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Abstract

Objective service load is the load pattern of cortical bone in practical conditions. The objective service
load conditions of cortical bone are complicated, usually including two or more load patterns. The
mechanical behavior and deformation mechanism of cortical bone material under coupling load
pattern and single load pattern are diametrically different. However, nowadays, researches on the
mechanical response of cortical bone have been heavily focused on the single load pattern, which
couldn’t reveal the potential deformation mechanism accurately. For the purpose of obtaining the
objective mechanical properties under complicated loading patterns, the mechanical response and
deformation mechanism of bone material under compression-bending coupling load were
investigated by in-situ test. The research shows that bending strength increased under the
compression-bending coupling load than the single bending load. By in-situ observation, the
variations of surface strain distribution and cracks directions were the potential reasons for the
increase of the bending strength. It was found that the cracks changed from transverse fracture to
integrated patterns with transverse fracture and longitudinal fracture. Larger fracture range and
tortuous crack propagation increased the fracture energy dissipation, which led to an enlarged
bending strength under the compression-bending coupling load. Through theoretical analysis and
numerical calculation, the impeded effect to the increasing of bending deflection was dominant before
the final fracture with the adding of the compression load. The numerical calculation result was
consistent with the result of the experiment. This present work would provide new references to
further studies on the mechanical behavior of cortical bone under complicated loading patterns.

1. Introduction

Cortical bone is a biomaterial-that consists of a mineral phase (hydroxyapatite crystals) embedded in an organic
matrix (I type collagen fibers). As the main component of human motor system, the cortical bone plays an
important role in load transferring, load bearing and organs protection [1]. Cortical bone also has a hierarchical
structure, which was crucial to its mechanical properties [2—6]. Under most objective conditions, the loading
patterns of cortical bone are complicated, and the deformation mechanisms of cortical bone material under
varied load patterns were different [7, 8]. As mentioned above, it was important to investigate the mechanical
response and potential deformation mechanism under different loading patterns. For the purpose of
understanding the mechanical property of cortical bone under near service loading condition, experiments,
numerical simulation and theoretical analysis were carried out. The typical fracture behaviors such as the elastic
and plastic mechanical behavior, multi-scale crack and energy dissipation have been extensively studied [9-12].
Cortical bone materials have specific physiological orientation, so that compression is the typical loading
pattern. Through uniaxial tension and continuous compression loading, Nyman found that energy dissipation
under compression load was achieved by permanent deformation and viscoelastic strain, and it was achieved by

© 2022 The Author(s). Published by IOP Publishing Ltd
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surface energy release under tension loading [13]. It was also found that the complex hierarchical structure was
vital to mechanical properties, because the complex internal loads were created based on its hierarchical
structure. The direction and magnitude of the deformations are dependent upon the direction and magnitude of
the imposed loads [7]. The effect of microstructure characteristics on elastic modulus was investigated using
dynamic tension, and the significant correlation was shown between effective elastic modulus and porosity [14].
Therefore, it could be seen that the effects of microstructure characteristics to different directions were different
under the same loading pattern. Arjunan have carried out numerous innovative research about the bone
implant, such as developing the porous (68%—-90%) Ag bone scaffolds with antibacterial properties by the
selective laser melting with excellent mechanical behavior for the first time [15]. Considering the reduction of
stress shielding, Arjunan also developed a Ti64 sheathed cellular anatomical structure as the tibia implant by
Direct Metal Laser Sintering, which could excellently mimic the objective mechanical properties [16]. Meyer
observed that poor understanding on the objective mechanical responses under complicated loading modes
could result in alow success rate of the bone grafting and an inaccurate design of bone substitute materials [17].

As shown above, although the previous studies provided some useful guidance for understanding the
potential deformation mechanism of cortical bone materials, yet they were mostly concentrated on the single
loading mode, such as single tension load, single compression load, and single bending load etc Besides, most
studies focused on the macro scale. However, the deformation mechanism of bone material in multi-scale in
real-time couldn’t be obtained by out-situ research. The objective loading mode in practice was complicated,
generally included two or more loads, such as compression-bending coupling loads and etc Some published
literature has shown that the loading direction of the external load could affect the mechanical reaction of the
bone materials and their behaviors in the fracture process [ 18—20]. Mechanical response of cortical bone under
single loading mode couldn’t reveal the objective mechanics law [21]. Arjunan considered that the functional
classification of biomaterials should undergo the rigorous experimental evaluation, such as safety, mechanical
performance and application [22]. Lee found under the physiologic loads, with the age-related bone loss, the
trochanter of the femur increased the risk of fracture in a fall [23]. Jakob also observed that researches on
mechanical properties of biological hard tissue materials should be extended to micro-scale level and complex
loading patterns [24]. Therefore, the purpose of this research is to investigate the mechanical properties and the
underlying potential deformation mechanism of cortical bone material under compression-bending coupling
load by in-situ testing. This research would provide some new perspectives to the research on mechanical
property and failure mechanism of cortical bone under complex loading patterns.

2. Materials and methods

2.1.Sample harvesting

Cortical bone specimens were obtained from the shaft of the femur of the pigbeing 18 £ 2 months, collected
from the slaughterhouse of Charoen Pokphand Group in Changchun, China. All the soft tissues were removed
gently with the scraper. Because the longitudinal direction is the loading direction of compression load, as
shown in figure 1, a rectangle block was obtained from the shaft of the femur, and the specimens were cut along
longitudinal direction with a band saw. In the cutting process, phosphate buffered saline (PBS) was irrigated on
the incision [25]. The rectangle block specimens were polished by using emery papers (P1000, P2000, P3000)
step by step as coarse grinding. Then the precision grinding was performed with diamond polishing solution. In
the polishing process, the surface of the cortical bone specimens was observed by the optical microscope
(OLYMPUS BX53M). The specimen with big defects or many defects would be removed. When the surface
quality met the requirements, the polishing was finished. At last, the specimens were cleaned by the ultrasonic
cleaner (KQ-218, SHUMEI, CHINA) for one hour. Until be used, the specimens were preserved by immersed in
PBSat —20 °C. To investigate the evolution mechanism of surface strain, the speckle with obvious contrast was
sprayed on the specimens. The final specimens with speckle were shown in figure 1. The final dimension was
shownin table 1.

2.2.Methods and instrument

In this research, for the purpose of obtaining the mechanical evolution and deformation mechanism of cortical
bone material under the single compression load and compression-bending coupling load, the contrast
experiments were designed. To obtain the surface morphology continuously, in-situ monitoring technology was
used. The experimental group was compression-bending coupling load group, and the control group was the
bendingload group. For obtaining the deformation clearly with quasi-static way, the compression loading rate
was 0.01 mm ', and bending loading rate was 0.01 mm s~ . Considering the compression load was a common
load, it was expressed by the form of preloading. Therefore, the compression-bending coupling load was
achieved by applying pre-compression load and applying the bending load sequentially. The compression load
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Figure 1. Preparation of cortical bone specimen.

Table 1. The dimensions of the cortical bone specimen (mean =+ standard
deviation).

Material Length(h) (mm) Width(b) (mm) Height(/)(mm)

Cortical 10.00 £ 0.15 3.00 + 0.10 50.00 £ 0.30
bone

was kept constant during the loading of bending load. To thoroughly investigate the effect of different pre-
compression loads to bending mechanical properties, and to clarify the mechanism differences between
combined loading pattern and single bending load pattern, the compression load was set as 500N, 1000N,
1500N, respectively. The experiment method was designed based on the industry standard of mechanical testing
of solid materials (JB/T 13221-2017: In situ mechanical property testing system for solid materials with electric
thermal magnetic coupling physical field).

As shown in figure 2, a multiple loads material mechanical in-situ testing system was developed, including
loading module, signal collecting module, and in-situ observation module. The loading module could provide
single compression load, bendingload, and compression-bending coupling load. The signal collecting module
included load sensor and displacement sensor, and could obtain the load and displacement in the experimental
process. The specifications of the signal collecting module are shown in table 2.

In-situ observation module included a digital speckle strain measurement analysis unit, with the function of
monitoring and gathering the surface strain of bone specimen. In this experiment, the digital speckle strain
measurement analysis unit is ARAMIS system, which is provided by DOM 3D Ltd The camera resolution is
4096 x 3000, and the data registration frequency is 25Hz. The basic principle is as follows. The speckle on the
surface of the specimen moves with the deformation of the specimen. By analyzing the speckle patterns before
and after the deformation, the relative displacement and deformation of the speckle along the Uand V directions
(i.e. transverse and longitudinal) are obtained [26]. The calculation method is as follows. Let (x, y) be the point
before deformation and (x *, y *) be the response point after deformation, and the relationship between them is
as follows.

x*:x—l—u—i—Axa—u—l—Aya—u
Ox Oy
ov ov )
yi=y+ v+ Ax— + Ay—
Ox Oy
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Figure 2. In-situ mechanical testing system of materials under multiple load patterns.

Table 2. The performance of the signal collecting module of the instrument.

Project Compression Bending

Load Sensor Naichuang FM70 CHCCONTECT CF40603
Performance parameter (Maximum value, Resolution) 10KN, 0.001N 1KN, 0.001N

Loading speed 1pms >mms™ 1pums >mms™

Linear strain Renishaw RELA/RESA

Collection data Compression load Bendingload

To reduce the impact of external vibration, the experiments were carried out on the air-floating isolation
platform. Before the experiments, the in-situ testing system was appropriately calibrated.

In this research, to investigate the effect of compression load on the bending behavior, the bending strength
and fracture energy of the specimens were chosen as the evaluation indicators. Through contrastive analysis of
bending strength under coupled compression-bending load and single bending load, the effect was investigated.
The Bending strength is the maximum value of bending stress, and the fracture energy is the consumed energy of
the cortical bone specimen until be broken. The bending stress and fracture energy were calculated according to
equations (2)—(5) [27].

o= @)
M= % 3)
W= ”?hz @)
J = fo " oudt (5)

In the equations, 0, is the bending stress, M is the bending moment, Wis the interface bending coefficient, F
is the bendingload, L is the length of the specimen between two supporting point, b is the width of rectangular
section, A is the height of rectangular section, Jis the fracture energy, t,,, is the fracture deflection, and ¢ is the
bending deflection.
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Figure 3. Bending stress-deflection curves under bending load and compression-bending coupling load (Graphs are represented for a
single group specimens).

Errors are calculated according to equation (6).

s= X0 -x2| /-1 ©)

j=1

In this equation, s is standard deviation, X; is the mechanical property data of each specimen under the same
pre-compression load, and X is the average value of mechanical property under the same pre-compression load.
In this paper, nis 9, and X can express bending strength, fracture energy and deflection value, respectively. There
are 36 specimens in all loading patterns.

3. Experimental results and discussion

3.1.Results
As shown in figure 3, the bending stress-deflection curves of cortical bone under different load patterns have
been drawn.

The pre-compression-bending coupling load with 1500N compression load was chosen as the control
group. The curves have given the relationship of mechanical property between single bending load and
compression-bending coupling load. In terms of the ultimate values, it could be observed that ultimate bending
stress under compression-bending coupling load was large than that under single bending load in most cases.
This could be confirmed in figure 3, where the highest point of curves with red line was higher than that with
blue line. The highest point was the fracture point, and the stress beyond this critical point instantaneously
decreased to zero. From the trend of the curves, as the bending deflection increased, the increasing rate of the
bending stress under single bending load decreased gradually. However, the increasing rate of the bending stress
under compression-bending coupling load increased gradually. As shown in figure 3, the black arrows and the
brown shadow circles represented the local shape of the curves. It is worth noting that there was some plastic
deformation in later stage for the single bending loading pattern. For compression-bending coupling load, there
was no obvious plastic deformation until fracture. It could be deduced that the mechanical response was affected
by different load patterns. In more details, the compression load along longitudinal direction changed the
evolution law of bending stress.

Cortical bone is an anisotropic material, with multi-scale mineralized collagen fibers and different
physiological orientations. The specific mechanical response and energy dissipation mechanism under single
bendingload in different deformation directions are shown in figure 4.

The variations of bending strength and fracture energy with different maximum bending deflection are
shown in figure 4(a). It could be observed that the bending strength and fracture energy all increased as the
maximum bending deflection decreased. By linear fitting, it was found that the increasing rate of bending
strength was less than that of fracture energy. In figure 4(b), a nonlinear relationship is shown between o},/J and
deflection. The o},/] value tends to be smaller, and the decreasing rate decreased gradually. Therefore, it could be
speculated that cortical bone materials could absorb more fracture energy, while bending strength could keep
increasing steadily under larger bending deflection.
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Figure 4. Variations of bending strength and fracture energy with changing of maximum bending deflection (a), 01,/J-deflection (b).
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Figure 5. Variations of average fracture deflection and average bending strength under different compression loads.

The variations of average fracture deflection and average bending strength under different compression
loads are shown in figure 5. The fracture deflection and bending strength were all the average values of single
group with 9 specimens.

The average fracture deflection and average bending strength all increased with the increasing of
compression load. When compression load were 500N, 1000N, 1500N, the increasing proportion of fracture
deflection were 23.9%, 31.6%, 49.6%, and the increasing proportion of bending strength were 18.2%, 68.9%,
83.9%, respectively. According to the experiments, it could be speculated that compression load could intensify
bending strength, and the intensification effect was more obvious with the increasing of the compression load,
within a reasonable range.

Fracture in bone material was considered to be especially strain-controlled [28, 29]. To further understand
the potential deformation mechanism under different compression loads, the principal strain contours were
obtained based on digital image correction method (DIC). The principal strain contours could reveal the
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(%]

Figure 6. Comparison diagram of principal strain contours on tension side under different compression-bending coupling loads by
DIC (a) No compression load (b) 500N compression load (c) 1000N compression load (d) 1500N compression load.

deformation information of the surface area, highly beneficial to intuitively understand the evolution of the
mechanical property of bone material. The principal stain contours of the bone specimen’s tension side under
different load patterns were shown in figure 6. In figure 6, the black line represented direction of principal strain,
and the color represented the magnitude of principal strain. Every row of the strain contour represented the
different stage from beginning to fracture. In figure 6, the first column is the principal strain contour of cortical
bone specimen under single bending load, and the others are the principal strain contours under the combined
loads with different compression load.

As shown in eps]1 of figure 6(a), under bending load, some sporadic strain concentration micro-zones were
generated, with small sizes. In eps2 of figure 6(a), with the increasing of bending stress, the strain increased and
the size of micro-zone increased. In eps3 and eps4 of figure 6(a), with further increasing of bending stress, the
strain concentration micro-zones started to merge. In eps5 of figure 6(a), the strain concentration bands
throughout the short axis of the specimen were created, so that the bone specimen fractured. As shown in eps2
and eps3 of figures 6(b)—(d), in the middle area, there was a strain concentration with obvious gradient. Some
branches were derived from the strain concentration band. Finally, as shown in eps5 of figures 6(b)—(d), once
any branch extended through the short axis, the bone specimen was broken. Based on the discussions above, it
could be observed that the nucleation, growing, merging and developing of the principal strain concentration
area varied from free distribution to gradient distribution under the compression load. As was well known, the
anisotropy property plays a vital role in mechanical response of bone material. Therefore, from the evolution of
the principal strain, it could be speculated that the original anisotropy property was broken and the new
anisotropy property was established by the compression load. The branches of the principal strain contours were
more regular than the previous case, so that more energy was needed to weaken the original anisotropy.

For the further investigation, the multi-scale fracture morphology of the cortical bone specimens were
obtained and shown in figure 7 (macro-scale) and figure 8 (micro-scale).

In figure 7(a), as red dashed line indicated, the fracture edge presented almost straight line. In figures 7(b)—
(d), the fracture edge presented different circuitous trend. Compared to straight fracture, the circuitous fracture
needs more external energy. At the same time, as the compression load increased, the longitudinal component of
the fracture was increasingly obvious. Even when the compression load was 1500N, the stacking fault feature
alonglongitudinal axis was shown. As mentioned above, under the compression load, the fracture edge tended
to circuitous, and the fracture was more difficult to achieve. This was consistent with figure 4(a). Therefore, the
bending strength increased with the adding of compression load.

The fracture in microscale was important to reveal the potential deformation mechanism of the cortical
bone materials. As shown in figure 8, the micro-scale fracture morphology of cortical bone under different load
patterns was obtained based on field emission scanning electron microscope (FE-SEM). To further understand
the effect of each single load of the coupling loads, micro-scale fracture morphology under single compression
load (figure 8(a)) and single bending load (figure 8(b)) was all analyzed. In figure 8(a), the fracture surface was
smooth in total, with no debris in any areas. As is well known, the Haversian system was distributed along
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Figure 7. Comparison diagram of macroscopic fracture appearance of the cortical bone specimens (a) No compression load (b) 500N
compression load (c) 000N compression load (d) 1500N compression load.

longitudinal direction. Compared to the fracture feature, it could be observed the fracture direction was the
same as the Haversian system orientation under the compression load.

In figure 8(b), the transverse fracture feature was shown, with the rough appearance under bending load.
Because the Haversian system was a layered structure, with several layers bone lamellar, and the Haversian
system was along the longitudinal direction, the transverse fracture was rougher than the longitudinal fracture.
In figures 8(c)—(e), there was grooved zone in the middle area of fracture under compression-bending coupling
load. The grooved zones were all along longitudinal direction. It could be observed that the fracture under
compression-bending coupling load was the orthogonal pattern, including transverse (perpendicular to
Haversian system) fracture and longitudinal (parallel to Haversian system) fracture. Because the fracture area
under the compression-bending coupling load was larger than that under the single bending load, the energy
consumption was also larger. Finally, the bending strength increased, but the fracture degree was also larger.

3.2. Discussion

As mentioned above, it was observed that the mechanical response and multi-scale deformation mechanism of
bone material was influenced under compression load, by variations of the surface strain distribution, crack and
fracture pattern. Under the compression load, the circuitous fracture edge and orthogonal fracture pattern was
presented, with the larger fracture energy consumption. Finally, the bending strength increased. To further
investigate the potential mechanism theoretically, the effects of each load to bending properties (bending
strength and bending deflection) were analyzed. As shown in figure 9, the mechanical model of the
compression-bending coupling load is established.

As shown in figure 9, it could be observed the bending moment M;, from component force F;, could
promote the bending deflection. An opposite effect was shown on moment M,. Both M; and M, all acted on
point C. Based on the analysis above, the coordination effects of promotion and inhibition were the potential
reasons for the variations of bending effects. However, the integration effects kept unknown [30, 31].

The hypothesis was proposed that the deformation of the compression side AB and the tension side O;0,
was all continuous and homogeneous. In other words, surfaces AB and O, 0, were assumed to be cambered
surfaces. Therefore, the bending moment M;and M,could be calculated according to equation (7), (8).

| 2FcIPk(I* — 4k — 16FcL2bk>

M 7

: (12 + 4k%)? @
Fo(L? — 4k*)(2L%k + bL? — 4bk?)

M, = 8

> 1 40 )

In the equations, F. is the compression load, L is the length of specimen, « is the inclination angle of
terminal, b is the thickness of specimen, k is the bending deflection.

8



10P Publishing

Mater. Res. Express9 (2022) 025402

X Sunetal

Figure 8. Comparison diagram of microcosmic fracture appearance of specimens (a) Compression load (b) Bending load (c) 500N
compression load (d) 1000N compression load (e) 1500N compression load.
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Figure 9. Mechanical model of cortical bone under compression-bending coupling load.

The numerical calculation was carried out, and the bending moment-deflection (M-k) curves are shown in

figure 10.

It could be observed from figure 10 that the bending moment M; increased at first and decreased then, with
the increasing of the bending deflection. Bending moment M, always decreased with the increasing of bending




10P Publishing

Mater. Res. Express9 (2022) 025402 X Sunetal

10— M1-500N
—o— M1-1000N
1——M1-1500N
8 {—o— M2-500N
|—°—M2-1000N
—2a— M2-1500N 4

Torque/(N-m)
'

T hé T - T . T v T b 1

0 2 4 6 8 10
Deflection/mm

Figure 10. Bending moment-deflection (M-k) curves.

deflection. By contrast, the initial value of M, was bigger than that of M;. When bending deflection was over the
threshold value, M; was bigger than M,. As mentioned in the mechanical analysis, the effect of bending moment
M; and M, to bending deflection was promotion and inhibition, respectively. Therefore, it could be seen that the
increasing of bending deflection was impeded at first and promoted subsequently. Based on the analysis above,
as shown in figure 3, the fracture deflections of all the specimens were less than the critical value 1.6 mm in
figure 10. Therefore, the bending moment M, was always bigger than the bending moment M; until the final
fracture. The inhibition effect was exhibited throughout the whole process of fracture, so that it was protected
from invasion of external load. In order to overcome this inhibition effect, a larger bending load was required.
Therefore, the bending strength increased under the compression load, as shown in figure 5. The obtained
results in figure 10 were consistent with descriptions of the bending stress-deflection curves in figure 3 and
variations of average bending strength in figure 5.

Cortical bone fracture was the result of strain redistribution, and the bending strength of the bone material
was considered to mainly depend on its compression strength [20]. In this research, the compression extents of
both tension and compression surfaces under the compression load were all increased, and the strain
redistribution of the tension surface implied that the neutral axis of the bone specimen moved towards the
compression surface. In the inelastic regime, the volume of cortical bone under compression load was nearly
constant. Ebacher also considered that tension strain rate increased faster than its compression strain rate [20].
Therefore, the strain redistribution of the tension surface might be much heavier. It was well known the
compression strength of bone matrix was bigger than its tension strength, so the micro-crack initiated from the
tension surface firstly. Haversian system served as the energy absorber to prevent and delay the crack
propagation [32]. Therefore, adding the compression load, the bigger elongation in tension surface was achieved
until final fracture, so that it resulted in a greater damage and a larger bending strength. It was consistent with
figure7.

In terms of the mechanical response under the bending load, Currey observed that post-yield deformation
was one of the main factors to determine the bending strength [33]. As shown in figure 3, it could be seen that the
post-yield deformation under the single bending load was obvious. There was no obvious post-yield
deformation under compression-bending coupling load. It could be some correlations with the larger damage
range under compression-bending coupling load. As was well known, the inelastic strains occurring in bone
were mainly associated with micro-damage [34—36]. The micro-damage morphologies in both compression
surface and tension surface were totally different [37], because of the different carrying capacity of the collagen
fibers and hydroxyapatite microcrystal under the compression strain and tension strain [38]. In this research,
compared to single bending load, the cortical bone specimens under the compression-bending coupling load
have been shortened previously, resulting in a reduced size of the collagen fibers and hydroxyapatite
microcrystal in the long axis direction. The micro-porosity between the mineralized collagen fibers staggered
structure decreased with the matrix shrinkage effect. Therefore, the increase of deformation was growingly
difficult. To overcome the bigger binding force in the microstructure of bone material, the bigger deflection and
bending strength were needed than that under the single bending load pattern. It was consistent with the
descriptions in figure 3.
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Trebacz considered that the anisotropy was weakened under the compression load because of the shifting
and friction between collagen lamellae and their gradual separation [39]. It was consistent with the descriptions
in figure 6. Although the low anisotropy could result in a decreased mechanical property, the restricted
connections at both ends hindered the fracture. At the same time, the strain concentration in the middle area
before the final fracture was bigger than that under single bending pattern. Therefore, the fracture area and range
were enlarged. It was consistent with the variation of anisotropy of the cortical bone in figures 7 and 8. It could be
seen that the compression load weakened the anisotropy of cortical bone, but also provided a resistance to the
disadvantage from low anisotropy. It was also consistent with the research of Currey, the cortical bone could still
carry load even after large deformation under the compression load [40]. In this perspective, the compression
load influenced the bending behaviors by changing the anisotropy of the cortical bone material.

In a homogenous material, the straight crack propagation needs less energy dissipation, whereas in a
heterogeneous material, the tortuous crack propagation needs more energy [41, 42]. Therefore, as a natural
heterogeneity biomaterial [38, 43], the tortuous crack propagation under the compression-bending coupling
load was the potential reason for the increased bending strength [20]. Based on the discussions above, the
research findings could be mutually confirmed with the previous studies.

4. Conclusions

In this paper, the mechanical response of cortical bone under the compression-bending coupling load was
investigated by in-situ experiment. The deformation mechanism was discussed from the strain evolution and
multi-scale structure of bone material. Conclusions are drawn as follows:

(1) Our date indicated that the bending strength increased under compression-bending coupling load than
single bending load. Compared to the single bendingload, the surface principal strain presented a more
significant gradient under the compression-bending load. The anisotropy of the cortical bone specimen
decreased under the compression-bending coupling load than single bending load.

(2) The compression load weakened the anisotropy of the bone material, but also provided a slow-release to the
disadvantage from the low anisotropy. The double-edge effect was shown about the compression load,
which caused the ultimate bigger bending strength and also the bigger disruption. There was a critical
deflection between the protective effect and destructive effect of compression load.

(3) The objective service mechanical properties of cortical bone should be investigated deeper considering the
shape of the whole bone and the muscle wrapped around the bone. For future research, it is necessary to
create a complicated bone-muscular system and investigate the mechanical response of the whole system.
This would bring more beneficial discoveries. This research would provide the theoretical references for the
mechanical reliability evaluation of the bone substitute materials, and also provide the reference evidences
for developing of the avoidance strategy on the dangerous stress conditions and for identifying of different
damage conditions.
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