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Abstract
Copper iron sulfide (CFS) (chalcopyrite) thin-film electrodes have been synthesized for energy storage
applications using the SILARmethodwithout the use of a binder. Thefilm’s structural as well as the
morphological and electrochemical characteristics were studied to check the effect of varying
deposition cycles. The x-ray diffraction (XRD) test reveals a crystalline tetragonal CuFeS2
(chalcopyrite)with a decreasing peak as the deposition cycle progresses. Themicrographs of thefilms
reveal a spherical butfleecy-like shapewith particle aggregation at higher deposition cycles. The
bandgap increased slightly towards higher cycles and is in the range of 1.15 to 1.22 eV. TheCFS
electrodes were evaluated in a three-electrode arrangement for supercapacitive application in a 2.0M
KOHelectrolyte. TheCFS electrodes function admirably. The greatest specific capacitance recorded
was 537 F g−1 at 10mV s−1 with capacitance retention of 93.5%. This is for CFS electrode deposited at
10 cycles; hence it has the greatest performance. This paper describes a simple, inexpensive, and
repeatablemethod for fabricating electrodes for supercapacitors.

1. Introduction

Global energy demand has risen rapidly as a result of the rising human population and the desire for equivalent
improvements in living standards. Electrical energy has become crucial in every part of daily life due to the rapid
increase in human energy-based activities. That is to say, energy is required for themajority of human activities
nowadays. Photovoltaic power generating is themost environmentally friendly of all energy generation
technologies. It is themost secure, dependable, accessible, and available option free of pollution.

Photovoltaic power generation cannot be efficient without an efficient storage device. The intermittency
nature of photovoltaic power generation necessitates the storage of generated energy for round-the-clock use
prompting the use of batteries and supercapacitors [1].

Though the use of batteries has been rampant for a long time, there are a lot offlawswith the use of batteries
ranging from lowpower density to heating leading tofire outbursts [2]. Due to the fast and flexible charge/
discharge rate, eco-friendly nature and ultra-high power density, the supercapacitor has gained ground for use in
energy storage [3]. The structure of a supercapacitormainly consists of a cathode, anode and a sandwiched
separator [4]. The efficiency of the electrodematerial to a greater extent determines the overall performance of
the supercapacitor [5].
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Commonly, carbon-basedmaterials considering their outstanding ultra-high power density and stability are
prevalent but they suffer from relatively low energy density which limits their use in handy consumer electronics
[6]. Also, polymers like polyaniline (PANI) possess exceptional electrochemical properties favouring their use as
electrodematerials but they lack greatly cycling stability as well [6].

Attention has been given to transitionmetal oxides (TMOs) considering their unique properties but their
characteristic low electrical conductivity and low capability among other flaws became an issue prompting
researchers to start exploring some other electrodematerials that could be stable, eco-friendly, electrically
conductive among key features required of good electrodematerial. Having noted that sulfur ismore
electronegative than oxygen [7], replacing oxygen and forming compounds with improved ionic diffusivity is a
boom in electrochemical activities; researchers are attracted to transitionmetal sulfides (TMSs) [8]. Aside from
the higher electrical conductivity of sulfides, they are cheap and possess better electrochemical performance than
their oxide counterparts [3].

Of all the naturally occurringminerals on earth, chalcopyrite (CuFeS2) ismore numerous and greatly
exploited for copper recovery [4]. CuFeS2 is amember of the I-III-VI family of elements [8]. It has a tetragonal
structure. Cu and Fe ions are in tetrahedralmatching togetherwith sulfur in the framework [9]. Because of their
low toxicity and abundance in nature, researchers are interested in studying them. CuFeS2 is a typical n-type
semiconductor. It has a relatively narrow bandgap [5]. CuFeS2 is a good solar cellmaterial because of its excellent
photoelectric andmagnetic characteristics.

ThoughCuFeS2 has been studied in the laboratory by some scientists before now, its potential for energy
storage is understudied. The application of CuFeS2 in the hybrid solar cells has been reported by Layek et al [10].
The use of CuFeS2 in lithium-ion battery and bedflow cell battery respectively byGuo et al [2], Ding et al, [6] and
Deen et al [11]. Sahoo et al [12] got a specific capacitance of 98.2 F g−1 in the electrochemical performance of
CuFeS2 in symmetric supercapacitor design in LiOH electrolyte. The lower capacitance reported by Sahoo et al
could be as a result of the binder used in the fabrication of the electrodes which posed to add great electrical
resistance hindering the electrochemical performance. The improved specific capacitance of 621.20 F g−1 for
CuFeS2/grapheme composite electrodewas reported recently by Zardkhoshoui et al [13]. The reason could not
be far from the high surface area provided by the graphene for effective redox activity.Many researchers have
reported on the solution-based synthesis of CuFeS2 like solvothermal [14] hot injectionmethod [15],
hydrothermal [16], one-potmethod [17], and chemical bath [18]. Lokhande et al [7] employed a single-step
hydrothermalmethodwithout a binder for CuFeS2 synthesis and got a specific capacitance of 667 F g

−1. The use
of binder and intricate processing of CuFeS2/graphene composite electrode results in high costs and lower
performance.We chose the SILARmethod because it is cheap, simple and environmentally friendly for effective
performance.

Binders give activematerials inwhich they are utilizedmechanical characteristics [8]. Themain ingredient is
combinedwith the binder to generate a slurry that is applied at a specified thickness when using the binder. The
thin, porous electrode is then formed by drying the slurry-coated substrate. Binders are commonly employed in
electrodes to help themmaintain stability beyond 5,000 charge/discharge cycles [15]. Binders have been
observed to alter and reduce capacitance due to increased oppositions it imposes on the electrodes [3]. In this
study, our synthesized electrodes are all fabricatedwithout a binder and in keepingwith current research on
binder-free electrodes.

2.Materials andmethod

2.1.Materials
The chemicals utilized tomakeCuFeS2 thinfilmswere analytical grade and had not been refined before use.
Copper chloride dehydrate (CuCl2.2H2O), iron chloride tetrahydrate (FeCl2.4H2O), sodium sulfide (Na2S), and
Triethanolamine (TEA)were utilized tomakeCuFeS2 thinfilms, with distilledwater used throughout.

2.2. CuFeS2 thinfilm synthesis
1.0×5.0 cm sizes of stainless steel, polishedwith zero grade polish paper, sonicatedwith the glass slides for
15 min in acetone and 15 min in distilledwater at 30 °C, and rinsedwith distilledwater before being dried in the
oven. 0. 5 g of CuCl2.2H2O and 0.3 g of FeCl2 were dissolved in 100ml distilledwater, then stirred for 15 min.
The cationic bathwasmaintained at pH4 by adding 1.0ml of TEAdrop by drop under steady stirring for
another 15 min. Separately, 0.8 gNa2Swasmixed in 100ml distilledwater and agitated for 15 min before being
utilized as an anionic bathwith a pHof 11. The treated stainless steel and glass were each inserted into the bath
containing cations for 30 seconds. Cu2+ and Fe2+, present in the bath are adsorbed on the substrates’ surfaces.
Cu2+/and Fe2+ ions thatwere notwell adsorbedwerewashed for 10 seconds in distilledwater. TheCu2+/Fe2+

carrying substrates were then submerged in aNa2S bath for sulfur adsorption on the substrates for 30 seconds.
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The anionswhichwere notwell adsorbedwerewashed off for 10 seconds in distilledwater. The process was
continued until ten, twenty, thirty, and forty cycles had been accomplished. The deposition process is depicted
schematically infigure 1.

The samples are labelledCFS 1, CFS 2, CFS 3 andCFS 4 for sampled deposited at 10, 20, 30 and 40 cycles.

2.3. Characterization
X-ray diffraction (XRD)was used to characterize the structure and phase of CuFeS2 thinfilms (Bruker AXSD8
diffractometer coupledwith copper anode at 1.540A). Themorphology of the filmswas examined using aKFU-
Scimachinewith a voltage of 15.0 kV for scanning electronmicroscopy, and the optical characteristics of the
CuFeS2 thinfilmswere determined using a 756SUV-Vis spectrophotometer.

2.4. Electrochemical studies of CuFeS2 thinfilms
BioLogic Potentiostat was used to examine the electrochemical characteristics of CuFeS2 thin films. The studies
were done in a three-electrode configuration. The electrolyte usedwas 2.0MofKOHat a temperature of 303K.
Theworking electrodewas the as-synthesized thin-film electrodes, theworking electrode is the Ag/AgCl and the
counter electrode is the graphite. The capability of CuFeS2 thin-film electrodes was tested in the 0 to 1.3 V
potential range. The electrochemical test employedwas cyclic voltammetry (CV), galvanostatic charge-
discharge (GCD), and electrochemical impedance spectroscopy (EIS).

The specific capacitance of electrodes was determined fromCVaccording to using equation (2) [9],
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ò = integration of theCV curve area, s = scan rate, andV = potential used.

The specific capacitance of theCuFeS2 thin-film electrodes was also calculated from theGCDprofile using
equation (3),

C
I t

Vm
3sp =

D ( )

where I=current,m=mass (mg),V = potential, and tD = time of discharge.

Figure 1.The SILARprocess of depositing CuFeS2 is depicted schematically.
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3. Results and discussions

3.1. X-ray diffraction studies
TheXRDpatterns of producedCuFeS2 thinfilms placed on glass substrates at 10–40 cycles are shown infigure 2.
The reflection peaks at 29.4°, 48.7 °, and 58.7o corresponding to (112), (220) and (303) planes. The peaks
correspond to tetragonal structure (space group: I-42d)with a lattice constant of 5.2864 Å (JCPDS no: 83–0983).
Therewere no other diffraction peaks as seen infigure 2 indicating the purity of theCuFeS2 thinfilms.

The average crystallite of the CuFeS2 thin filmswas calculated usingDebyer-Scherrer’s formula (equation
(7))

D
0.9

cos
4

l
b q

= ( )

where l =wavelength, b = full width at halfmaximum (in radians) and q= the angle of diffraction. Themost
intense peak (112)was used to determine the FWHM.The average crystallite sizes of 16.4 nm, 16.96 nm, 17.12
nm, and 18.07 nm correspond toCuFeS2 thin films at deposition cycles 10–40, respectively. A close look at the
XRDpattern shows that the increase in deposition cycles relatively dropped the peaks. This could be due to the
size growth as the number of deposition cycles increases. The result is consistent with the findings of [16, 19–21].

3.2.Morphological and elemental studies
Figure 3 depicts the surfacemorphologies of theCFS films. Thefilmswere rather spherical and densely spread
on the substrate, according to SEMmicrographs. Themicrograph of theCFS 1 film revealed a spherical but
fleecy-like shapewith particle aggregation at higher deposition cycles as inCFS 2 andCFS 3, and eventually, an
irregular platelet-like nanostructure inCFS 4. The platelets have irregular thicknesses and a narrow gap between
them. This narrow gap lessens pores and limits ions intercalation for redox reactions [7], hence the low
capacitance of CFS 4. Thefleecy-like nature and smaller particle size of CFS 1 encourage easy ion intercalation
for faster redox reactions and hence an appreciably high capacitancemeasured. Themeasured average particle
sizes using Image J software are approximately 35.5 nm, 51.7 nm, 54.9 nm and 83.3 nm forCFS 1, CFS 2, CFS 3
andCFS 4 respectively. The bigger particles came from crystallite aggregation.

Energy dispersive x-ray spectroscopy gave the elemental composition of theCFS thin films. Figure 4
indicates that ourfilm contains Copper, Iron, and Sulfur, in the atomic percentage ratios of 1:1:2. Also found in
the spectrumwere Sodium andCalciumpeaks from the used glass substrate andOxygen fromwater used in the
synthesis.

3.3.Optical studies
From the photon energy extrapolation infigure 5(a), the bandgap energy of the range 1.08–1.22 eVwere
recorded for CFS1 -CFS4. The narrow bandgap of the films complements the small particle size and favours
photovoltaic applications, while their unique small bandgap boosts electrical conductivity and is a bonus in
enhancing electrochemical performance. The range of values for electrical conductivity against wavelength
ranged between 6.9×10–3–6.3×10–3 Sm−1 for CFS 1—CFS 4within theVis region as shown infigure 5(b).

Figure 2.Graph of intensity against 2 forCuFeS2 depositions lasting 10 to 40 cycles.
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According to Teranishi and Sato [16], it diminishes as thewavelength increases. TheCFSfilms have a high
electrical conductivity that decreases as the deposition cycle increases.

3.4. Electrochemical studies
TheCuFeS2 electrodes’CVprofile is shown infigure 6. TheCVprofile shows few redox peaks, signifying that the
CuFeS2 electrode’s capacitance is largely driven by a faradaicmechanism. The invariance in the redox peaks even
at a scan rate of 100mV s−1 implies that the CuFeS2 electrodes have good rate capability [12]. The shape of the

Figure 3. SEMmicrograph of CFSfilms.

Figure 4.EDS of CuFeS2films.

Figure 5. (a) (αhυ)2 against Photon Energy (eV) and (b)Electrical conductivity against wavelength for CuFeS2.

5

Mater. Res. Express 9 (2022) 025501 HENsude et al



CVprofile is ‘Type B’CVprofile as suggested by [22] categorically. The calculated specific capacitance recorded
at 10mV s−1 for CFS 1, CFS 2, CFS 3, andCFS 4 is 584.2, 493.4, 279.7 and 139.8 F g−1 respectively using
equation (2). The increase in specific capacitance is inversely proportional to scan rate because, at a higher scan
rate, there is restrictedmovement of the electrolyte ions. The trendwithwhich the specific capacitance varies
with the scan rate is shown infigure 8(c).

TheCs obtained for the electrodes is considerably higher than the previous reports ofDeen et al [23], Sahoo
et al [12], Zardkhoshoui et al [13]and slightly lower than the report of Lohkande et al [9] as shown in table 1.
Table 1 shows the summary of specific capacitance (using three-electrode configuration) of CuFeS2 and some
copper-based electrodematerials.

TheCDmeasurements were also carried out at current densities 1.0 A/g—3.0A/g shown infigure 7. The
analysis was done in the potential windowof 0 to 1.4 V as depicted infigure 6. The nonlinear nature of theCD
profile of CuFeS2 confirms its pseudocapacitance nature. Fromfigure 6, themaximum specific capacitance for
each of the electrodes CFS1, CFS 2, CFS 3, andCFS 4 is 537.0, 384.02, 215.1 and 93.17 F g−1 respectively using
equation (3) at current density 0.5 A g−1.

Figure 8 show the capacitance retention 8(a), EIS 8(b) and specific capacitance variation 8(c). Ourwork’s
better electrochemical performance is ascribed to the electrodes’unique structure andmorphology, as well as
the electrodematerial’s direct deposition on the substrate without the use of a binder, which greatly reduced
electrical resistance and superfluousweight.

Figure 6.Cyclic voltammetry profile of CFS 1 toCFS 4 electrodes at various scan rates.

Table 1. Summary of specific capacitance (using three-electrode configuration) of CuFeS2 and some
copper-based electrodematerials at 10mV s−1.

S/N Compound Method of preparation Specific capacitance (F g−1) References

1 CuFeS2 hydrothermal 95.28 [12]
2 CuFeS2 solvothermal 654.3 [13]
3 CuFeS2 hydrothermal 667.0 [9]
4 CuFeS2 green synthesis 501.4 [3]
5 CuS sonochemical 62.77 [24]
6 CuSbS2 colloidal 34.0 [25]
7 CuSbSSe colloidal 15.0 [21]
8 Cu3SbS4 hydrothermal 60.0 [26]

6
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Figure 7.Galvanostatic charge-discharge profile of CFS 1 toCFS 4 at different current densities.

Figure 8. (a) capacitance retention plot (inset: stability test) (b)Nyquist plot and (c) specific capacitance versus scan rate of 10–40
cycles deposited CuFeS2.
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In order to check the reaction kinetics and resistances of CuFeS2 electrodes in detail, EIS tests were carried
out in the frequency range of 1.0Hz—100.0 kHz. It is shown infigure 8(b) using theNyquist plot. Two unique
features can be seen on the electrodes. Thefirst is a small, less prominent arc in the high-frequency zone
(showing lower charge transfer resistance)with linear vertical spikes in the low-frequency region, peculiar to
pseudocapacitors.

As seen from the bloated area of theNyquist plot, the CFS 1 electrode exhibits the lowest ESR∼ 0.44Ω, and
Rct of 1.8Ω showing good conductivity. Smaller ESR amounts to better electrochemical performance [3, 27].
Smaller resistancemaintained by these electrodes could be as a result of the direct deposition donewithout
additional inactivematerial in the formof binder posingmore resistance to the ion intercalation [28–30]. Rct for
thefilms increased as the deposition cycles increased [7, 31]. This is a result of the increase in the electrode
thickness [32].

4. Conclusion

CuFeS2 electrodes were synthesized via the SILARmethod for 10–40 cycles without the use of a binder for
adhesion for supercapacitor application. The electrodes showed excellent structural,morphological, optical and
electrochemical features which provided good resistance-free channel for ion intercalation. TheCFS electrodes
have excellent performance. CFS 1 has the greatest specific capacitance of 537 F g−1 and 93.5% capacitance
retention after 400 cycles. CuFeS2 electrodes have been shown to be a potentialmaterial for use in energy storage
systems.
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