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Abstract
This work reports on the successful synthesis of antimony oxide nanoparticles (AONPs) by
hydrothermalmethod, acid treatment ofmulti-walled carbon nanotubes (f-MWCNTs), and
fabrication of aMWCNT-AONPnanocomposite on screen-printed carbon electrodes (SPCE) to
detect serotonin (5-HT) in tomatoes. The synthesized nanomaterials were all characterizedwith x-ray
diffraction (XRD) spectroscopy, scanning electronmicroscopy (SEM), fourier transform infrared
(FTIR) spectroscopy, ultraviolet-visible (UV–vis) spectroscopy, and transmission electronmicroscopy
(TEM). The electro-analytic and electrocatalytic experiments were performed utilizing squarewave
voltammetry (SWV) and cyclic voltammetry (CV)methods. The SPCE-MWCNT-AONPmodified
electrodes showed better electron transport and improved current response towards detection of
5-HTwhen compared to other electrodes studied. The current response decreased in thismanner, the
SPCE-MWCNT-AONP (84.13μA)>SPCE-fMWCNTs (33.49μA)>SPCE-AONPs (24.40
μA)>SPCE-bare (2.89μA). The sensitivity, limit of detection (LoD) and limit of quantification
(LoQ) for the SPCE-MWCNT-AONPmodified electrode towards 5-HTdetectionwas 0.2863
μAμM−1, 24 .6 nM, and 74 nMrespectively, with linearity from0.016–0.166μM (R2=0.9851)
utilizing SWV. The acquired LoD value for the proposed sensor compared favorably with other
chemicallymodified electrodes from literature. Furthermore, the proposed sensor showed good
reproducibility and excellent anti-interference behavior. Real-sample analysis of 5-HT in tomatoes
showed excellent recoveries ranging from91.32 to 108.28%,with an average RSD (%) value of 2.57
(n=3). The obtained results strongly suggest that the proposed novel sensor could be applicable in
diagnosing point-of-care diseases and therapeutics.

1. Introduction

Neurotransmitters (NTs) are neurochemicals that aid in neurotransmission between nerve cells; located in the
synaptic cells and cellmembrane at the axon [1]. Themost studied and important class ofNTs are
catecholamine, which includes dopamine, serotonin, and epinephrine [2]. NTs are involved inmany different
physiological and biological processes in the human body.NTs regulate stress, rest, feelings, hunger, learning,
mood, recollection, attention, and other cognitive functions [3, 4]. However, abnormal levels ofNTs in the
blood have been linked to neurological diseases and disorders such as depression, stress, bipolar disorder,
ADHD, drug addiction, Parkinson’s diseases, schizophrenia, andAlzheimer’s diseases [5–9]. Therefore,
monitoring and evaluation of these biomolecules in the body is of great clinical, pharmaceutical, andmedical
importance. Since levels ofNTs in the body serve as biologicalmarkers for various neurological diseases and
disorders, a simple, sensitive, selective, low-cost, and quickmethod of analysis is required. Furthermore, early
detection of abnormalNTs levels in the blood leads to early diagnosis of diseases at an early stage and can reduce
side effects associatedwith various diseases, such asmemory loss caused by Parkinson’s diseases [10].
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In the past, NTsweremeasuredwith the aid ofmass spectroscopy (MS), microdialysis, capillary
electrophoresis (CE), and high-pressure liquid chromatography (HPLC) in conjunctionwith the imagining
techniques to improve resolution and ultrasensitive detection [1, 11–13]. Thesemethods proved little success
because theywere either expensive, time-consuming, slow in response, offered low selectivity, or sensitivity and
some are complex to perform.Of recent, electrochemicalmethods have been gaining popularity amongst
researchers towards the detection ofNTs. Electrochemical techniques are found to be highly sensitive, simple,
time-saving, offer rapid analysis, and increase the sensing ability ofNTs inside living entities and in vivo real-
time analysis [14].

Nonetheless, electrochemical detection ofNTs at bare electrodes, such as platinum, gold, and glassy carbon
electrodes, presents twomain challenges. The challenges arise from the co-existence ofNTswith other
biomolecules in the body that have similar oxidation potentials called interfering compounds. These interfering
compounds cause overlapping oxidation potentials at unmodified electrodes; which reduces the reproducibility
and selectivity of the electrode towards detection ofNTs in excess interference environment. The second
challenge is inferring compounds such as AA andUA at higher concentrations thanNTs such as serotonin (5-
HT), dopamine (DA), etc. This leads to surface electrode biofouling and affects the LoDof the electrode to detect
NTs in an excess interference environment simultaneously. For example, ascorbic acid (AA) is reported to be
present at concentrations 100–1000 times higher than that of 5-HT in the blood [15]. To address the issues raised
above,many researchers have chosen to utilize nanomaterials including nanoparticles, metal oxide
nanoparticles, conducting polymers,metal nanoparticles, inorganic and organic chemicals as electrode
modifiers [16]. The nanomaterialmentioned above can be combined to create a nanocomposite with greater
electron transfer kinetics and enhanced electrocatalytic properties. Habibi et al [17]have shown thatmodified
electrodes significantly increase the electrode’s sensitivity and selectivity towards the determination ofNTs
compared to unmodified electrodes.

Serotonin (5HT) is of significant importance to humans’ physiological and biological well-being [18]. 5-HT
controls body temperature,mood, ejaculatory tendency,muscular contraction, bowelmotility, liver
regeneration, bladder control, endocrine regulation, andmelancholy, amongmany other biological activities.
However, abnormal serotonin levels in the body have been reported to cause insomnia,migraine, anxiety, blood
clotting, and unexpected infantmortality.Moreover, this neurotransmitter has been proven to cause
schizophrenia, insomnia, bipolar disorder, and fibromyalgia [5]. Lastly, literature correlates elevated levels of
5-HT in the bloodwith a dangerous and fatal disease called serotonin syndrome and stimulated cerebral
activities.

Due to itsmedical, chemical, and pharmaceutical importance, traditionalmethods such as electrochemical
(voltammetry) [19], sol-gel [20], capillary electrophoresis (CE) [13], high-pressure liquid chromatography
(HPLC) [21], High-pressure liquid chromatography (HPLC)with colorimetry [22], andmass spectrometry
(MS) [23] have been carried out to determine 5-HT in access interfering compound environment using different
surface electrodemodifiers. From listed techniques, only electrochemical techniques have seen growth in their
popularity towards detecting 5-HT in the presence of interfering compounds. The detection of 5-HT in bodily
fluids has been accomplished using electrochemical sensorsmodifiedwithmulti-walled carbon nanotubes
(MWCNTs), single-walled carbon nanotubes (SWCNTs), nanofibers, graphene,metal nanoparticles,metal
oxide nanoparticles, and polymers [24].

The screen-printed electrodes (SPEs) have found new interest amongst researchers because they are
inexpensive tomass-produce, disposable, sensitive, portable, easy to use, versatile, reliable, and allow for high
reproducibility for in situ analysis compared to solid electrodes such as glassy carbon electrodes (GCEs) [24–26].
Another advantage of SPEs over solid electrodes is that they require no polishing on the surface of the electrode
[27]. Hence, their wide application in electro-analytical chemistry and environmental, clinical, and agricultural-
food areas as electrochemical sensors [28].

Nanotechnology has been instrumental in the development of electrochemical sensors and biosensors. For
example, nanotechnology has helped produce small, portable, intelligent sensors requiring little energy to
operate. As a result, sensors can bemanufactured at a large scale at an economically viable price [29]. Because of
their exceptional characteristics, nanoparticles (NPs) have been utilized in electrochemical sensor applications.
These characteristics include a high surface area to volume ratio,more active absorption sites, high reactivity,
and compact size. Hence, their wide adoption across biomedical, industrial, food and agriculture sectors and
environmental analysis [30, 31].

Owning to their tiny crystallite size, semiconductormetal oxide-based nanomaterials have beenwidely
employed as sensors inmany applications [32]. Semiconductingmetal oxide-based sensors are tiny, durable,
affordable, sensitive, and simple tomanufacture,making them ideal for handheld portablemedical diagnostic
devices [32]. Owing to their exceptional chemical stability, real-timemonitoring, and ease ofmanufacturing,
they have been utilized to build very sensitive gas sensors [33]. Antimony oxide nanoparticles (AONPs) have
exceptional features such as a high refractive index, high resistance to abrasion, high proton conductivity,
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outstandingmechanical strength, and high proton absorptive capacity, which underpins their extensive use in
the chemical, sensing, and semiconductor fields [31, 34]. In the chemical industry, these nanoparticles are added
to rubber, paints, textile, plastic, etc., asflame retardant synergists [35, 36].

Furthermore, they can be incorporated into alloys and still be used as a catalyst in some reactions. For
example,Miura et al used an antimony oxide nanocomposite to create a humidity sensor [37]. Furthermore,
these nanomaterials can be used to sense gases such asmethane [38]. As a consequence of their high heat and
electrical conductivity properties, thesematerials have found application in themanufacturing of optical,
electronic, and optoelectric devices such as light-emitting diode (LED) and batteries [39], binary glasses [40],
solar cells devices [41], anti-friction alloys, and pottery glaze [42].

Carbon nanotubes (CNTs) arewidely used in electrochemical sensors, notablymulti-walled carbon
nanotubes (MWCNTs). This is attributed to their unique electronic nature, enabling ease of electron transfer
andmechanical and structural properties [43, 44]. Acid treatment of CNTs helps eliminate end caps, which
generates defect sites and attaches oxygen functional group alleged to assist with adsorption and electron transfer
[45]. Carbon nanotubes (CNTs)-metal oxide nanoparticles (MONPs)nanocomposites have been extensively
used towards the detection ofmonoamine neurotransmitters [46–49]. Carbon nanomaterials (CNTs, and
graphene)-MONPs nanocomposite electrodes are being studied increasingly due to better optical, electrical, and
magnetism characteristics as the consequence of synergies between two nanomaterials [50, 51]. In addition,
CNTs aid in the catalytic activity ofMONPs [50].

TheMWCNT-AONPnanocomposite fabricated electrodes have been successfully used to detect various
analytes with excellent results. For instance,Hai et al [52] fabricated an electrochemical sensormodifiedwith
anMWCNT-AONPnanocompositemodified electrode to simultaneously detect cadmium (Cd 2+) and lead
(Pd 2+) ions inwater samples. In the same light,Masibi et al [53]usedAONP-/SWCNT/PANI nanocomposite
modified electrode to detect lindane from river water samples. Theirmodified electrode displayed an LoDof
2.01 nM towards detection of lindane from river water using squarewave voltammetry. In another study, Cidem
et al fabricated an electrochemical detector usingMWCNT-AONPnanocomposite with a sensitivity for
tramadol (TRA) detection from a pharmaceutical sample and theirmodified electrode showed a linear range
from0.04μM–30μM (R2=0.9901)with an LoD value of 9.5 nMusing cyclic voltammetry technique [54].

Althoughmuch research has been done on the determination of 5-HTwith other inferring compounds
usingmodified electrodes [44, 55–59], no literature discusses electrochemical detection of 5-HTusing
MWCNT-AONPnanocompositemodified electrode. This study, therefore, seeks to use chemical sensors to
perform electrochemical detection of 5-HT atMWCNT-AONPnanocompositemodified electrodes. The
SPCE-MWCNT-AONPnanocompositemodified electrode demonstrated improved electrocatalytic and
electro-oxidation properties towards detecting 5-HT compared to othermodified and unmodified electrodes.
This was attributed to the high surface area, which facilitated faster electron transfer kinetics that increased the
selectivity and sensitivity of the electrode towards the detection of 5-HT in an excess AA environment.

2.Methods andmaterials

2.1. Chemicals and apparatus
The chemicals listed belowwere acquired and used as themanufacturers delivered them. SigmaAldrich (USA)
provided antimony trichloride (SbCl3) (99%), multi-walled carbon nanotubes (MWCNTs) (O.D.× I.D.× L
10 nm±1 nm× 4.5 nm±0.5 nm× 3−∼6μm) (98%), potassiumhexacyanoferrate (III)K3[Fe(CN)6] (99%),
Potassiumhexacyanoferrate (IV)K4 [Fe(CN)6] (99%), serotonin hydrochloride powder (�98%), ascorbic acid
(99.50%), sodiumhydroxide (NaOH) (98%), hydrochloric acid (HCL) (32%), andN,N- dimethylformamide
(DMF) (C3H7NO) (99%). Toluene (C7H8) (99%)was acquired from the SAARCHEMPty Ltd (RSA). Sodium
hydrogen orthophosphate (Na2HPO4) (99%) and sodiumdihydrogen orthophosphate (NaH2PO4) (99%)were
purchased fromGlassworld Pty Ltd. (RSA) and Labchem company (RSA). Phosphate buffered saline (PBS)
(pH7)was preparedwith appropriate amounts ofNa2HPO4, andNaH2PO4 and the pHof the solutionwas
adjusted accordingly using 0.1 MNaOHand 0.1 MHCL.WhileNitric acid (HNO3) (�55%)was obtained from
Merck Pty Ltd (RSA). Distilledwaterwas utilized throughout the study to prepare chemicals. Electrochemical
studies were done using a portable dropsense kit fromMetrohmPty Ltd. (RSA) containing biopotentiostat 300
(μstat-i 400 s), 910 potentiostatmini, Dropview 8400 software disc, one cable connector (CABSTAT1), boxed
connector (DRP-DSX4MM), screen printed carbon electrodes (SPCE), and power adapter. VWREuropean
company, aGermanmanufacturer, suppliedWhatmanNo 1filter papers (size: 150 mm, particle retention:
5–13μm).
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2.2. Synthesis of AONPs
Antimony oxide nanoparticles (AONPs)were synthesized using the hydrothermalmethod published byChen
et al [60]. To get a transparent solution, approximately 2 mMof antimony trichloride (Sb2Cl3)was transferred
into 20 ml of toluene solutionwith rapid stirring. Tomake a lacteous colloid, 20 ml of distilledwaterwas added
to the solution. After that, themixturewas stirred for 15 min, and 6MofNaOHwas added to bring the pH to
between 8 and 9. After another 20 min of agitation, the solutionwas placed into a 100 mlTeflon-lined stainless
autoclave for 12 h at 120 °C.The resultingwhite powder waswashed repeatedly with 50%ethanol solution and
then evaporated at 60 °C for 6 h.

2.3. Synthesis of f-MWCNTs
The synthesis of functionalizedmulti-walled carbon nanotubes (f-MWCNTs)was done via the nitric acid
treatmentmethod. Approximately 300 ml of 1 Mnitric acidwas used to dissolve 300 mg ofmulti-walled carbon
nanotubes (designated as rawmultiwall carbon nanotube: r-MWCNTS). Then themixture was sonicated in ice
water at 50 °C for 4 h. Themixture wasfilteredwith deionizedwater until pH 7was reached. The product was
left overnight in an oven to dry [61].

2.4. Characterization of the synthesized nanomaterials
Carry series 300, UV–vis spectrophotometer (Agilent technologies,Waldbronn, Germany), FTIR (Agilent
technologies, Cary 600 series, Billerica,MA,USA), XRD (Bruker-AXS,Madison,USA), SEM (JEOL company,
Peabody,MA,USA), andTEM (Tecnai G2 spirit FEI, USA) techniques were used to characterize all prepared
nanomaterials, AONPs, f-MWCNTs, andMWCNT-AONPnanocomposite.

2.5. Synthesis of theMWCNT-AONPnanocomposite
Approximately 2 mg of functionalizedmulti-walled carbon nanotubes (f-MWCNTs) and 6 mg of antimony
oxide nanoparticles (AONPs)were suspended in a 2 ml N,N- dimethylformamide (DMF) solution. Then, the
suspensionmixture was agitated at ambient temperature for 48 h. The resultant nanocomposite was dried in an
oven at 25 °C for 24 h [53].

2.6.Modification of the screen-printed carbon electrodes
The constructed electrodes weremodified using the dried castmethod. Roughly 2 mg of each synthesized
nanomaterials (AONPs, f-MWCNTs, andMWCNT-AONPnanocomposite)were suspended in 1 mlDMF
solution. Each suspensionwas ultra-sonicated for 30 min at room temperature. Then, 20μl of each suspended
mixturewas dropped on the surface of theworking electrode (SPCE)with amicropipette, then dried at room
temperature to get themodifiedworking electrodes [62].

2.7. The electrocatalytic and electro-analytic experiments
TheDropview 8400 software programme fromMetrohmPty Ltd. (RSA)was used to conduct electrochemical
experiments at 25±1°Cusing 4 mmdiameter screen-printed carbon electrodes (DropSense 110) consisting of
theworking electrode (A/AgCl), counter electrode, and the reference electrode connected to dropview 8400 910
potentiostatmini. Electrochemical characterization and electrocatalytic experiments at the constructed
electrodes (SPCE-bare, SPCE/f-MWCNTs, SPCE-AONPs, and SPCE/MWCNT-AONP)were performed using
5 mMK [Fe(CN)6]

3−/4− and 0.1 mM5-HTdissolved in 0.1 MPBS (pH7) at the scan rate of 25mVs−1 within
−0.2–1.0 Vpotential windowperiod using cyclic voltammetry (CV) technique. Electro-analytic experiments
were conducted utilizing squarewave voltammetry (SWV) to determine the proposed electrode’s sensitivity,
selectivity, and limit of detection. The parameters for the SWVmethodwere set at the frequency (10 Hz),
potential window ranging from−0.2–0.8 V, potential amplitude (0.01 V), Estep (0.01 V) and other parameters
were left as theywere at zero.

2.8. Real-sample analysis
The capacity of the designed electrode to detect 5-HT in the real analysis was done using fresh tomatoes samples
purchased from a local supermarket. The tomatoes were blended using a domestic electric blender. The
resultant blendwas thenfiltered usingWhatmanNo 1filter paper to obtain a clear, colourless tomato extract
solution. Afixed volume of the tomatoes extract (1 ml)was added to different volumes of the stock solution to
make up to 10 ml of the sample. The experiment was repeated three times using the SWV technique.
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3. Results and discussion

3.1. UV–vis characterization of synthesizedmaterials
Figure 1 displays theUV–vis for (a)AONPs, (b) r-MWCNTs, f-MWCNTs, andAONP-MWCNT spectra, and
(c) the absorption band energy gap of the synthesized nanoparticles. The spectrum infigure 1(a) indicates the
formation of AONPs by an absorption peak at 297 nm [62–64]. A shift to a longer wavelength depends
significantly on the particle size and aggregation of the particles [65]. The absence of any absorption peak
between 400–800 nm region suggests that the synthesizedAONPs can be used tomanufacture non-linear optical
sensors devices [63, 64]. The direct energy band-gap of AONPswas determined fromTauc’s plot shown in
figure 1(c). To obtain the direct band energy gap, a straight-line portion of (αhν) versus (hν)was extrapolated to
zero. The direct band-gap energy was 3.26 eV [63]. The spectrum infigure 1(b) shows theUV spectrumof
r-MWCNTs, f-MWCNTs, andMWCNT-AONPnanocomposite. From the spectrum, the absorption peaks at
285 nmand 345 nmobserved in theAONP-MWCNTnanocomposite were assigned to f-MWCNTsπ–π*

transitions [66]. And a peak at 290 nm signifies the presence of AONPs in the AONP-MWCNTnanocomposite.

3.1.2. FTIR characterization of synthesizedmaterials
Figure 2 shows the FTIR bands of (a)AONPs, (b) rawmulti-walled carbon nanotubes (r-MWCNTs),
functionalizedmulti-walled carbon nanotubes (f-MWCNTs), and (c)AONP-MWCNTnanocomposite ranging
from450 cm−1

–4000 cm−1 regions. Figure 2(a) illustrates the spectrumof f-MWCNTs and r-MWCNTs. The
peaks of interest were the absorption bands at 1569 cm−1, 1742 cm−1, 2326 cm−1, 3410 cm−1, and 3780 cm−1

whichwere assigned to the vibrational frequency of carboxylate anion (COO−), (C=O) of the (–COOH), (O–H)
stretching from the –COOH, (–OH) stretching vibrations of the (−COOH), and free hydroxyl groupO–H. [61,
67–69]. The presence of these functional groups in the spectra (figure 2(b)) indicated the presence of the
(−COOH) on the surface wall of theMWCNTs, which confirmed the successful acid treatment ofMWCNTs.

The FTIR bands of AONPs andMWCNT-AONPnanocomposite are represented in figure 2(b). From the
spectrum, the characteristics bands of all nanomaterials used to synthesis the nanocomposite are visible. The

Figure 1.UV spectrumof (a)AONPs, (b) r-MWCNTs, f-MWCNTs, AONP-MWCNT, and (c) band-gap energy of the synthesized
AONPs.
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absorption band at 517 cm−1, and 630 cm−1 indicating the stretching of Sb–OandO–Sb–Oof theAONPs,
respectively, in the nanocomposite [53, 62–64]. The absorption bands at 3399 cm−1 and 37126 cm−1 were
attributed to the stretching and vibration of (–OH) from the (–COOH), and the bending vibrations of theOH
group inwater respectively. Absorption bands at 1408 cm−1, 1569 cm−1, and 2326 cm−1 indicated the
vibrational band of C=C stretching benzenoid rings, (C=O) from the (–COOH) andO–Hstretching from
(–COOH).

3.1.3. X-ray diffraction of synthesizedmaterials
XRDwas utilized to determine the crystallinity and crystal structure of the synthesizedAONPs. TheXRD
patterns of (a)AONPs, (b) fMWCNTs, and (c)MWCNT-AONPnanocomposite are shown infigure 3. The
spectrumof AONPs in (figure 3(a)) revealed sharp and intense peaks with no diffraction halo, indicating that the
preparedAONPswere of high crystallinity and purity [63]. The peaks at 2θ=19.46° (110), 25.48° (111), 27.73°
(222), 28.46° (121), 33.02° (002), 32.73° (131), 34.84° (012), 36.54° (200), 39.63° (032), 44.33° (042), 46.02°
(231), 47.11° (240), 50.47° (161), 55.78° (170), 58.90° (242), and 60.90° (261) corresponds to the formation of
AONPs and the formedAONPs showed an orthorhombic phase orientation [60]. Figure 3(b) depicts the XRDof
f-MWCNTs. The diffraction peak at 2θ=25.94° (002) and 2θ=50.66° (004) corresponded to the amorphous
nature of f-MWCNTs [53, 70]. Figure 3(c) represents the XRD image of theMWCNT-AONPnanocomposite
showing distinctive diffraction peaks of all nanomaterials used to synthesize the nanocomposite. The presence of
AONPs in theMWCNT-AONPnanocomposite is indicated by diffraction peaks at 2θ=19.46° (110), 27.73°
(222), 28.46° (121), 32.73° (131), 33.02°(002), 34.84° (012), 35.90° (200), 44.33° (042), 46.00° (231), 50.47°
(161), and 55.78° (170).While the diffraction peak at 2θ=25.96° (400) indicates the formation of f-MWCNTs
in the nanocomposite.

3.2. SEMcharacterization of synthesizedmaterials
The SEM techniquewas used to determine the shape of the synthesized nanomaterials and examine the
surface area of f-MWCNTs. This is because dry oxidation can cause damages and defects on the surface
area ofMWCNTs [69]. Shown infigure 4 are the SEMdepictions of (a)AONPs, (b) f-MWCNTs, and

Figure 2. FTIR characterization of (a) functionalized-MWCNTs, raw-MWCNTs, and (b)AONPs,MWCNT-AONPnanocomposite.
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(c)MWCNT-AONPnanocomposite. Infigure 4(a), themorphology of synthesizedAONPswas evenly
distributed rod-like in shape. Figure 4(b) represents the SEM image of fMWCNTs via the acid treatment
method. Themorphology of f-MWCNTswasworm-like in shape somewhat similar to this previous study [69].
Moreover, the image showed no signs of any surface damage on the f-MWCNTs surface nor change in their size.
SEMdepictions infigure 4(c) represent theMWCNT-AONPnanocomposite. The image showed the
attachment of AONPs on the surfacewalls of f-MWCNTs. The presence of AONPs on the surfacewall of
MWCNTswas taken tomean the successful formation ofMWCNT-AONPnanocomposite.

3.2.1. TEM characterization of synthesizedmaterials
TEM is one of the criticalmicroscopic techniques used in sciencemainly to elucidate the size of the prepared
nanomaterials. Depicted infigure 5 are TEMmicrographs of (a)AONPs and (b)MWCNT-AONP
nanocomposite each atmagnifications of 50 nm, and (c)particles size for AONPs. The average particle size for
synthesizedAONPswas found to be≈25 nm in sizewhile the largest formed nanoparticle reached the size of
95 nmas shown infigure 5(c).

3.3. Cyclic voltammetry comparative study of bare andmodified electrodes
Figure 6 represents the comparative cyclic voltammogram for SPCE-bare, SPCEmodifiedwith rawMWCNTs
(SPCE/raw-MWCNTs), and SPCEmodifiedwith functionalizedMWCNTs (SPCE/f-MWCNTs)prepared in
5 mMK [Fe (CN) 6]

3−/4− redox probe at a scan rate of 25mVs−1. The peak separations between the SPCE-bare,
SPCE/r-MWCNTs, and SPCE/f-MWCNTswere 0.48 V, 0.16 V, and 0.15 V, individually. The peak separations
exceeded the anticipated value of 0.059 V predicted for a fast one-electron transfer process for all electrodes. The
anodic current peak at SPCE/f-MWCNTswas 1.58 and 2.29 times greater than SPCE/r-MWCNTs and SPCE-
bare, respectively. Thismeans that the SPCE/f-MWCNTs electrode is fast at electron transfer and has a greater
electro-active surface area than the SPCE and SPCE/r-MWCNTs electrodes.

Figure 3.XRD results for (a)AONPs, (b) f-MWCNT, and (c)MWCNT-AONPnanocomposite.
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3.4. The effects of pHbuffer on the anodic peak of 5-HT
Cyclic voltammograms infigures 7(a) and (c) illustrates the effect of different buffer solution on the anodic peak
of 5-HT at the constructed electrode and the inset graphs represent the relationship between anodic peak
current versus pH at scan rate (a) 10mVs−1 and (c) 25mVs−1 respectively. This experiment was necessary
becauseNTs such as 5-HT andDA are available in bodily fluid at pH7.40. The experiment was conducted using
0.1 mM5-HTmade in 0.1 MPBS (pH3, pH 6, and pH7, pH9) solutions at scan rates of 10mVs−1 and
25mVs−1 respectively. Infigures 7(a) and (c), an increase in pH resulted in a peak potential shift towards lower
values, suggesting the involvement of protons in the reaction for all scan rates. Similarly, insets infigures 7(a)
and (c) revealed that as the pH increased, the peak current also increased until pH 7 atwhich point it rapidly
decreased to pH9 for all scan rates. This suggests that the SPCE-MWCNT-AONPmodified electrodewas stable
at pH7 PBS. At pH7, the current response at a scan rate of 25mVs−1 was double that at 10mVs−1. Due to the
significant variation in current responses between the two scan rates, the following experiments were conducted
using 0.1 mM5-HTdissolved in 0.1 MPBS (pH7) at a scan rate of 25mVs−1.

The correlation between the peak potential and pH is shown infigures 7(b) and (d), and the relationmay be
expressed using the following equations: Epa=0.034 pH+0.0597, and Epa=0.032 pH+0.58with R2 values
of 0.982 and 0.992 for scan rate at 10mVs−1, and 25mVs−1 respectively. The slopes of dEp/dpH plots were
0.034 V pH−1 and 0.032 V pH−1, closer to theNernstian theoretical value of 0.059 V pH−1 for a one proton per
electron stoichiometry for all scan rates. Therefore. The reactionmechanism for5-HT at the surface of the
constructed electrodewas a two-protons accompanied by a two-electrons reactionmechanism, as seen in
scheme 1 [48, 71].

3.5. Electrocatalytic reduction of 5-HT
Cyclic voltammograms for the SPCE-bare, SPCE-AONPs, SPCE/f-MWCNTs, and SPCE-AONP-MWCNT are
shown infigure 8. The voltammograms in figure 8 displayed a distinctive and characteristic shape expected for
5 mMK [Fe (CN) 6]

3−/4− solution at the scan rate of 25mVs−1 within−0.2–1.0 Vpotential window. The anodic

Figure 4.The SEMdepiction for (a)AONPs, (b) f-MWCNTs, and (c)MWCNT-AONPnanocomposite.
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and cathodic peakswere located at (Ipa=99.15μA; Epa=0.22 V), and (Ipc=−124.18μA; Epc=−0.06 V)
at SPCE-MWCNT-AONPnanocompositemodified electrode. A shift in the nanocomposite-modified
electrode’s peak potential towards negative potentials indicates a decrease in the over-potential of the redox

Figure 5. (a)TEM images for AONPs, (b)MWCNT-AONPnanocomposite, and (c) particle size for AONPs.

Figure 6.Comparative cyclic voltammogramof SPCE-unmodified, SPCE/r-MWCNTs, and SPCE/f-MWCNTs.
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process at themodified electrode due to enhanced electrocatalytic properties. The voltammogram in figure 8
showed a decrease in current response in the following order, SPCE-MWCNT-AONP>SPCE-
fMWCNTs>SPCE-AONPs>SPCE-bare. A higher current response at the nanocompositemodified
electrode attests to the synergic effect betweenCNTs andAONPs. According to table 1, all electrodes exhibited
Ipa/Ipc values close to one. As a result, all reactions at the surface ofmodified and unmodified electrodes were
reversible. The SPCE-MWCNT-AONP, SPCE-fMWCNTs, SPCE-AONPs, and SPCE-bare, peak to potential
separations (ΔEp) of 0.17, 0.19, 0.21, and 0.48 Vwere observed. All the peak to potential values for all electrodes
were greater than the theoretical value of 0.059 V accepted for a quick-one electron transfermechanism. Each
electrode’s resulting active surface areawas evaluated using the Randle–Sevcik equation (1). A larger active

Figure 7.The effect of PBS pHon the anodic peak current of 0.1 mM5-HTmade in 0.1 MPBS at pH: 3.0, 6.0, 7.0, and 9.0. (a) Scan
rate 10 mV s−1 and (b) 25 mV s−1. Inset: the relationship relating peak current versus the pH, (c) and (d) peak potential versus pH at
10mVs−1, and 25mVs−1 using SPCE-AONP-MWCNTmodified electrode.

Scheme 1. Schematic representation of electro-oxidation of serotonin. Reprinted from [71], Copyright (2018), with permission from
Elsevier.
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surface area indicates increased chances of the electro-active site exposure to an electrocatalytic reaction [72].
The electrodes showed a decrease in active surface area in thismanner, the SPCE-MWCNT-AONP (0.716
cm2)>SPCE-fMWCNTs (0.346 cm2)>SPCE-AONPs (0.123 cm2)>SPCE-bare (0.054 cm2) electrode. The
SPCE-MWCNT-AONPmodified electrode had thirteen times larger active surface area than the bare electrode.
Due to high current response, the SPCE-MWCNT-AONP (Ipa=76.68μA, and Ipc=−86.59μA)modified
electrode showed a tiny over-potential compared to othermodified and bare electrodes. A high over-potential
was noted at the bare SPCEwith a low current response of Ipa=40.84μAand Ipc=−55.82μAwhen
comparedwith themodified electrode. Amodified electrode can significantly reduce the electrode’s over-
potential while increasing the electrode’s sensitivity and selectivity for detecting electroactive substances. The
above-stated information greatly supports the notion that chemicallymodified electrodes, especially the SPCE-
MWCNT-AONPmodified electrodes, exhibit better redox potentials, faster electron transfer kinetics, and
stability than unmodified electrode [27]. As a result, the SPCE–MWCNT-AONPmodified electrodewas
selected and used throughout the study.

u=ip x n AD C2.69 10 15 3 2 1 2 1 2 ( )/ / /

Where ip, D,C, and v1/2 represent the peak currents (Amps), diffusion coefficient (cm2/s), analyte concentration
(mol/cm−3), and the square root of scan rate (v/mVs−1)1/2 respectively.Where n andA indicate the number of
electrons transported and the active surface area of themodified electrode (cm2), correspondingly.

3.2. The effects of scan rate on electro-catalysis of 5-HT
Cyclic voltammograms infigure 9(a) show the effect of scan rate study on the anodic peak in 5 mMof
K[Fe (CN) 6]

3−/4− produced in 0.1 MPBS (pH7) at scan rates of 10–300mVs−1. The voltammogram in
figure 9(a) showed an anodic peak shifted towards a higher potential and the cathodic peaks shifted towards
negative potentials as the scan rate increased, suggesting a diffusion-controlled reaction took place. The
reduction and oxidation peak currents increase in proportion to the scan rate, indicating a diffusion-
controlled reaction took place as shown in figure (b). Additionally, the voltammogram indicated that an ideal
reversible reaction occurred, which is confirmed by the almost identical gradient slopes observed at Ipa=
73.215μA/(mVs1)1/2–133.55 (R2=0.993) and Ipc=−73.549μA /(mVs1)1/2+142.87 (R2=0.995) [73].

Figure 8.Comparative CV formodified and bare electrodes in 5 mMof [Fe (CN) 6]
3−/4− in the presence of 0.1 MPBS (pH7) at a scan

rate of 25mVs−1.

Table 1. Summary of CV results formodified and bare electrodes in a 5 mM [Fe (CN) 6]
3−/4− produced in a 0.1 M

PBS (pH7).

Working electrodes Ipa(μA) Ipc(μA) Ipa/Ipc Epa(V) Epc(V) ΔEp(V) E°(V)

Bare SPCE 40.84 −55.82 −0.73 0.35 −0.13 0.48 0.24

SPCE-AONPs 48.17 −64.05 −0.75 0.23 0.02 0.21 0.11

SPCE-f-MWCNTs 65.50 −74.64 −0.88 0.25 0.06 0.19 0.10

SPCE-AONP-MWCNT 76.68 −86.59 −0.89 0.19 0.02 0.17 0.09
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The relation between the potential and the scan rate logarithm is shown infigures 9(c) and (d). The Tafel value
was determined using a gradient slope of Epa=0.2031 logv—0.0857 (R2=0.994).

Using the acquired gradient slope, a Tafel value of 406.0mVdec−1 was determined for the SPCE-MWCNT-
AONPmodified electrode. The observed Tafel valuewas greater than the predicted value of 118mVdec−1,
indicating that adsorption or reaction intermediates were involved in the reaction at the surface of the fabricated
electrode. The Tafel valuewas obtained using the Tafel equation (2);

= +Ep
b

v c
2

log 2( )

Where Ep, b, and c stands for potential, the gradient slope of the graph, and the constant respectively.
The coefficient of electron transfer (α) and the number of electrons transported (n) at the fabricated

electrodewere determined to be 0.50 and 0.597 (n)=1 using equations (3) and (4) assigned as the cathodic and
anodic peaks by Laviron [74].

a
=

-
Slope

RT

nF

2.3
3( )

a
=

-
slope

RT

nF

2.3

1
4

a( )
( )

Whereby R, F, T, andα represents the gas constant (8.314 J mol−1. K), faradays constant (96500 C), temperature
(Kelvins), and the coefficient of electron transport at the fabricated electrode respectively.

The rate constant (ks)was used to calculate the speed at which the reaction at the SPCE-MWCNT-AONP
modified electrode proceeded. For a reversible and quick reaction, the rate constant (ks) valuemust be larger
than 10–2 c m s−1, while for a quasi-reversible and a slow reaction, the rate constant valuemust be greater than
10−4 but less than 10−2 cm s−1 [75]. Equation (5)was used to obtain the rate constant value (ks) of 0.046 cm s−1

for the SPCE-MWCNT-AONPmodified electrode.

Figure 9. (a) Scan rate for cyclic voltammograms of SPCE-MWCNT-AONP, (b) regression plot of Ipa/Ipc versus square of scan rate,
(c and d) linear plot of peak potentials (Epa/Epc) versus the log of scan rate (v/decade) in 5 mMredox probemade in 0.1 MPBS
(pH7).
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Figure 10 represents the electrochemical oxidation of 0.1 mM5-HT at various electrodesmade in 0.1 MPBS
(pH7) at a scan rate 25mVs−1. Figure 10(a) displayed a distinctive anodic peak for 5-HT at Epa=0.35 V for the
SPCE-MWCNT-AONPmodified electrode. This is in agreementwith otherworks done [48, 57]. Anodic peak
potential for SPCE-fMWCNTs, SPCE-AONPs, and SPCE-bare electrodes were located at Epa=0.32 V, 0.27 V,
and 0.50 V respectively.Moreover, the voltammogram showed that the electro-oxidation reaction of 5-HTwas
irreversible for all electrodes. The SPCE-MWCNT-AONP showed the greatest electrocatalytic response to 5-HT
when compared to othermodified electrodes. The current response decreased in thismanner, the SPCE-
MWCNT-AONP (84.13μA)>SPCE-fMWCNTs (33.49μA)>SPCE-AONPs (24.40μA)>SPCE-bare (2.89
μA). The current response at the SPCE-MWCNT-AONP electrodewas 29 times greater than at the SPCE-bare.
A higher current response to 5-HTobserved at the SPCE-MWCNT-AONPmodified electrode indicated
excellent biocompatibility of the nanocomposite with the analyte and improved electrocatalytic activity. These
results show a pattern similar to those obtained infigure 8 using redox probe solution. The linear relationship
between scan rate and the anodic peak current is shown infigure 11(a). The voltammogram shows a slight shift
in oxidation peak current towards higher potential values with increasing scan rate. Figure 11(b) depicts a linear
correlation between the current and square root of scan rate for 5-HT, implying a diffusion-controlled reaction
took place.

3.3. Electro-analysis experiment for 5-HT
The proposed sensor’s sensitivity and detection limit were carried out using a 0.1 MPBS (pH7)with various
concentrations of 5-HTwith the help of SWV. The parameters for the SWVmethodwere set at the frequency
(10 Hz), potential window ranging from−0.2–0.8 V, potential amplitude (0.01 V), Estep (0.01 V) and other

Figure 10. (a)CVcomparison betweenmodified and unmodified electrodes in 0.1 mM5-HT solution produced in 0.1 MPBS pH7 at
a scan rate of 25mVs−1, and (b) current responses comparison betweenmodified and unmodified electrodes.

Figure 11. Scan rate study at the nanocomposite-modified electrode in 0.1 mM5-HT and (b) current response versus square root scan
rate with error bars.
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parameters were left as theywere at zero. The objectivewas to evaluate and analyze the effect of various analyte
concentrations on the current response of 5-HT. Figure 12 displays a directly proportional relationship between
the concentration of 5-HT and the current response. The linearity of the SPCE-MWCNT-AONPmodified
electrode ranged from0.016–0.166μM, and a linear regression equation of Ipa=0.2863 [5-HT]/μA+1.6741
(R2=0.9851), and a detection limit (LoD) of 24.6 nM, as displayed infigure 12(b).The obtained data show a
strong correlationwith this work [54]. The resulting limit of detection (LoD) valuewas calculated from
equation (6), and the limit of quantification (LoQ) for themodified electrodewas calculated using equation (7).
The LoD and LoQvalues were calculated to be 0.025μMand 74 nM, respectively.

=
xSD

m
LoD

3.3
6( )

=
xSD

m
LoQ

10
7( )

SD stands for standard deviation, whilem represents the slope of the calibration plot.
As demonstrated in table 2, the obtained results, including the LoD and sensitivity of the SPCE-MWCNT-

AONPnanocomposite electrode, comparedwell to other chemicallymodified electrodes used to detect 5-HT
from literature.

3.4. Selective determination of AA and 5-HT
Cyclic voltammogramwas utilized to establish the selective of the proposed electrode by simultaneously
detecting 0.1 mM5-HT and 0.1 mMAAprepared in 0.1 MPBS (pH7) scan rate ranging from10–300mVs−1.
Figure 13(a) shows the results of the experiment. An increase in scan rate resulted in a positive peak potential
shift for all analytes. However, the electrode showed a higher current response towards AA than 5-HT. At scan
rate of 25mVs−1, AA and 5-HTpeak potentials were located at−0.014 V and 0.302 V, respectively.
Figures 13(b) and (c) shows the relationship between current response versus square root of scan rate for AA and

Figure 12. Square-wave voltammogram recorded at SPCE/MWCNT-AONPmodified electrode over the 5-HT linear range from
0.016μMto 0.166μM (b); a linear plot of reduction current peaks versus 5-HT concentrations with error bars.

Table 2.Comparisonwith other chemicallymodified electrodes towards detection of 5-HT.

Modified electrode Method Linearity(μM) Analyte LOD (μM) References

Carbon-sphere/GCE DPV 40–750 5-HT 0.70 [55]
Ionic liquid-DC-CNT/GCE DPV 5–900 5-HT 2 [76]
CNT-intercalated graphite electrodes DPV 1–15 5-HT 0.20 [44]
poly-AzrS/MWCNTs/GCEa DPV 0.5–11 5-HT 0.18 [58]
Ach/GCEb DPV 1–30 5-HT 0.50 [77]
COOH-CNT/MEc FSCV –200. 5-HT 0.07 [78]
CONH2-CNT/MEd FSCV 1–20 5-HT 0.09 [78]
MWCNT-AONP-SPCE SWV 0.016–0.166 5-HT 0.025 This work

a poly-AzrS/MWCNTs/GCE=Glassy carbon electrode treatedwith poly-alizarin red S (AzrS) andMWCNTs.
b Ach/GCE=Glassy carbon electrodemodifiedwith acetylcholine and choline.
c COOH-CNT/ME=MicroelectrodesmodifiedwithCarboxylic acid functionalized carbon nanotube.
d CONH2-CNT/ME=Microelectrodes fabricated with formamide functionalized carbon nanotube.
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5-HT. A linear relationship between current response and the square root of scan rate for both analytes was
observed, suggesting that the reaction at the proposed electrodewas diffusion controlled. The linear regression
equation for AA and 5-HTwere Ipa=6.615 v 1/2–23.969 (R2=0.991) and Ipa=5.493 v 1/2–17.893
(R2=0.992). The R2 value of 5-HT improved significantly compared to those infigure 11.

3.5. Simultaneous detection of 5-HT andAA
The interference study for the proposed electrochemical sensor was done by simultaneously detecting varying
concentrations of 5-HT in 1 mMAA solution as an interferingmolecule using squarewave voltammetry. A
higher AA concentrationwas utilized because interfering compounds such as AA andUA are present in the body
fluids at higher concentrations thanNTs. Fromfigure 14(a), the peak potentials for AA and 5-HTwere located at
0.044 V and 0.325 versus As the 5-HT concentration increased from100–333μMAA, the 5-HT current
response increased, but 5-HT current responsewas higher than that of AA.However, as 5-HT concentration
increased from500–545μM, theAA current response began to stabilize and dropwhile the 5-HT current
response kept on increasing, as illustrated infigure 14(a). As the 5-HT concentration increased from100–333
μM, the solution became saturatedwith 5-HT cationicmolecules, resulting in a decrease in the AApeak current
afterwards.

Furthermore, compared to anionic AAmolecules, therewas a betterπ –π* interaction between the
f-MWCNTs and the cationic 5-HTmolecules, resulting in better cationic 5-HTmolecules attachment on the
surface of the electrode. Figure 14(b) demonstrated that the 5-HT current peak increased linearly as
concentration increased. Figure 15 depicts the simultaneous detection of 1 mM5-HT and 1mMAAat the
modified electrode. The fabricated electrode exhibited excellent anti-interference behaviour even atfixed
concentrations, as demonstrated by distinctive visible peaks of each analyte and a broad peak-to-peak separation
of 367.90 mVbetween two analytes.

Figure 13. (a)Cyclic voltammogram at SPCE-MWCNT-AONP in 0.1 MPBS (pH7) containing 0.1 mM5-HT and 0.1 mMAA from
scan rate 10 to 450mVs−1 (b) current response versus square root of scan rate for AAwith error bars, and (c) current response versus
square root of scan rate for 5-HTwith error bars.
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Stability, reproducibility, and shelve-life study
To analysis the effectiveness of the constructed electrochemical sensors, the stability, repeatability, and shelve
studies were undertaken utilizingCV at a scan rate of 25mVs−1. The stability studywas achieved by repeatedly
scanning the electrode 20 times in 5 mMofK [Fe (CN) 6]

3−/4−made in 0.1 MPBS (pH7). The repeated scans
showed an increase in the anodic peak current of 26.39%and a decrease in the cathodic current peak by 17.71%,
as shown infigure 16(a). An increase in anodic current peak could be ascribed to the increased electro-active
interactions at themodified electrode’s surface area with time. The results indicated that the constructed
electrochemical sensorwas not prone to biofouling during the voltammetry experiment and had excellent
stability.

Similarly, the SPCE-MWCNT-AONPmodified electrodewas scanned repeatedly 20 times in 0.1 MPBS
containing 0.1 mM5-HT as an analytical probe. The anodic peak current of 5-HTdecreased by 68%and
demonstrated anRSD value of 34.42% towards 5-HTdetection, as displayed infigure 16(b).The shelve-life
study of themodified electrodewas carried out every week in 0.1 mM5-HTprepared in 0.1 MPBS (pH7). The
results of the experimentation are represented infigure 16(c).When the SPCE-MWCNT-AONP
nanocomposite electrodewas not in use, the electrodewas kept in a dry environment. Figure 16(c) reveals that
the current response decreased by 18%after 21 days, then increased by 1%after the 28 days, and then
plummeted by 54%after the 35 days. The results confirm that themodified electrode has a long shelf life towards
the detection of 5-HT.

Figure 14. SPCE-MWCNT-AONPnanocompositemodified electrode squarewave voltammetry curves in (a) 1 mMAAand various
concentration of 5-HT (100–545μM) produced in 0.1 MPBS (pH7), and (b) linear calibration plots of peak current versus 5-HT
concentrationwith error bars.

Figure 15.The SWVvoltammogram for 1 mM5-HT and 1 mMAAmeasured simultaneously.
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3.6. Real-sample analysis
The applicability of the fabricated sensor towards the determination of 5-HT in tomatoes was undertaken to
utilize the SWV. The results from the experiment are summarized in table 3. For detection of 5HT in tomatoes,
the SPCE-MWCNT-AONPmodified electrode showed good recoveries ranging from91.32%–108.28%with an
average RSD (%) value of 2.57 (n=3). This study suggests that themodified electrode is suitable for 5-HT
detection in real samples.

4. Conclusion

In conclusion, electrochemical detection of 5-HT at the SPCE-MWCNT-AONPnanocompositemodified
electrode has been achieved. The synthesized nanomaterials and nanocomposites were confirmed using FTIR;
XRD,UV–vis, TEM, and SEM. Electrochemical studies were performed utilizing SWVandCV techniques. The
SPCE-MWCNT-AONPnanocompositemodified electrodes showed excellent electron transport and better
current response towards detection of 5-HTwhen compared to other electrodes studied. The reaction of 5-HT
at SPCE-MWCNT-AONPnanocompositemodified electrodewas diffusion controlled.

Moreover, the SPCE-MWCNT-AONPnanocompositemodified electrodes exhibited excellent selectivity
and anti-interference capability towards detection of 5-HT in excess AA environment evidenced by the

Figure 16.The (a) stability SPCE-MWCNT-AONPmodified electrode in 0.1 MPBS (pH7)made in 5 mM K[Fe(CN)6]
3−/4− redox

probe solution at scan rates of 25mVs−1, (b) reproducibility study (c) shelve-life study of the SPCE-MWCNT-AONPmodified
electrode in 0.1 mM5-HTdissolved in 0.1 M (pH7)PBS at scan rates of 25mVs−1.

Table 3.Detection of 5-HT in tomato.

Added

(μM)
Detected

(μM) Recovery (%) RSD (%)

Tomatoes 400 433.11 108.28 3.20

600 547.92 91.32 2.60

900 923.66 102.63 1.90

n=3;meanRDS (%)=2.57.
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observable peaks of each analyte and awider peak-to-peak separation of 367.90 mV. A linear dependence of
current response against 5-HT concentrationwas observed in the linear range of 0.016μM—0.166μM
(R2=0.9851)with sensitivity, LoD, and LoQvalues of 0.2863μA μM−1, 0.025μM, and 74 nMrespectively.
The proposed electrochemical sensor showed good reproducibility and long shelf life reaching half of its initial
current response after 35 days. The proposed electrodewas successfully tested towards detection of 5-HT in
tomatoes with average recoveries of 100.74%and ameanRSD (%) value of 2.57 (n=3). The proposed novel
electrochemical sensor platform is of high interest formonitoring 5-HT and its therapeutic use.
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