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1.  Introduction

Cancer is an evolutionary process taking place within a 
genetically and functionally heterogeneous population 
of cells that traffic from one anatomical site to another 
via hematogenous and lymphatic routes [1, 7, 12, 32, 
33, 53, 61]. The population of cells associated with 
the primary and metastatic tumors evolve, adapt, 
proliferate, and disseminate in an environment 
in which a fitness landscape controls survival and 
replication [31]. Tumorigenesis occurs as the result 
of inherited and acquired genetic, epigenetic and 
other abnormalities accumulated over a long period 
of time in otherwise normal cells [28, 49]. Before we 
can typically detect the presence of a tumor, the cells 
are already competing for resources in a Darwinian 
struggle for existence in tissues that progressively age 
and evolve. It is well established that the regenerative 
capacity of individual cells within a tumor, and their 
ability to traffic multi-directionally from the primary 
tumor to metastatic tumors all represent significant 
challenges associated with the efficacy of different 
cancer treatments and our resulting ability to control 
systemic spread of many soft-tissue cancers [36, 60]. 

Details of the metastatic and evolutionary process 
are poorly understood, particularly in the subclinical 
stages when tumors are actively developing but not 
yet clinically visible [52]. It could be argued that 
in order to truly understand cancer progression at 
the level in which quantitative predictions become 
feasible, it is necessary to understand how genetically 
and epigenetically heterogeneous populations of cells 
compete and evolve within the tumor environment well 
before the tumor is clinically detectable. Additionally, a 
better understanding of how these populations develop 
resistance to specific therapies [16, 22] might help in 
developing optimal strategies to attack the tumor, slow 
disease progression, or maintain it at a stable level.

Evolutionary game theory is perhaps the best 
quantitative framework for modeling evolution and 
natural selection. It is a dynamic version of classical 
game theory in which a game between two (or more) 
competitors is played repeatedly, giving each partici-
pant the ability to adjust their strategy based on the 
outcome of the previous string of games. While this 
may seem like a minor variant of classical (static) game 
theory, as developed by the mathematicians von Neu-
mann and Morgenstern in the 1940s [57], it is not. 
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Abstract
Tumor development is an evolutionary process in which a heterogeneous population of cells with 
different growth capabilities compete for resources in order to gain a proliferative advantage. What 
are the minimal ingredients needed to recreate some of the emergent features of such a developing 
complex ecosystem? What is a tumor doing before we can detect it? We outline a mathematical 
model, driven by a stochastic Moran process, in which cancer cells and healthy cells compete 
for dominance in the population. Each are assigned payoffs according to a prisoner’s dilemma 
evolutionary game where the healthy cells are the cooperators and the cancer cells are the defectors. 
With point mutational dynamics, heredity, and a fitness landscape controlling birth and death 
rates, natural selection acts on the cell population and simulated ‘cancer-like’ features emerge, 
such as Gompertzian tumor growth driven by heterogeneity, the log-kill law which (linearly) relates 
therapeutic dose density to the (log) probability of cancer cell survival, and the Norton–Simon 
hypothesis which (linearly) relates tumor regression rates to tumor growth rates. We highlight the 
utility, clarity, and power that such models provide, despite (and because of) their simplicity and 
built-in assumptions.
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Developed mostly by the mathematical biologists John 
Maynard Smith and George Price in the 1970s [29, 30] 
and Martin Nowak and Karl Sigmund [44, 47] more 
recently, this dynamic generalization of classical game 
theory has proven to be one of the main quantitative 
tools available to evolutionary biologists (if coupled 
with a fitness landscape) whose goal is to understand 
natural selection in evolving populations. In this bio-
logical context, a strategy is not necessarily a deliberate 
course of action, but an inheritable trait [50]. Instead  
of identifying Nash equilibria, as in the static setting 
[34, 35], one looks for evolutionary stable strategies 
(ESS) and fixation probabilities [19, 44] of a subpopu-
lation. This subpopulation might be traced to a specific 
cell with enhanced replicative capacity (high fitness), 
for example, that has undergone a sequence of muta-
tions and is in the process of clonally expanding [48]. A 
relevant question in that case is what is the probability 
of fixation of that subpopulation? More explicitly, how 
does one subpopulation invade another in a developing 
colony of cells?

One game in particular, the prisoner’s dilemma 
game, has played a central role in cancer modeling (as 
well as other contexts such as political science and eco-
nomics) [2–4, 10, 11, 14, 15, 17–21, 23, 45–47, 54–56, 59].  
It was originally developed by Flood, Dresher and 
Tucker in the 1950s as an example of a game which 
shows how rational players might not cooperate, even 
if it seems to be in their best interest to do so. The evol
utionary version of the prisoner’s dilemma game has 
thus become a paradigm for the evolution of coopera-
tion among a group of selfish individuals and thus plays 
a key role in understanding and modeling the evolution 
of altruistic behavior [2, 3]. Perhaps the best introduc-
tory discussion of these ideas is found in Dawkins’ cel-
ebrated book, The Selfish Gene [8]. The framework of 
evolutionary game theory allows the modeler to track 
the relative frequencies of competing subpopulations 
with different traits within a bigger population by 
defining mutual payoffs among pairs within the group. 
From this, one can then define a fitness landscape over 
which the subpopulations evolve. The fitness of differ-
ent phenotypes is frequency dependent and is associ-
ated with reproductive prowess, while the ‘players’ in 
the evolutionary game compete selfishly for the largest 
share of descendants [19, 59]. Our goal in this article is 
to provide a brief introduction to how the prisoner’s 
dilemma game can be used to model the interaction 
of competing subpopulations of cells, say healthy and 
cancerous, in a developing tumor and beyond.

2.  The prisoner’s dilemma evolutionary 
game

An evolutionary game between two players is defined 
by a ×2 2 payoff matrix which assigns a reward to each 
player (monetary reward, vacation time, reduced time 
in jail, etc) on a given interaction. Let us call the two 
players A and B. In the case of a prisoner’s dilemma 

game between cell types in an evolving population 
of cells, let there be two subpopulations of cell types 
which we will call ‘healthy’, and ‘cancerous’. We 
can think of the healthy cells as the subpopulation 
that is cooperating, and the cancer cells as formerly 
cooperating cells that have defected via a sequence 
of somatic driver mutations. Imagine a sequence of 
‘games’ played between two cells (A and B) selected at 
random from the population, but chosen in proportion 
to their prevalence in the population pool. Think of a 
cancer-free organ or tissue as one in which a population 
of healthy cells are all cooperating, and the normal 
organ functions are able to proceed, with birth and 
death rates that statistically balance, so an equilibrium 
healthy population is maintained (on average). Now 
imagine a mutated cell introduced into the population 
with enhanced proliferative capability as encoded by 
its genome as represented as a binary sequence of 0s 
and 1s carrying forward its genetic information (which 
is passed on to daughter cells). A schematic diagram 
associated with this process is shown in figure 1. We 
can think of this cancer cell as a formerly cooperating 
cell that has defected and begins to compete against 
the surrounding population of healthy cells for 
resources and reproductive prowess. From that point 
forward, one can imagine tumor development to 
be a competition between two distinct competing 
subpopulations of cells, healthy (cooperators) and 
cancerous (defectors). We are interested in the growth 
rates of a ‘tumor’ made up of a collection of cancer 
cells within the entire population, or equivalently, we 
are interested in tracking the proportion of cancer cells, 
i(t), versus the proportion of healthy cells, N  −  i(t),  
in a population of N cells comprising the simulated 
tissue region.

To quantify how the interactions proceed, and how 
birth/death rates are ultimately assigned, we introduce 
the ×2 2 prisoner’s dilemma payoff matrix:

( )⎜ ⎟
⎛
⎝

⎞
⎠= =A a b

c d
3 0
5 1

.� (1)

What defines a prisoner’s dilemma matrix are the 
inequalities c  >  a  >  d  >  b. The chosen values in (1) 
are relatively standard, but not unique4. The essence 
of the prisoner’s dilemma game is the two players 
compete against each other, and each has to decide 
what best strategy to adopt in order to maximize 
their payoff. This ×2 2 matrix assigns the payoff 
(e.g. reward) to each player on each interaction. My 
options, as a strategy or, equivalently, as a cell type, 
are listed along the rows, with row 1 associated with 
my possible choice to cooperate, or equivalently my 
cell type being healthy, and row 2 associated with my 
possible choice to defect, or equivalently my cell type 
being cancerous. Your options are listed down the 
columns, with column 1 associated with your choice 

4 A general investigation of how the values in the PD payoff 
matrix affects evolutionary dynamics of the subpopulations 
is addressed in [58].

Converg. Sci. Phys. Oncol. 2 (2016) 035002
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to cooperate (or you being a healthy cell), and column 
2 associated with your choice to defect (or you being 
a cancer cell). The analysis of a rational player in a 
prisoner’s dilemma game runs as follows. I do not 
know what strategy you will choose, but suppose you 
choose to cooperate (column 1). In that case, I am 
better off defecting (row 2) since I receive a payoff of 5 
instead of 3 (if I also cooperate). Suppose instead you 
choose to defect (column 2). In that case, I am also 
better off defecting (row 2) since I receive a payoff of 1 
instead of 0 (if I were to have cooperated). Therefore, 
no matter what you choose, I am better off (from a pure 
payoff point of view) if I defect. What makes this game 
such a useful paradigm for strategic interactions 
ranging from economics, political science, biology, and 
even psychology [2, 29, 59] is the following additional 
observation. You will analyze the game in exactly the 
same way I did (just switch the roles of me and you in 
the previous rational analysis), so you will also decide 
to defect no matter what I do. The upshot if we both 
defect is that we will each receive a payoff of 1, instead 
of each receiving a payoff of 3 if we had both chosen 
to cooperate. The defect–defect combination is a Nash 
equilibrium [34, 35], and yet it is sub-optimal for both 
players and for the system as a whole. Rational thought 
rules out the cooperate–cooperate combination which 
would be better for each player (3 points each) and for 
both players combined (6 points). In fact, the Nash 
equilibrium strategy of defect–defect is the worst 

possible system wide choice, yielding a total payoff of 
2 points, compared to the cooperate–defect or defect–
cooperate combination, which yields a total payoff of 5 
points, or the best system-wide strategy of cooperate–
cooperate yielding a total payoff of 6 points.

The game becomes even more interesting if it is 
played repeatedly [59], stochastically [55], and with 
spatial structure [27] with each player allowed to decide 
what strategy to use on each interaction so as to accu-
mulate a higher payoff than the competition over a 
sequence of N games. In order to analyze this kind of an 
evolving set-up, a fitness function must be introduced 
based on the payoff matrix A. Let us now switch our 
terminology so that the relevance to tumor cell kin
etics becomes clear. When modeling cell competition, 
one has to be careful about the meaning of the term 
‘choosing a strategy’. Cells do not choose a strategy, but 
they do behave in different ways depending on whether 
they are normal healthy cells cooperating as a cohesive 
group, with birth and death rates that statistically bal-
ance, or whether they are cancer cells with an overactive 
cell division mechanism (as triggered by the presence 
of oncogenes) and an underactive ‘break’ mechanism 
(as triggered by the absence of tumor suppressor genes) 
[61]. In our context, it is not the strategies that evolve, as 
cells cannot change type based on strategy (only based 
on mutations), but the prevalence of each cell type in 
the population is evolving, with the winner identified 
as the sub-type that first saturates in the population.

Figure 1.  Schematic of the Moran process. (a) The number of cancer cells, i, is defined on the state space = …i N0, 1, ,  where  
N is the total number of cells. The cancer population can change at most by one each time step, so a transition exists only between 
state i and i  −  1, i, and i  +  1. (b) During each time step, a single cell is chosen for reproduction, where an exact replica is produced. 
With probability m ( ⩽ ⩽m0 1), a mutation may occur.

Converg. Sci. Phys. Oncol. 2 (2016) 035002
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3.  A tumor growth model

Consider a population of N cells driven by a stochastic 
birth–death process as depicted in figure 1, with red 
cells depicting cancer cells (higher fitness) and blue cells 
depicting healthy cells (lower fitness, but cooperative). 
We model the cell population as a stochastic Moran 
process [62] of N cells, ‘i’ of which are cancerous, 
‘N  −  i’ of which are healthy. If each cell had equal 
fitness, the birth-death rates would all be equal and 
a statistical balance would ensue. At each step, a cell 
is chosen (randomly but based on the prevalence in 
the population pool) and eliminated (death), while 
another is chosen to divide (birth). If all cells had equal 
fitness, the birth/death rates of the cancer cells would be 
i/N, while those of the healthy cells would be (N  −  i )/N. 
With no mechanism for introducing a cancer cells in 
the population, the birth/death rates of the healthy cells 
would be equal, and no tumor would form.

Now, introduce one cancer cell into the population 
of healthy cells, as shown in figure 1(a). At each step, 
there would be a certain probability of this cell divid-
ing (Pi, i+1), being eliminated (Pi, i−1), or simply not 
being chosen for either division or death (Pi, i). Based 
on this random process, it might be possible for the 
cancer cells to saturate the population, as shown by one 
simulation in figure 2 depicting N  =  1000 cells, with 
initially i  =  1 cancer cell, and N  −  i  =  999 healthy cells. 
However, the growth curve would not show any dis-
tinct shape (figure 2 (black)), and might well become 
extinct after any number of cell divisions, as opposed 
to reaching saturation. But we emphasize that without 
mutational dynamics, heritability, and natural selec-
tion operating on the cell population, the shape of the 
growth curve would look random, and we know this 
is not how tumors tend to grow [25, 26]. By contrast,  
figure 2 (red) shows a Gompertzian growth curve start-
ing with exponential growth of the cancer cell subpopu-
lation, followed by linear growth, ending with satur
ation. The growth rate is not constant throughout the 
full history of tumor development, but after an initial 
period of exponential growth, the rate decelerates until 
the region saturates with cancer cells. The basic ingredi-
ents necessary to sustain Gompertzian growth seem to 
be: an underlying stochastic engine of developing cells, 
mutational dynamics, heritability, and a fitness land-
scape that governs birth and death rates giving rise to 
some sort of natural selection.

3.1.  Mutations and heritability
Each of the N cells in our simulated population carries 
with it a discrete packet of information that represents 
some form of molecular differences among the cells. 
In our model, we code this information in the form 
of a 4-digit binary string from 0000 up to 1111, giving 
rise to a population made up of 16 distinct cell types. 
At each discrete step in the birth–death process, one of 
the digits in the binary string is able to undergo a point 
mutation [13, 28], where a digit spontaneously flips 

from 0 to 1, or 1 to 0, with probability pm. The mutation 
process is shown in figure 1, while a mutation diagram 
is shown in figure 3 in the form of a directed graph. This 
figure shows the possible mutational transitions that 
can occur in each cell, from step to step in a simulation. 
A typical simulation begins with a population of N 
healthy cells, all with identical binary strings 0000. 
The edges on the directed graph represent possible 
mutations that could occur on a given step. The first 11 
binary string values (0–10) represent healthy cells in our 
model that are at different stages in their evolutionary 
progression towards becoming a cancer cell (the exact 
details of this genotype to phenotype map do not matter 
much). Mutations strictly within this subpopulation 
are called passenger mutations as the cells all have the 
same fitness characteristics. The first driver mutation 
occurs when a binary string reaches value 11–15. The 
first cell that transitions from the healthy state to the 
cancerous state is the renegade cell in the population 
that then has the potential to clonally expand and take 
over the population. How does this process occur?

3.2.  The fitness landscape
At the heart of  how the prisoner’s dilemma 
evolutionary game dictates birth and death rates 
which in turn control tumor growth, is the definition 
of cell fitness. Let us start by laying out the various 
probabilities of pairs of cells interacting and clearly 
defining payoffs when there are i cancer cells, and N  −  i 
healthy cells in the population. The probability that a 
healthy cell interacts with another healthy cell is given 
by (N  −  i  −  1)/(N  −  1), whereas the probability that a 
healthy cell interacts with a cancer cell is i/(N  −  1). The 
probability that a cancer cell interacts with a healthy 
cell is (N  −  i)/(N  −  1), whereas the probability that a 
cancer cell interacts with another cancer cell is (i  −  1)/
(N  −  1).

In a fixed population of N cells, with i cancer cells, 
the number of healthy cells is given by N  −  i. The aver-
age payoff of a single cell (π π,H C), is dependent on the 
payoff matrix value weighted by the relative frequency 
of types in the current population:

( )
π =

− − +
−

a N i bi

N

1

1
i
H� (2)

( ) ( )
π =

− + −
−

c N i d i

N

1

1
.i

C� (3)

Here, a  =  3, b  =  0, c  =  5, d  =  1 are the entries in 
the prisoner’s dilemma payoff matrix (1). For the 
prisoner’s dilemma game, the average payoff of a single 
cancer cell is always greater than the average payoff for 
a healthy cell (figure 4(c)). With the invasion of the first 
cancer cell, the higher payoff gives a higher probability 
of survival when in competition with a single  
healthy cell.

Selection acts on the entire population of cells as it 
depends not on the payoff, but on the effective fitness 
of the subtype population. The effective fitness of each 
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cell type ( f  H, f  C) is given by the relative contribution 
of the payoff of that cell type, weighted by the selection 
pressure:

π= − +f w w1i
H

i
H

� (4)

and the fitness of the cancer cells as:

π= − +f w w1 .i
C

i
C� (5)

The probability of birthing a new cancer cell depends 
on the relative frequency (random drift) weighted by 
the effective fitness, and the death rate is proportional 
to the relative frequency. The transition probabilities 
can be written:

( )
=

+ −
−

+P
f

f N i f

N i

N

i

i
i i

i
C

i
C

i
H, 1� (6)

=
−

+ −
−P

N i f

f N i f

i

Ni
i i

i
H

i
C

i
H, 1

( )

( )
� (7)

= − − = =+ −P P P P P1 ; 1; 1.i i i i i i N N, , 1 , 1 0,0 ,
� (8)

In the event of the first driver mutation, the first can-
cer cell is birthed. At the beginning of the simulation,  
the effective fitness of the healthy population is much 
greater than the fitness of the cancer population  
(figure 4(b)). This is because although the single can-
cer has a higher payoff than any of the healthy cells, 
the number of healthy cells far outnumber the single 
cancer cells. That single cancer cell initiates a regime 
of explosive high growth and the fitness of the cancer 
population steadily increases. Cancer cells are continu-
ally competing with healthy cells and receiving a higher 
payoff in this regime (compare the payoff entries of a 
cancer cell receiving c  =  5 versus a healthy cell receiv-
ing b  =  0). At later times, growth slows because cancer 
cells are competing in a population consisting mostly 

of other cancer cells. The payoff for a cancer cell is dra-
matically lower when interacting with a cancer cell 
(observe the payoff entry of both cancer cells receiv-
ing d  =  1 when interacting). As the cancer population 
grows, the payoff attainable decreases and growth slows. In 
addition, the average fitness of the total population stead-
ily declines because each interaction derives less total pay-
off, from c  +  b  =  5 to d  +  d  =  1. It is precisely the payoff 
structure of the prisoner’s dilemma matrix that produces 
this declining average population fitness as the cancer cells 
saturate the population. Although they receive higher 
payoffs than healthy cells on pairwise interactions, these 
cancer–healthy interactions mostly take place early on in 
the evolution of the tumor. As the cancer cells take over the 
population, most of the interactions take place between 
pairs of cancer cells (i.e. they eventually start competing 
with each other) causing the population fitness to decline.

This complex process of competition among cell 
types and survival of subpopulations, where defection 
is selected over cooperation, produces a Gompertzian 
growth curve shown in figure 5, and compared with a 
compilation based on a wide range of data first shown in 
[25, 26]. It is now well established that tumor cell popu-
lations (and other competing populations, such as bac-
teria and viral populations) generally follow this growth 
pattern, although the literature is complicated by the 
fact that different parts of the growth curve have vastly 
different growth rates [25, 26], and it is nearly impos-
sible to follow the growth of a population of cancer cells  
in vivo from the first cancer cell through to an entire 
tumor made up of O(109–1012) cells. Growth rates 
are typically measured for a short clinical time period  
[25, 26], and then extrapolated back to the first renegade 
cell, and forward to the fully developed tumor population.

3.3.  Heterogeneity drives growth
Insights into the process by which growth rates vary 
and conspire to produce a Gompertzian shape can be 

Figure 2.  Emergence of Gompertzian growth via selection. Random drift (black) plotted for a single simulation of 103 cells for 
⋅4 104 generations shows no particular shape. A single simulation of the Moran process (red) with selection (w  =  0.5) and mutations 

(m  =  0.1) gives rise to the characteristic S-shaped curve associated with Gompertzian growth.

Converg. Sci. Phys. Oncol. 2 (2016) 035002
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achieved by positing that growth is related to molecular 
and cellular heterogeneity of the developing population 
[5, 24, 53]. Indeed, an outcome of the model is that 
molecular heterogeneity (i.e. the dynamical distribution 
of the 4-digit binary string 0000—1111 making up the 
population of cells) drives growth. Consider entropy [6, 39]  
of the cell population as a measure of heterogeneity:

∑=−
=

E t p plog
i

N

i i
1

2( )� (9)

(here, log is defined as base 2). The probability pi 
measures the proportion of cells of type i, with 
= …i 1, , 16 representing the distribution of binary 

strings ranging from 0000 to 1111. We typically course-
grain this distribution further so that cells having strings 
ranging from 0000 up to 1010 are called ‘healthy’, while 
those ranging from 1011 to 1111 are ‘cancerous’. Then 
growth is determined by:

( )α=
n

t
E t

d

d
.E

� (10)

It follows from (10) that the cancer cell proportion 
nE(t) can be written in terms of entropy as:

∫α=n t E t td .E

t

0
( ) ( )� (11)

This relationship between growth of the cancer cell 
population and entropy is pinned down and detailed 
in [62]. We consider it to be one of the key emergent 
features of our simple model.

A typical example of the emergence of genetic het-
erogeneity in our model system is shown in the form 

of a phylogenetic tree in figure 6. This particular tree is 
obtained via a simulation of only 30 healthy phenotypic 
cells (0000), which during the course of a simulation 
expand out (radially in time) to form a much more het-
erogeneous population of cells at the end of the simu-
lation. In our model, the genetic time-history of each 
cell is tracked and the population can be statistically 
analyzed after the simulation finishes.

4.  Simulated drug dosing strategies  
and therapeutic response

Figure 7 shows the clear advantage of early stage therapy 
in our model system. We compare the effect of therapy 
given at an early stage, mid-stage, and late stages of the 
Gompertzian growth of the tumor. The dashed black 
Gompertzian curve is the freely growing cancer cell 
population. In each of the figures, we depict the effect 
of a range of drug dose densities, D, where

= ⋅D c t.� (12)

The dose density is the product of  the drug 
concentration, c, and the time over which the therapy 
is administered, t, (12). Here, the drug concentration 
value is a weighting ( ⩽ ⩽c0 1) which determines the 
intensity of the drug treatment. A higher value of c will 
alter the selection pressure in favor of healthy cells (and 
to the disadvantage of cancer cells) more dramatically.

Figure 7 varies the drug dose density by varying the 
drug concentrations (c  =  0.2, 0.4, 0.6, 0.8, 1.0) admin-
istered for a constant time (t  =  5000 cell divisions, 
black arrow). The colored curves show the subsequent 
decline of the cancer cell population under therapeutic 

Figure 3.  Markov point mutation diagram. The diagram shows 16 genetic cell types based on 4-digit binary string and the effect of a 
point mutation on each cell type. Blue indicates healthy cell type (0000—1010), red indicates cancerous cell type (1011—1111). Black 
arrows indicate passenger mutations (healthy to healthy or cancer to cancer), red arrows indicate driver mutations (healthy to cancer).
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pressure. Clearly, to obtain the desired effect of driving 
the cancer cell population down to manageable levels, 
one needs to (i) use a sufficient dose density, and (ii) ini-
tiate therapy early enough in the growth history. These 
figures are meant to paint a broad brush with respect to 
the simulated advantages of early therapy and to show 
the capability of the model with respect to addressing 
questions of this type in a quantitative way. A detailed 
investigation is left for a separate publication.

An established empirical law which relates drug dose 
density to its effectiveness in killing off cancer cells is 

known as the ‘log-kill’ law [51]. The log kill law states 
that a given dose of chemotherapy kills the same fraction 
of tumor cells (as opposed to the same number of tumor 
cells), regardless of the size of the tumor at the time the 
therapy is administered [51], a consequence of exponen-
tial growth with a constant growth rate. This effect is best 
illustrated on a dose-response curve, plotting the dose 
density, D, with respect to the probability of tumor cell 
survival, PS. Thus, the log-kill law states the following:

β=−P Dlog .S( )� (13)

Figure 4.  Tumor fitness drives tumor growth. (a) The average of 25 stochastic simulations (N  =  1000 cells, w  =  0.5, m  =  0.1) 
is plotted for 20 000 cell divisions to show the cancer cell population (defectors) saturating. The pink lines delineate the regions 
of tumor growth (defined by the maximum and minimum points of the second-derivative of i(t)). (b) Fitness of the healthy 
population, cancer population, and total population plotted for the range cancer cell proportion. (c) Average payoff of a single 
healthy cell, cancer cell, and all cells plotted for the range cancer cell proportion.
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As an example, if there are 1000 cancer cells in a 
tumor population, and the first therapy dose kills off 
90% of them (i.e. β = 0.9), then after the first round 
of therapy there will be 100 cancer cells remaining. If a 

second round of therapy is administered, exactly as the 
first round, starting soon enough so that no new cancer 
cells have formed, then this next round will also kill off  
90% of the cells, leaving 10 cells, and so on for each future 

Figure 6.  Phylogenetic tree. Sample dendritic phylogenetic tree tracking point mutations as time extends radially, depicting the 
emergence of molecular heterogeneity. The tree shows a simulation of 30 cells (all with genetic string 0000 at the beginning of the 
simulation) with strong selection (w  =  1, m  =  0.2). Pathways are color coded to indicate genetic cell type.

Figure 5.  Moran process fit to Gompertzian growth data. The mean and deviation of 25 stochastic simulations (N  =  103 cells, 
w  =  0.7, m  =  0.3) is overlaid on data from a ‘normalized’ Gompertzian [25, 26]. Values for m and w were chosen by implementing 
a least-squares fit to the data over a range of m ( ⩽ ⩽m0 1), and w ( ⩽ ⩽w0 1). Pink lines delineate regions of growth (defined by the 
maximum and minimum points of the second-derivative of i(t)).
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round of therapy. In a sense, since the first round killed 
900 cells, while the second identical round killed only 
90 cells, the population gets increasingly more difficult 
to kill off using the same treatment on each cycle. The 
log-kill law, a fundamentally static law (it does not say 
anything about the relationship of the fraction of cells 
killed versus the growth rate of the tumor), is verified in 
our model system, as shown in the dose response curve 
in figure 8(d). On the x-axis, we increase the dose den-
sity D, and we plot the number of surviving cancer cells. 
The slope of this straight line (verifying the log-kill law) 
is the rate of regression of the tumor, β. Alternatively,  
β can be estimated using an exponential fit of i(t) dur-
ing therapy (i.e. ( ) ( ( ))β= − −i t i t texp0 0 , where i0 is the 
initial tumor size and t0 is the time therapy is initiated).

So how is the rate of regression, β, related to the 
growth rate of the tumor, γ? This is relevant, since we 
know from the shape of the Gompertzian curve, the 
growth rate is highest (exponential) at the beginning 
stage of tumor development and lowest at the late satur
ation stage. Figure 8(a) shows therapy is more effective 
(i.e. a higher rate of regression, β ) for earlier stage therapy. 
These early stage therapies correspond to a higher growth 
rate, shown in figure 8(b). The Norton–Simon hypothesis 
[41–43] states that the rate of regression is proportional to 
the instantaneous growth rate for an untreated tumor of 
that size at the time therapy is first administered. A faster 
growing tumor (early stage) should show a higher rate of 
regression than a more slowly growing tumor (late stage). 
This hypothesis is also verified in our model system, and 
shown clearly in figure 8(c). The reality of this growth-
dependent tumor regression rate effect (where early stage 
faster growing tumors are more vulnerable to therapy 
than later stage, slowly growing tumors) dramatically 
reinforces the need to administer drug treatment early in 
tumor progression when growth rates are high and there 
are fewer cancer cells to kill off.

5.  Markov dissemination and progression 
patterns

So how do these molecular and cellular growth details 
manifest themselves on the larger scales associated with 

metastatic progression patterns in patients? Despite the fact 
that disease progression patterns can vary from patient to 
patient, if a sufficiently large cohort of patients with similar 
characteristics is tracked over the course of the disease, 
statistical patterns emerge and can be exploited to build 
dynamical models of large scale progression. This lies at the 
heart of the models described in [37–39] for lung cancer 
progression, and [39, 40] for breast cancer progression.

As an example of the kinds of whole-body scale 
models that can be built, consider first the tree-ring 
diagram shown in figure 9(a). The diagram encapsu-
lates the entire progression history of a cohort of 289 
primary breast cancer patients tracked at the Memo-
rial Sloan Kettering Cancer Center for a 20 year period. 
All of the patients entered the cohort with a primary 
breast tumor, but no metastatic tumors. The inner ring, 
shown in pink, represents this cohort when they entered 
the study. As time progresses, the rings grow out, sur-
rounding the inner breast ring. The first ring out shows 
the metastatic tumor distribution associated with first 
recurrence. The sector sizes represent the percentage 
of patients in this group. Likewise, the second ring out 
represents the distribution of tumors on second recur-
rence, and so forth for the further rings out. Hence, 
subsequent rings outward represent the tumor distri-
butions as time progresses, with each patient history 
depicted on a ray going out from the center of the ring 
diagram. We caution that despite our usage of the term 
‘tree-ring’ diagrams for these representations, the 
thickness of the rings are all equal, hence do not reflect 
the time between subsequent recurrences (timescales of 
progression are documented and modeled in [40]). The 
power of the diagrams is that in one quick glance, one 
gains an appreciation for the statistical complexity of 
the disease [39, 40]. From them, one can also calculate 
the probability of the disease ‘transitioning’ from one 
site to another as the disease progresses (called trans
ition probabilities). These can then be used to create a 
single Markov transition matrix for each cancer type 
[39], which quantitatively encodes much of the infor-
mation associated with the disease. Figure 9(b) shows 
the Markov transition graph from the last metastatic 
site to the deceased state for the cohort from figure 9(a). 

Figure 7.  Effects of varied dose density for early-stage, mid-stage, and late-stage therapies. An average of 25 stochastic simulations 
of unperturbed tumor growth (N  =  103 cells, w  =  0.5, m  =  0.1, no therapy) is plotted (black dashed line). The effect of varied 
drug dose density (equation (12)), is shown by administering a range of drug concentration values (c  =  0.2, 0.4, 0.6, 0.8, 1.0) for 
constant length of time (t  =  5000 cell divisions, black solid arrows). This process is repeated for (a) high growth, early-stage, (b) 
linear growth, mid-stage, and (c) slowed growth, late-stage. The kill effect is highest for high drug concentration values (i.e. high 
dose density) and early therapy.
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The sites are ordered clockwise from the most probably 
last metastatic site, to the least probable.

Figures 9(c) and (d) show reduced Markov dia-
grams [39, 40] for two specific important sub-groups of 
breast cancer patients, Her2+  patients, and ER-/Her2- 
patients. Generally speaking, Her2+  patients have 
the poorest prognosis. The red sites in these reduced 
diagrams (bone, lung/pleura, chest wall, LN (mam)) 
in figure 9(c), and bone, LN (mam), chest wall in  
figure 9(d) are the spreaders associated with these groups. 
The blue sites (liver, LN (dist), brain for figure 9(c); 
LN (dist), lung/pleura, liver, brain for figure 9(d))  

are the sponges [37–39]. It is interesting to note that 
lung/pleura switches from a spreader in the Her2+  sub-
group to a sponge in the ER-/Her2- sub-group, sug-
gesting a possible biological difference of the site in the 
different groups that correlates with different survival 
probabilities.

6.  Mathematical modeling and tumor 
analytics

It is important to keep in mind that no mathematical 
model captures all aspects of reality, so choices must be 

Figure 8.  Growth-dependent tumor regression. (a) An average of 25 stochastic simulations of unperturbed tumor growth 
(N  =  103 cells, w  =  0.5, m  =  0.1, no therapy) is plotted (black dashed line) with (b) corresponding instantaneous growth rate, 

( )γ t , of the unperturbed tumor (red). Tumor regression, β, (estimated using an exponential fit of i(t) during therapy, shown in 
legend) during therapy (constant dose density: c  =  1.0, t  =  2000) is calculated for a high growth, early-stage therapy (purple), 
linear-growth, mid-stage therapy (green), and late-stage, slowed growth (light blue); (c) this process is repeated for a full range 
of growth rates (between vertical blue dashed lines). Average values of β are plotted with standard deviations. Regression is 
proportional to growth rate (linear fit in red), with higher regression rates associated with high growth rates of early stage tumors. 
(d) Tumor regression, β, can also be calculated as the slope of a dose response curve (red), where therapy is administered for a 
range of dose densities ( ⩽ ⩽c0.7 1.0) for a single timepoint, 8000 cell divisions (i.e. single growth rate).
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made which involve prioritizing the features that are 
most essential in capturing the essence of a complex 
process and which are not. Most experts now agree 
that the evolutionary processes in a tumor played out 
among subpopulations of competing cells are key to 
understanding aspects of growth and resistance to 
chemotherapy, which will ultimately lead the way toward 
a quantitative understanding of tumor growth and cancer 
progression [31, 60, 61]. The paradigm of the cancer 
cell subpopulation and the healthy cell subpopulation 
competing as the defectors and cooperators in a prisoner’s 
dilemma evolutionary game has been useful in obtaining 
a quantitative handle on many of these processes and 
frames the problem in an intuitive yet predictive way.

Nonetheless, the mathematical ‘taste’ of the mod-
eler plays a role in what techniques are selected and ulti-
mately where the spotlight shines. This fact makes cli-
nicians uncomfortable and can lead to deep suspicion 
of the mathematical modeling enterprise as a whole. 
Aren’t the outcomes and predictions of mathematical 
models a straightforward consequence of the model 
assumptions? Once those choices are made, isn’t the 

cake already baked? So why should we be surprised if 
you tell us it tastes good? Why not simply use tried and 
true statistical tools like regression methods to curve-fit 
the data directly, with no built in assumptions, and be 
satisfied with uncovering correlations and trends? Cli-
nicians (and experimentalists, in general) feel that they 
are dealing directly with reality, so why mess around 
with ‘toy’ systems based on possibly ‘ad hoc’ or incor-
rect assumptions that create artificial realities that may 
or may not be relevant? To a theoretician, calling their 
assumptions ad hoc, as opposed to natural, is as insult-
ing as calling a clinician sloppy and uncaring (try this 
for yourself at the next conference you go to! But please 
use the term ‘somewhat ad hoc’ to lessen the blow.) 
And if you want to deliver an even harsher insult, you 
could comment that the model seems like an exercise 
in curve fitting.

But the usefulness of mathematical models built 
on simplified assumptions is well established in the  
history of the physical sciences, as detailed beautifully 
in Peter Dear’s book, The Intelligibility of Nature: How  
Science Makes Sense of the World [9]. Bohr’s simple 

Figure 9.  Spatiotemporal patterns of breast cancer metastasis. (a) Tree-ring diagram depicting all the paths in the clinical cohort 
over a 20 year period. (b) Markov chain network depicting transition probabilities from patients last metastatic tumor to deceased. 
(c) Reduced Markov chain diagram for sub-population of Her2+  patients. Red sites are spreader sites, blue sites are sponge sites. 
Note that bone is the main spreader. (d) Reduced Markov chain diagram for sub-population of ER-/Her2- patients. Red sites are 
spreader sites, blue sites are sponge sites. Note that bone is the main spreader, but lung/pleura switches from being a spreader for 
Her2+  patients, to being a sponge for ER-/Her2- patient.
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model of the structure of the atom was crucial in 
moving the community forward towards a deeper 
understanding of cause and effect, and ultimately 
pushing others to develop more realistic atomic mod-
els. The same could be said for many other important, 
but ultimately discarded models of reality (e.g. the 
notion of aether used as a vehicle to understand the 
mysterious notion of action-at-a-distance [9]) now 
relegated to footnotes in the history of the physical 
sciences.

Lessons from this history highlight the importance 
of using the principle of Occam’s razor (law of parsi-
mony) as a heuristic guide in developing models: (1) 
keep things simple, but not too simple; (2) see what 
can be explained by using a given set of assumptions, 
and try to identify what is either wrong or cannot be 
explained; (3) add complexity to the model, but do 
this carefully. Since ultimately, the model will always 
be wrong (with respect to some well chosen and spe-
cific new question being posed about a system), it is 
important that it be useful as a vehicle of intelligibility 
[9] associated with the set of questions surrounding 
the phenomena it was built to explain. Answers to some 
new questions will be found using the model as a tem-
porary crutch, and new questions will emerge in the 
process that had not yet been asked, as their relevance 
had never previously been realized. A new quantitative 
language will emerge in which aspects of the model will 
be associated with the underlying reality it is attempt-
ing to describe, predictions will be easier to frame and 
test, and shortcomings will be exposed. In his famous 
article [63], Eugene Wigner writes compellingly that 
‘the miracle of the appropriateness of the language of 
mathematics for the formulation of the laws of phys-
ics is a wonderful gift which we neither understand 
nor deserve. We should be grateful for it and hope 
that it will remain valid in future research and that it 
will extend, for better or for worse, to our pleasure, 
even though perhaps also to our bafflement, to wide 
branches of learning’.

In general, the more complex the model (as meas-
ured, for example, by the number of independent 
parameters associated with it), the less useful it will be, 
and the less likely it is to be adopted by the commu-
nity at large. After all, if the model is as complex as the 
phenomena it was built to understand, why not stick 
with reality? Effective models can be thought of as low-
dimensional approximations of reality, surrogates that 
help us bootstrap our way forward. They arise as the 
outcome of a complex balancing act between simplic-
ity of the ingredients, and complexity of the reality the 
model is meant to describe. They generally do not arise 
in a vacuum, but are built in the context of informed 
and sustained discussions among people with differ-
ent expertise. In the context of medical oncology, this 
means physical scientists developing ongoing interac-
tions with clinical oncologists, radiologists, patholo-
gists, molecular and cell biologists and other relevant 
medical specialists.

Appropriate data is a necessary ingredient in devel-
oping and testing any successful model, and treasure 
troves of medical data sit unexamined in patient files 
and government databases across the country waiting 
to be put to good use. There is no doubt that they are 
telling an interesting and important story that we have 
yet to fully understand. It is not currently possible for 
the computer to simulate all of the complex, relevant, 
and systemic ingredients at play to faithfully recreate all 
aspects of cancer progression and treatment response in 
patients. It is hard to imagine that a deep and actionable 
understanding can ever be obtained without the com-
bined use of data, models, and computer simulations 
to help guide us and highlight some of the underlying 
causal mechanisms of this complex and deadly disease.
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