and facilitate drug delivery using
the particles’magnetic properties [140]. Also, they can
be synthesized and present a mesoporous form. For
instance, Yachao Jia et al presented Fe3O4 nano-
particles synthesized using stabilized oleic acid by a co-
precipitation method. The nanoparticles presented a
diameter of 55 nm and excellent biocompatibility.
These mesoporous nanoparticles are ideal options for
bone regeneration, and according to the rat model
tibial distraction osteogenesis, further studies based on
therapeutics and DNA/siRNA delivery could be pro-
mising [141]. Studies have also observed how these
magnetic nanoparticles could be modified and used as
composite agents for drug delivery applications. Com-
bining their properties with other nanoparticles’ prop-
erties can lead to diverse outcomes to facilitate various
bone applications.

5.4.2. Magnetic nanoparticles as part of composites for
drug delivery
One composite option is the combination of magnetic
nanoparticles with HA NPs. For instance, a magnetic
and HA nanoparticles composite using NaOH solu-
tion degassed with N2 into a FeCl2 solution has been
studied. The particles presented an average diameter
of 30 nm and could be used in a Rod-like HA particle.
These nanoparticles’ heating characteristic is their
advantage, which could be used for cancer treatment
under a magnetic field [130]. In addition to this
combination, nanocrystalline HA particles blended
with magnetite (Fe3O4) forming Fe3O4−HA nanopar-
ticles have also been studied. At first, the magnetic
nanoparticles were prepared by alkaline coprecipita-
tion of ferric and ferrous chloride in an aqueous
solution. Then, the study compared the magnetic
properties of the Fe3O4 uncoated nanoparticles and
the combination with HA, and while the pure
magnetite saturation magnetization value presented
was 20.639 emu g−1, the Fe3O4−HA nanoparticles
presented a value of 7.34 emu g−1, leading to a decrease
in the saturation magnetization curve. Furthermore,
according to in vitro test results, combined nanoparti-
cles enabled good cell proliferation and have potential
hyperthermia, a technique for generating heat in an
alternating magnetic field [142]. Another composite
was developed using PLGA with SPIONs forming a
SPION-PLGA nanoparticle. First, the SPIONs were
prepared using thermal decomposition, then the
combined SPIONs and PLGA particles were loaded
with bovine serum albumin (BSA). The final particle
obtained was a core-shell type formed by a BSA core
and a PLGA shell that contained the SPIONs well
distributed. Analysing the hysteresis curve of the
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particles, the produced SPIONs presented a saturation
magnetization value of 47.8 emu g−1, while the
combination of these nanoparticles to form the
composite remained with the superparamagnetic
properties, however with a decreased value where
different sizes of BSA/SPION-PLGA presented values
of 1.5, 2.3 and 1.5 emu g−1. The particles’ saturation
magnetization value was higher because the portion of
SPIONs was higher in their compositions. Further-
more, the study also revealed that the BSA and proteins
separated from the SPIONs did not affect the nano-
particles’ inter-particle distance, thus the magnetiza-
tion values [143].

Not only SPIONs can be used as magnetic nano-
particles in nanocomposites, but cobalt ferrite
(CoFe2O4) nanoparticles too. They are considered one
of the essential components of the spinel ferrite magn-
etic family since they present good properties such as
chemical stability, good saturation magnetization
values, high permeability, and last but not least, the
presence of Co2+ ions, which leads to excellent ther-
apeutic characteristics and antibacterial activity. A
recent study used these nanoparticles synthesized by
sol-gel combustion to form a core-shell composite
with Mg2SiO4, a phosphorite bioceramic with out-
standingmechanical properties and potential for bone
restoration. The scaffolds were prepared with the
core-shell nanoparticles, and scaffolds presented cell
viability and proliferation potential along with a pro-
longed drug release time [144].

6. Conclusion

This brief review summarized some of themost recent
studies on improving and developing drug delivery
nanoparticles directed to bone-targeting and dental
applications. At first, observing the provided data, it is
noticeable that there is still a need for improvements in
nanoparticles as dental penetrationmaterials, and they
have limitations. Besides, while many studies have
developed drug targeting applications, there is still
little information and results in vivo.

Moreover, analyzing the research studies, it is seen
that there is a high dependence on the application,
health problem, and the synthesis that is preferred for
each type of particle and still a big challenge for medi-
cine to find an ideal material and nanoparticle option
for delivering medical components to bone tissues.
Most studies change the synthesis method, and
usually, the results do not present a perfect size dis-
tribution. Also, in the investigations related to magn-
etic nanoparticles and their applications, it is seen that
some kinds of coating and surface modification
decrease the magnetic properties of the particles,
demonstrating the importance of more developments
in this area resulting in larger applications.

Besides that, clearly, for most nanoparticles appli-
cations on delivery of therapeutics, even with mice

models and in vivo studies, further developments, ana-
lysis, and results still need to come before this becomes
a validity for medical treatments. Nevertheless, nano-
particles have been studied as great options, and nano-
technology is still a promising path formedicine.

Altogether, the study provided the different types
of nanoparticles that have been developed in the last
five years and how the properties and characteristics of
the nanoparticles changes based on their synthesis.
This study aimed to provide a view on how nano-
particles for bone-targeting and dental targeting have
the potential for therapies applications and how essen-
tial it is to develop new technologies to provide a better
quality of life for patients and decrease drug toxicity.
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