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Abstract
TheTi-48Al-2Cr-2Nb alloywas fabricated using laser directed energy deposition(LDED), and the
impact of various process parameters on themacroscopic crackmorphology was analyzed. The
mechanismof crack formationwas investigated through the analysis of crackmicrostructure, phase
composition, crystal orientation, and elemental composition. The process parameters were optimized
by response surfacemethodology(RSM) and the laser remeltingmethodwas used to suppress the
crack formation. The results showed that the cracks weremainly caused by lack of fusion, residual
stress during LDED and stress between different phases of TiAl alloy. Themismatch of process
parameters results in insufficient energy for powdermelting, ultimately leading to lack of fusion
occurrence. Tominimize crack formation, the response surfacemethodwas employed to optimize
process parameters and reduce crack generation. The higher temperature gradient led to the existence
of residual stress in the sample, and the higher stress betweenα2 phase andB2 phase formed in the
deposition process due to the difference of thermal expansion coefficients. The regionwhere the two
phases converge was the regionwith the highest crack sensitivity, and cracks occured in the region
whereα2 phase andB2 phase converge in the formof excellent transgranular fracture. The samples
prepared by using the optimized parameters can effectively restrain the cracks caused by lack of fusion,
but can not restrain the cracks caused by the stress between phases. Laser remelting after LDED can
not only reduce the temperature gradient and residual stress, but also remelt the unmelted powder on
the surface of the as-deposited samples, effectively inhibiting the generation of cracks, and preparing
crack-free samples.

1. Introduction

TiAl alloy is considered to be a potential high temperature structuralmaterial for supersonic spacecraft, future
gas turbine engine, high speed civil transport aircraft and so on because of its lowdensity, high elasticmodulus,
high specific strength, excellent corrosion and oxidation resistance and flame retardancy at high temperature,
high fatigue strength and creep strength [1, 2]. In the development of advancedmaterials, TiAl alloy has become
the preferred structuralmaterial to replace the nickel-based superalloy for lowpressure turbine (LPT) blades of
gas engines, which is expected to reduce the structural weight of low pressure turbine (LPT) blades of high
performance engines by 20%∼30% [3]. Additivemanufacturing technology is an advanced rapid near net
forming technology developed rapidly in 1990s. In contrast to conventionalmanufacturing techniques, such as
equivalentmanufacturing (casting, forging, and soldering), and subtractivemanufacturing (milling, turning,
and grinding), additivemanufacturing is particularly suitable for single-piece prototyping and rapid production
of intricate components that are challenging or even impossible tomanufacture using traditionalmethods.
Leveraging this advantage, additivemanufacturing is increasingly employed for the rapid development of
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intricate structural products and equipment, thereby enabling significant time and cost efficiencies [4–8]. The
synchronous powder feeding characteristic of laser directed energy deposition(LDED) enables the
manufacturing of TiAl-based alloy coatings for surfacemodification of parts. Furthermore, the utilization of a
multi-channel powder feeding device allows for the preparation of functional gradientmaterials and composites
based onTiAl, facilitating the integratedmanufacturing of parts withmultiplematerials and structures [9, 10],
such as double alloy integral blade discs and impellers [11, 12]. The LDED equipment exhibits excellent
versatility, as it allows for the incorporation of synchronous heat sources (such as resistance, induction heating
devices, and secondary laser sources), thereby enabling effective elimination of internal stress and controlled
prevention of forming cracks. During the LDEDprocess, the high-energy laser beam induces a significant
temperature gradient and cooling rate, leading to stress generation.With the gradual accumulation of these
stresses, it becomes prone to the formation of cracks and other defects [13–15]. Especially for TiAl alloywith
poor plastic deformation ability and low room temperature ductility, cracks aremore likely to occur [16–18].
Because the phase composition of TiAl alloy includes γ,α2 andβ, and the intense and complex reaction occurs
in the LDEDprocess, it is necessary to further study themechanism and suppressionmethods of cracking in TiAl
alloy by LDED. Liu [19] reduced the tendency of crack formation by increasing laser energy input, but it could
not completely eliminate cracks. It was found that preheating the substrate of TiAl alloy prepared by LDED can
reduce the tendency of crack formation [20]. Sharman [21] andThomas [22] found that under the condition of
appropriate laser power, the powderwas preheated by rotating the objective, adjusting the focus position to
increase the laser spot size, and the cooling rate ofmolten pool decreased, and the crack tendency of the sample
decreased significantly. Huang [23] studied the effect of LaB6 addition on grain size and crack elimination of
TiAl alloy, and optimized themicrostructure, phase transformation texture andmechanical properties at room
temperature and high temperature.Wang [24] studied the crackingmechanismof TiAl alloy prepared by SLM
(Selective LaserMelting)method, and put forward a new strategy to eliminate cracks. The research revealed that
laser remelting results in thematerial acquiring a refined and uniform grain structure, devoid of cracks and
pores, thereby exhibiting enhanced strength andwear resistance [25]. The application of laser surface remelting
onH21 steel has been found to effectively reduce both the size and density of cracks [26]. The effect of the layer-
by-layer laser remelting process on selected laser-melted 316 L stainless steel samples was investigated byChen
[27]. It was discovered that through controlling the number of remelting times, laser remelting can effectively
suppress defects and significantly enhance surface roughness,microhardness, ultimate strength, and strain.
Some studies have shown that laser remelting can eliminate cracks and pores in the coating, enhance the
adhesion between the coating and the substrate, and improve the hardness andwear resistance [28–31]. Lu [32]
prepared the iron-based amorphous coating by three laser scanningmethods and obtained the crack-free
cladding layer. Laser remelting basically eliminates the coating defects, and greatly improves the elasticmodulus
and toughness of the coating. Themechanism of selective lasermelting, selective electron beammelting and
electron beamwelding cracks in TiAl alloys has been studied [24, 33, 34]. However, there are few reports on the
crackmechanism of TiAl alloy prepared by LDED, and there is nomature theory andmethod for crack
suppression of TiAl alloy. Revealing the crackmechanism is the premise of crack elimination.

In order to solve the problemof cracks in the LDEDprocess of Ti-48Al-2Cr-2Nb alloy, the influence of
process parameters on cracks was analyzed. Themechanismof cracks in LDEDof Ti-48Al-2Cr-2Nb alloywas
analyzed based onmicrostructure, phase composition, crystal orientation and element composition. The
process parameters were optimized by response surfacemethodology(RSM) to suppress the cracks caused by
lack of fusion. By using the optimized parameters, laser remeltingwas carried out on the sample, which
effectively inhibited the crack generation and prepared the crack-free sample. It provides theoretical basis and
technical support for LDEDmanufacturing of light alloy and high temperature titanium alloy, and is of great
significance for promoting the engineering application of high-end equipment.

2.Material and experimental procedures

The test employed Ti-48Al-2Cr-2NbTiAl alloy powderwith a particle size ranging from53 to 150 μm.The
chemical composition of the powder is presented in table 1. The substratematerial usedwas Ti-6Al-4V titanium
alloy, which had a thickness of 10 mm. Prior to the experiment, the surface of the substrate wasmeticulously
cleaned to remove any oxide film, oil, or other impurities. The experimental setup utilized LDM-4030 powder
feeding laser additivemanufacturing equipmentmanufactured byNanjing RaychamLaser TechnologyCo.Ltd
To prevent oxidation during deposition, argon gaswas introduced as a protective atmosphere before testing
commenced, ensuring that the oxygen content within the chamber remained below 10ppm.After the
completion of deposition, samples were cut usingwire electrical-dischargemachines. Subsequently, theywere
embedded and subjected to polishing by immersing in etching liquid (HF:HNO3:H2O volume ratio of 1:1:8) for
a duration of 5 s. Finally,metallographic samples were prepared following the etching procedure.
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Themicrostructure and elemental composition of themetallographic samples were observed and analyzed
using anOlympusGX51 opticalmicroscope (OM) and aHitachi S-3400N scanning electronmicroscope (SEM).
Additionally, EBSD analysis was performed on the samples using a TESCANMIRA3field emission scanning
electronmicroscope. Furthermore, phase analysis of the sample was conducted usingCuKα radiation x-ray
diffraction (XRD)with a voltage of 40 kV and current of 30 mA, covering a scanning angle range from25° to 85°.

The response surfacemethodwas employed to design the experimental scheme using the three-factor and
three-level Box-Behnken testmethod. The independent variables were laser power (P), travel speed (V), and
powder feed rate (F). Design-Expert software generatedmultiple sets of process parameters for conducting
single-pass single-layer LDED tests with a scanning length of 20 mm.To ensure sample effectiveness, three
samples were prepared for each set of process parameters, and the total number of cracks in these samples was
calculated. The optimization objective was tominimize the sumof crack numbers. Table 2 presents the range of
experimental design parameters.

3. Results and discussion

3.1. Influence of process parameters on cracks
The influence of different laser powers on the crack formation in Ti-48Al-2Cr-2Nb alloy by LDED is illustrated
infigure 1. As the laser power increases, the claddingwidth exhibits a continuous increment. At a laser power
level of 1000W, the samplewidth reaches itsminimumvalue; however, an abundance of unmelted powder is
observed on the surface alongwith a high occurrence of cracks. The cross-sectional topography reveals extensive
presence of unmelted powder and indicates lack of fusionwithin the sample.When the laser power is 1400W
and 1800W, the number of cracks is reduced comparedwith that of 1000W.With increasing power, the
amount of unmelted powder on the surface gradually decreases. Cross-sectionalmorphology observations
indicate that lack of fusion phenomena disappear and the number of cracks decreases, although a few internal
cracks still remain.When the laser power reaches 2000W, oxidation occurs on the surface of the sample, and the
claddingwidth reaches themaximum.After examining the sample’s surface and cross-section, it is evident that a
few cracks still persist, indicating that excessive laser power fails tomitigate crack formation.Moreover, an
excessive degree of surface oxidation also detrimentally affects themechanical properties of the sample.

Figure 2 shows the effect of different travel speed on cracks in Ti-48Al-2Cr-2Nb alloy fabricated by LDED.
With the increase of travel speed, the claddingwidth decreases continuously. The sample with a travel speed of
5.0 mm s−1 is thewidest, which is due to the reduction of the travel speed, resulting in a high laser energy input
in the region, a wider range ofmolten pool,more powderwill fall into the area, it is found through the crack
cross section topography that there is lack of fusion at one end of the crack, resulting in a crack.When the travel
speed is 7 mm s−1, there is rough texture on the surface of the sample, which indicates that the powder is just
completelymelted.However, by observing the cross-sectionalmorphology, a large number of cracks are found
in the sample. There are unmelted powders on the surface with the speed of 9 mm s−1, which indicates that the
laserwith too fast travel speed does not have enough time tomelt the powders. By observing the cracks, it is
found that the cracks appear due to the lack of fusion on the surface.

Figure 3 shows themacroscopicmorphology of cracks in Ti-48Al-2Cr-2Nb alloy by LDEDwith different
powder feed rates.With the increase of powder feed rate, the claddingwidth has little change.When the powder

Table 1.Composition of Ti-48Al-2Cr-2Nb alloy.

Element Ti Al Cr Nb N O

Content

(wt/%)
Bal. 31.50

∼ 33.5

2.3

∼
3.3

4.3

∼
5.3

�0.02 �0.1

Table 2.Process parameter range of LDEDof Ti-48Al-2Cr-2NbAlloy.

Code

Parameter Low(−1) Medium(0) High(+1)

Laser power(W) 1000 1400 1800

Travel speed(mm/s) 5 7 9

Powder feed rate(g/min) 4 5.5 7
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Figure 1.Macroscopicmorphology of cracks in Ti-48Al-2Cr-2Nb alloy under different laser powers (Travel speed= 7 mm s−1,
Powder feed rate= 5.5 g min−1) (a) 1000 W, (b) 1400 W, (c) 1800W, (d) 2000W.

Figure 2.Crackmacroscopic and cross-sectionalmorphology of Ti-48Al-2Cr-2Nb alloy at different travel speed(Laser
power= 1400 W,Powder feed rate= 5.5 g min−1) (a)5.0 mm s−1, (b) 7.0 mm s−1, (c) 9.0 mm s−1.

Figure 3.Effect of different powder feed rates on crackmacroscopicmorphology and cross-sectionalmorphology of Ti-48Al-2Cr-
2Nb alloy (Laser power= 1400 W,Travel speed= 7.0 mm s−1) (a) 4.0 gmin−1, (b) 5.5 gmin−1, (c) 7.0 gmin−1.
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feed rate is 4.0 g min−1,meticulous examination of the cross-sectionalmorphology reveals an absence of lack of
fusion phenomenawithin the sample; however, cracks persist along the periphery of the cladding layer.When
the powder feed rate is 7.0 g min−1, the sample exhibits residual unmelted powder on its surface.According to
the cross-sectionalmorphology, it is observed that a significant number of deep cracks are present in the sample
due to lack of fusion.

3.2.Microstructure analysis
Figure 4 shows themicrostructure near the crack of Ti-48Al-2Cr-2Nb alloy by LDED. As shown infigure 4(a), it
is γ/α2 lamellar structure near the crack, and its lamellar spacing is small, about 10 μm. It can be seen from
figures 4(b) and (c) that the crackmainly occurs in the formof transgranular fracture, and themain reason for
the transgranular crack is the increase of residual stress.When the stress exceeds the strength of thematerial,
cracks occur in the poor plasticity TiAl alloy [35].

X-ray (XRD) analysis was carried out on the surface of the sample containing cracks. The result is shown in
figure 5. The diffraction peak phase of the sample consists of a large number of γ phase, a small amount ofα2

phase andB2 phase. The B2 phase is the ordered structure of theβ phase, and the B2 phase is the body-centered
cubicβ phase ordered structure at low temperature, which can stably exist in the Al-poor region of γ-TiAl
containing refractorymetal elements. The diffraction angles of 38.70° and 41.09° areα2 phase, the diffraction
angles of 21.75°, 31.60°, 44.40°, 45.27°, 65.40°, 66.00°, 78.08° and 79.27° are γ phase, and the diffraction angles
of B2 phase are 55.59° and 71.65° respectively.

The crack regionwas analyzed using EBSD, as depicted infigure 6(a). The phase composition results were
found to be consistent with those obtained fromXRD, encompassing the presence ofα2, B2, and γ phases.
Notably, theα2 phase accounted for 3.10%while the B2 phase accounted for 3.28%. In the crack-free region, the
phase composition ismainly γ phase, and a small amount of B2 phase exists. In the area near the crack,α2 phase

Figure 4.Opticalmicrostructure of crack area by LDED.

Figure 5. Surface XRD spectrumof crack region of Ti-48Al-2Cr-2Nb alloy sample.
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andB2 phase congregate, and B2 phase exists aroundα2 phase, which indicates that the crack is easy to form in
the areawhereα2 phase andB2 phase congregate. Becauseα2 phase has a very limited slip system 〈11 (—)2 1〉
{0001}, the activation of the slip system requires great shear stress, which leads to the brittle phase characteristic
ofα2 [36]. At room temperature, the thermal expansion coefficients ofα2 phase andB2 phase are 3.26×
10−5K−1 and 1.45× 10−5K−1, respectively. Because the thermal expansion coefficients of B2 phase changemore
sharply with temperature, the difference of thermal expansion coefficients increases with temperature [30, 37].
In the LDEDprocess, the difference of thermal expansion coefficient will increase with higher temperature,
whichwill eventually lead to greater stress between the two phases.

The B2 phase is also present in the crack-free zone, and it exhibits brittleness and hardness. However, cracks
do not occurwithin the region solely composed of the B2 phase. This phenomenon can be attributed to the
beneficial effect of a certain amount of B2 phase on enhancing the plasticity of TiAl alloy, as well as its ability to
impede pore and crack growth at elevated temperatures, thereby improvingmaterial’s plastic deformation
capability [38, 39]. The presence of the B2 phase also contributes to the enhancement of superplastic
deformation in TiAl-based alloys [40–42]. The occurrence of cracks ismore likely in the aggregation region ofα2

phase andB2 phase, indicating that the stress in the B2 phase is comparatively lower than that in bothα2 and B2
phases. As depicted infigure 6(c), there are some stresses present in the regionwhere the B2 phase is located
without any cracks; however, the stress concentration is lower compared to that observed in the gathering region
ofα2 and B2 phases.

The distribution of recrystallization near the crack is depicted infigure 6(b), where deformed grains are
predominantly concentrated. This concentration arises fromplastic deformation, resulting in a high defect
density within the crystal and an evident gradient in grain orientation distribution. The recrystallization
distribution of the sample is illustrated infigure 6(b). It can be observed from the figure thatDeformed grains are
predominantly concentrated near the crack due to their formation through plastic deformation, resulting in a
higher defect density within the crystal and an evident gradient in grain orientation distribution. The volumetric
proportion of substructured grains amounts to 46.3%. In comparisonwith deformed grains, the substructured
grains undergo a recovery process, resulting in reduced defect density and orientation dispersion. The analysis of
figure 6(b) reveals that the deformed grains are primarily localized in close proximity to the crack. Recrystallized
grains constitute 40.1%of the volume fraction during LDED, as higher temperature gradients induce partial
dynamic recrystallization in TiAl alloy by storing deformation energy as its driving force. Following dynamic
recrystallization, dislocationswithin deformed grains are released; hence, dynamic recrystallizedmicrostructure
experiences lower stress compared to its deformed counterpart while greater stress persists in themicrostructure
adjacent to the crack due to unreleased dislocation accumulation.

TheKAM layout of the sample is depicted infigure 6(c), revealing that the local orientation difference near
the crack exhibitsmaximumvalues. This observation suggests a high dislocation density in this region,
indicating significant stress concentration adjacent to the crack. As depicted infigure 6(a), the region exhibiting

Figure 6.EBSD analysis of samples with cracks. (a) phase distribution, (b) recrystallization distribution, (c) local orientation
difference, (d) crystal orientation.
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significant local orientation difference is primarily locatedwithin the aggregation zone ofα2 and B2 phases. Due
to dissimilar thermal expansion coefficients between these two phases, which further increase at higher
temperatures, a substantial amount of heat is generated during LDEDprocess leading to elevated stress levels at
their interface.

The crystal orientation difference between the γ phase on both sides of the crack is evident infigure 6(d).
Analysis offigures 6(b) and (c) reveals that this disparity arises from the continuous generation of brittle phases
α2 and B2, as well as the accumulation of residual stress during LDED. In areas where a significant number of
dislocations and unreleased stresses exist, such as the crack formation region, crystal orientation undergoes
changes leading to substantial differences in regional structure.

In order to investigate the influence of element distribution on crack formation, the element content near
the crackwas detected. Figure 7 illustrates the distribution of elements in the cracked sample. It is evident that
there is a decrease in titanium (Ti) content at deeper locationswithin the crack. Additionally, aluminum (Al)
exhibits significant loss near the crack site. Notably, when compared to titanium and niobium (Nb), aluminum
experiences substantial vaporization due to its high saturated vapor pressure under conditions of intense energy
input [43]. V,Nb andCr are uniformly distributed.

3.3. Crack formationmechanism and suppressionmethod of Ti-48Al-2Cr-2Nb alloy via LDED
Figure 8 is a schematic diagramof crack generationmechanismof TlAl alloymanufactured by LDED. From the
analysis offigures 1–3, it can be seen that lack of fusion is caused by unreasonablematching of process
parameters, which leads to incompletemelting of powder. Lack of fusion exists on the surface and inside of the
sample. Due to the inclusion of a large number of pores and unmelted powder in the lack of fusion area, cracks
are easy to occur in the lack of fusion area under the action of residual stress generated during LDED, and the
cracks generated in this area are all large-size cracks, which have a great negative impact onmechanical
properties. In order to restrain the crack caused by lack of fusion, themethod of optimizing process parameters
is generally adopted, and the heat input is optimized by adjusting laser power, travel speed and powder feed rate
to restrain the crack caused by lack of fusion.

The driving force of laser directed energy deposited TiAl alloy crack is composed of two kinds of stresses, one
is the stress between different phases. Because the thermal expansion coefficients ofα2 phase andB2 phase are
different, and the difference of thermal expansion coefficients will increase continuously at higher temperature,
which eventually leads to greater stress between the two phases. The other is residual stress. During LDED, the
powdermelts in themolten pool.With themovement of laser, the heat will diffuse to the substrate with the
fastest heat dissipation, and themoltenmetal will solidify rapidly. Because of the different composition of
cladding layer and substrate, the solidification shrinkage is different, resulting in residual stress. Under the action
of stress, transgranular fracture occurs preferentially in the regionwhereα2 phase andB2 phase gather. At the
same time, due to the high saturated vapor pressure of Al, Al ismore volatile than other elements. During the
LDEDprocess, Al is volatilized due to high temperature. The decrease of Al content will shift the solid–liquid

Figure 7.EDS analysis on the surface of samples with cracks. (a): Overall distributionmap, (b):Ti, (c):Al, (d):V, (e):Nb, (f):Cr.
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phase line of TiAl alloy phase diagram to the direction of aluminumdepletion, whichwill promote the
precipitation of brittle phaseα2, lead to the increase of aggregation area ofα2 and B2, and promote the
generation of cracks. In order to reduce the stress generated during LDEDof TiAl alloy, themainmethods are to
increase the thermal energy input, prolong the cooling time and reduce the temperature gradient.

3.4. Effect of optimization of process parameters on crack suppression
The number of cracks in three samples prepared under different combinations of process parameters for Ti-
48Al-2Cr-2Nb alloy, optimized using the RSMmethod for LDEDprocess, is presented in table 3. It can be
observed that all samples fabricatedwith varying process parameters exhibited cracks, ranging from aminimum
of 1 to amaximumof 12. This clearly indicates the significant influence of process parameters on crack
formation, and the occurrence of cracking sound during post-cladding cooling.

The experimental results in table 3were fittedwith the softwareDesign-Expert, and themathematical
regressionmodel of the number of crackswas constructed. The statistical data of crack numberwere analyzed
and tested byANOVA. The specific results are shown in table 4. The results of variance analysis show that laser
power is themain factor affecting cracks. The F value of themodel is 13.71, which shows that themodel is
significant. Significance test value P value is 0.006, less than 0.05; Lack offit is 0.0076; The correlation coefficient
R2 is 0.9391, which is close to 1, and the adjusted R2 is 0.8706, and the difference is less than 0.2, which indicates
that themodel has good correlation; The signal-to-noise ratio (Adequate Precision) is 14.0493, which is greater
than 4, which indicates that themodel has a good fitting degree and can obtain amore accuratemathematical

Figure 8. Schematic diagramof crack generationmechanism of Ti-48Al-2Cr-2Nb alloymanufactured by LDED.

Table 3.Designed experiment and results.

Number of cracks

Run

Laser

power (W)
Travel speed

(mm/s)
Powder feed rate

(g/min) Group 1 Group 2 Group 3

Sumof the number of

cracks

1 1400 7 5.5 5 6 6 17

2 1800 7 4 2 3 1 6

3 1400 5 4 7 6 7 20

4 1400 7 5.5 8 6 7 21

5 1400 7 5.5 6 5 7 18

6 1000 9 5.5 11 9 12 30

7 1400 7 5.5 5 4 6 15

8 1800 7 7 1 2 0 3

9 1800 5 5.5 5 4 4 13

10 1800 9 5.5 4 5 3 12

11 1400 9 7 6 4 6 16

12 1000 7 7 10 12 8 30

13 1400 7 5.5 7 6 5 19

14 1000 7 4 6 8 7 21

15 1000 5 5.5 10 8 6 24

16 1400 9 4 4 4 3 11

17 1400 5 7 5 3 6 14

18 1400 7 5.5 4 6 5 15
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model of crack number [44, 45]. Therefore, the response regression predictionmodel of crack numberwas
derived as shown in equation (1):

= - - + -
- + + + - ( )

Y A B C AB

AC BC A B C

18.5 8.87 0.25 0.625 1.75

3 2.75 0.5 0.75 4 12 2 2

3.4.1. Effect of process parameters on the number of cracks
Figure 9 is a perturbation diagramof the influence of theDesign-Expert software on the LDEDmanufacturing
process parameters and the number of cracks based on the data in table 2. It can be seen from the curve in the
figure that the influence of laser power (A) on cracks is themost significant, and the number of cracks decreases
gradually with the increase of laser power (A)within the selected parameter range; Scanning velocity has little
effect on cracks.With the increase of scanning velocity (B), the number of cracks decreases slightly atfirst and
then increases slightly; For the powder feed rate (C), with the increase of the powder feed rate, the number of
cracks increases, andwhen the increase exceeds the critical value, the number of cracks decreases.

Figure 9.Perturbation plots showing the influences of the laser process parameters on numbers of cracks.

Table 4.Analysis of variance for the numbers of cracks.

Source Sumof squares Degree of freedom Mean square F-value P-value

Model 782.86 9 86.98 13.71 0.0006

A-Laser power 630.13 1 630.13 99.33 <0.0001

B-Travel speed 0.5000 1 0.5000 0.0788 0.7860

C-Powder-feed rate 3.13 1 3.13 0.4926 0.5027

AB 12.25 1 12.25 1.93 0.2021

AC 36.00 1 36.00 5.67 0.0444

BC 30.25 1 30.25 4.77 0.0605

A2 1.09 1 1.09 0.1720 0.6893

B2 2.45 1 2.45 0.3869 0.5512

C2 69.82 1 69.82 11.01 0.0106

Residual 50.75 8 6.34

Lack of Fit 45.25 3 15.08 13.71 0.0076

Pure Error 5.50 5 1.10

CorTotal 833.61 17

9

Mater. Res. Express 10 (2023) 126509 BCui et al



Figures 10(a) and (b) depict the response surface diagram and contour diagramof laser power and travel
speed relative to the number of cracks. An increase in laser power results in a gradual reduction of the number of
cracks [46]. Thefindings indicate that augmenting heat input facilitates themitigation of crack generation. This
is primarily attributed to the increased energy input into themolten pool under high laser power conditions,
resulting in a diminished temperature gradient and reduced residual stress [47, 48]. Consequently, the number
of cracks is diminished. As the travel speed escalates, the number of cracks initially amplifies and subsequently
diminishes. The contour diagram reveals that a reduction in the number of cracks is achievedwhen the travel
speed is 7 mm s−1 and the laser power ranges from1000W to 1800W, resulting in a decrement from25 to 15
cracks.

Thefigures 10(c) and (d) depict the response surface diagram and contour diagramof laser power and
response surface diagram as influenced by the number of cracks. A gradual decrease in the number of cracks is
observedwith the increment of laser power. The increment in powder feed rate initially leads to a reduction in
the number of cracks, followed by an increase in their count. Theminimization of powder feed rate is attributed
to the limited amount of powder that can bemelted in themolten pool. An increase in powder feed rate enables
more powder to bemelted, thereby enhancing energy input [19]. This leads to a reduction in the number of
cracks. As the powder feed rate continues to escalate, an excessive amount of powdermay not be completely
melted in themelt pool. Consequently, a portion of the energy is diverted by the surplus splashing powder,
leading to lack of fusion. This, in turn, indirectly diminishes the energy input of the laser, resulting in an
increased propensity for cracks. The powder feed rate of 5.5 g min−1 and the laser power ranging from1000W
to 1800Wwere observed to decrease the number of cracks from25 to 15, as evident from the contour diagram.

The response surface diagram and contour diagram infigures 10(e) and (f) illustrate the influence of travel
speed and powder feed rate on crack formation. According to the contour diagram, the number of cracks in the
sample, prepared bymatching parameters of varying scanning speed and powder delivery rate, ranged between
14 and 18, exhibiting a hyperbolic influence trend.The amount of powder falling into themolten pool is
primarily determined by the powder feed rate and travel speed.When the ratio of these two rates remains
constant, the quantity of powder entering the pool during a specific time interval remains fixed.Under
consistent laser power conditions,minor variations in laser energy input and temperature gradient result in a
negligible impact on the number of cracks, regardless of changes in the scanning speed and powder feed rate.

3.4.2. Optimization of process parameters based onRSM
TheRSMalgorithmwas used to optimize the regression predictionmodel of crack and process parameters (laser
power, travel speed and powder feed rate). Formula (2) is introduced [49], whereN is the number of response

Figure 10. 3D response surfacemap and contour plot of interaction effects on numbers of cracks. (a), (b) Laser power andTravel
speed; (c), (d) Laser power and Powder feed rate; (e), (f)Travel speed and Powder feed rate.
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values, ri is the importance of a specific response surface, and di represents the local satisfaction function of some
specific response values.
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In order tominimize the number of cracks produced by laser addingmaterials, the response target value of crack
numberwas selected as theminimum in the range of 3–30, and the importancewas 5+. The optimized laser
parameters were: laser power 1800W, travel speed 6.0 mm s−1, powder feed rate 7 gmin−1. Under these
parameters, the predicted number of cracks was 3.563 and desirability was 0.979.

Themacroscopicmorphologies of the three groups of samples prepared before optimizing the process
parameters are shown infigures 11(a)–(c). The unoptimized process parameters result in lack of fusion and an
increased presence of unmelted powder and cracks on the surface. In contrast, figures 11(d)–(f) display the
macroscopicmorphologies of the three groups of samples preparedwith optimized parameters. Compared to
figures 11(a)–(c), there is a significant reduction in both unmelted powders and surface cracks observed after
parameter optimization. Although lack of fusion is eliminated through parameter optimization, some cracks
still remain present on the sample’s surface. This indicates that while optimizing process parameters effectively
reduces cracks caused by lack of fusion, it cannot completely eliminate those resulting from stress between
different phases during additivemanufacturing.

Figures 11(a)–(c) show themacroscopicmorphology of cracks in three groups of samples prepared before
the optimization of process parameters. It can be found that the unoptimized process parameters have lack of
fusion, and there aremore unmelted powders andmore cracks on the surface. Figures 8(d)–(f) show the
macroscopicmorphology of cracks in the three groups of samples preparedwith optimized parameters.
Comparedwithfigures 11(a)–(c), the number of unmelted powders and cracks on the surface is obviously
reduced. Through the observation of cross-sectionalmorphology, no lack of fusion is found, and a good
metallurgical bond is formed between the cladding layer and the substrate. From themacroscopicmorphology
of the sample, it can be seen that the sample after parameter optimization eliminates the lack of fusion
phenomenon and still has cracks, which shows that the optimization of process parameters can effectively
reduce the cracks caused by lack of fusion, but can not completely eliminate the cracks caused by the stress
between different phases in the process of LDED.

3.5. Effect of laser remelting on crack suppression
After the completion of LDEDon the sample, powder feed is halted, and a laser with equivalent excitation power
is employed to perform surface rescanning for achieving in situ laser remelting during the deposition process.
The surface and cross-sectionalmorphologies of samples without remelting, remelted once, and remelted 5

Figure 11.The surface and cross sectionmorphology of the sample before and after the optimization of the process parameters.
Unoptimized : (a) 1000 W, 7.0 mm s−1, 5.5 g min−1; (b) 1400 W, 9.0 mm s−1, 5.5 g min−1; (c) 1400 W, 7.0 mm s−1, 7.0 g min−1;
Optimized: (d)∼ (f) 1800W, 6.0 mm s−1, 7.0 g min−1.
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times are shown infigure 12 respectively. As the number of laser remelting times increased, a decreasing trend in
crack formationwas observed alongwith a reduction in the presence of adhering powder on the sample surface.
A crack-free sample was achieved after 5 remelting times. Themacroscopicmorphology of the surface and side
of the samplewith 10 layers of LDED is depicted infigure 13. It can be observed from the figure that the sample
devoid of remelting exhibits a prominent crack, extending from the substrate to the uppermost region. After one
remelting, the degree of cracking decreased compared to that observedwithout undergoing any remelting
process. After two subsequent remelting, the occurrence of cracks in the sample was completely eradicated. The
results demonstrate the effective crack inhibition achieved through laser remelting, as this process enhances
energy input, reduces cooling rates to a certain extent, reduces temperature gradients, alleviates residual stress,
and effectively suppresses crack formation. For the sample exhibiting lack of fusion on its surface, remelting can
effectively address this issue by eliminating cracks resulting from lack of fusion and facilitating crack
suppression.

4. Conclusion

The present study investigates the influence of various process parameters on crack formation in Ti-48Al-2Cr-
2Nb alloy by LDED. The underlyingmechanism responsible for crack initiation is elucidated. To suppress cracks
resulting from lack of fusion, the RSM is employed to optimize the process parameters, leading to successful
crack-free fabrication of samples through laser remelting. In summary, this paper provides a comprehensive
analysis as follows:

1. The crack of the Ti-48Al-2Cr-2Nb alloy by LDED exhibits a layered structure consisting of γ/α2 lamellar
structure, with transgranular fracture being the predominantmode of failure. The LDEDphases in the
sample primarily compriseα2, B2, and γ phases. In close proximity to the crack, there is observed aggregation
ofα2 and B2 phases.

Figure 12.Effect of laser remelting on crack suppression. (a)Without remelting; (b)Remelted once; (c)Remelted 5 times.

Figure 13. Influence of laser remelting times on samples depositedwith 10 layers (a)Without remelting; (b)Remelted once; (c)
Remelted 2 times.
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2. The elevated temperature induces the volatilization of aluminum, thereby facilitating the formation of the
brittleα2 phase and subsequently promoting the formation of agglomeration area ofα2 and B2 phase.

3. The influence of laser power on crack formation is highly significant, as an increase in laser power leads to a
gradual reduction in the number of cracks. Optimization of process parameters can effectivelymitigate the
cracks caused by lack of fusion; however, cracks caused by stress between different phases cannot be
eliminated.

4. Laser remelting following LDED exhibits characteristics such as reduced temperature gradient, cooling rate
and residual stress. This process effectively inhibits the formation of cracks in Ti-48Al-2Cr-2Nb alloy
during LDED.
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