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Abstract

Electrospinning has received wide attention for the preparation of uniform diameter nanofibers (ranging
from 5 nm to several hundred nanometers) in films with random as well as aligned fashions of the fibers of
various materials for use in biomedical applications. Electrospinning research has provided an in-depth
understanding of the preparation of light weight, ultrathin, porous, biofunctional curcumin/gelatin
nanofibers having applications in wound dressing, drug release, tissue engineering, etc. In the first half of
this article, prior research on electrospun curcumin/gelatin nanofibers is reviewed in depth with nanofibers
being desired due to their low diameters since these would have then large surface area to volume ratio and
enough film porosity as well as improved mechanical (tensile) strength so that when prepared as mats these
nanofibers (having high biocompatibility) could be used for sustained release of curcumin and oxygen to
wounds during healing. The synthesis of ultrathin nanofibers (having minimum average diameter) is not a
simple task unless numerical investigation is carefully done in the first half of this research article. The
authors research described here examined the effects of critical process parameters (in the second half of the
paper) such as distance between the spinneret and collector, flow rate, voltage and solution viscosity, on the
preparation of uniform and ultrathin nanofibers using scanning electron microscopy (SEM) for
characterization of the nanofibers. A 2* factorial design of experiment was found to be a suitable and efficient
technique to optimize the critical process parameters used in the preparation of the biofunctional nanofibers
with the purpose of having applications in the treatment of problematic wounds such as diabetic chronic
ulcers. After parametric investigation, the distance, flow rate and voltage when taken together, were found to
have the most significant contributions to the preparation of minimum diameter nanofibers. The primary
objective of this research was fulfilled with the development of ultrathin curcumin/gelatin nanofibers
havinga 181 nm (181 =+ 66 nm) average diameter using the optimized setting of a solution having 1.5%
gelatin, and 1% curcumin in 10 ml of 98% concentrated formic acid, with the electrospining unit having a
voltage of 10 KV, distance from the spinneret to collector drum of 15 cm, flow rate of 0.1 ml h!, viscosity of
65 cP and drum collector speed of 1000 rpm. However, the lowest average diameter of nanofiber was
measured around 147 nm (147 % 34 nm) which was prepared at a higher voltage, such as 15KV (at 10 cm
distance, 0.15 ml h ™" flow rate and 65 cP viscosity) using the solution. The design of this research paper is
based on the view that merely optimization of biofunctional nanofibers may not fully satisfy researchers/
engineers unless they are also provided with sufficient information about (a) the entire electrospinning
mechanism (numerical investigations of the mechanism) to have better control over preparation of ultrathin
nanofibers, and (b) applications of the resulting ultrathin biofunctional nanofibers while fabricating
nanofibrous mats (as used now-a-days) for sustained release of curcumin during the critical hours of wound
healing and other biomedical applications.

© 2020 The Author(s). Published by IOP Publishing Ltd
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1. Introduction

1.1. Electrospun curcumin/gelatin nanofibers: review of the state-of-the-art

The impact of nanotechnology on health sciences is widespread. The potential roles of nanofibers in biomedical
applications, such as drug release and tissue engineering have been investigated recently. Preparation of
polymeric fibers is not a simple task. There are many preparation processes possible which can vary the
characteristics of polymeric fibers of the available techniques, electrospinning is considered as an efficient
technique to prepare polymeric nanofibers that are polymeric, synthetic or natural, biodegradable or non-
biodegradable, etc, having uniform diameters (5 nm to several hundred nanometers) from a wide variety of
polymers and composite solutions [ 1-3]. Electrospinning is preferred over other conventional methods in
recent research papers to prepare polymer nanofibers. The apparatus is relatively easy to operate which makes
this process cost effective [4—6]. The nanofibers produced so far have applications in many disciplines of
engineering and medical sciences. The basics of nanofiber spinning of biopolymers have been described by Jamil
etal[7]; Pham et al [8]; Vasita and katti et al [9]; Kriegel et al [10]; Shekh et al[11]; Tuerdimaimaiti et al [ 12];
Amarieietal [13]; Yoon et al [14]; Alharbietal [15]; Chen etal [16].

The proteins and their derivatives as well as biodegradable and nontoxic biopolymers such as chitosan,
cellulose, collagen, gelatin, etc, are extracted from living organisms and they are used for electrospinning of
polymeric nanofibers. The limitations of biopolymers such as their limited solubility in organic solvents due to
their high crystallinity, their expensive purification processes and further their viscous solutions due to their
tendency to form hydrogen bonds, are overcome after blending with synthetic polymers otherwise these
limitations may restrict their electrospinning into nanofibrous mats [10]. The nanofibrous mats prepared from
electrospun collagen nanofibers have been used as scaffolds for tissue engineering applications [7]. Aloe vera, a
natural polymer also holds potential for tissue engineering applications due to its antioxidant and nontoxic
nature [11]. The biomedical applications of few electrospun nanofibers are listed in table 1.

Gelatin (a mixture of proteins and peptides) is a natural polymer which is biocompatible, nontoxic and
biodegradable, and hence is considered as a fair and safe choice when selecting fiber material for dressing
problematic wounds such as diabetic chronic ulcers. The light weight ultrathin nanofibers can serve as
mechanical support during wound dressings due to their significant tensile strength as compared to
conventional fibers (having diameters in the range of over 100 nm) and also act as barriers to cover the wound
[30-33]. Gelatin is also known for its excellent water absorption and fluid affinity, which makes it a good choice
to support moist wound healing. Gelatin (a natural biopolymer which is a denatured form of collagen) is quite
soluble in formic acid. Collagen is a protein available in the extra cellular matrix (ECM) of animals and humans,
and is expensive due to its manufacturing processes. However, gelatin is easily available at a much lower price
than collagen and thus is a preferred source for biomaterials. Gelatin nanofibers (like collagen) have been used in
biomedical applications such as cosmetics, wound dressing, tissue engineering, surgical treatments, etc [34].
Gelatin nanofibers (having sufficient mechanical properties to be used in these applications as nanofibrous
mats) have been electrospun for ultrathin nanofibers [34—44]. These authors also reported that the properties of
these nanofibers can be tailored as per requirements by optimizing input parameters such as voltage, viscosity,
distance between the spinneret and rotating drum collector, and flow rate. These authors have spun nanofibers
of diameters in the range of 76—100 nm for drug delivery and wound dressing applications. It is evident that
formic acid is used as an organic volatile solvent to dissolve gelatin at room temperature for the electrospinning.

The use of gelatin nanofibers having enough tensile strength for fabricating nonwoven mats has received
attention recently for use for antimicrobial applications [45—-49]. Successful spinning of minimum diameter
nanofibers results in the surface areas of these nanofibers being increased in addition to their light weight. This is
basically required for wound dressings and other biomedical applications as listed in table 1. For instance
Mindru et al [50] were successful in preparing nonwoven mats of required thickness and improved strengths for
biomedical applications using a solvent system consisting of formic acid. Numerous questions have arisen
however, due to use of cytotoxic solvents while preparing solutions for electrospinning of gelatin nanofibers to
be used in real biomedical applications. Instead of cytotoxic solvents, Maleknia et al [51] used formic acid /water
to prepare solutions for electrospinning of gelatin nanofibers for biomedical applications such as wound
dressing, drug release, and tissue engineering. These authors were successful in spinning gelatin nanofibers with
diameters as small as 197 nm. Chen et al [52] used formic acid and ethanol (to improve volatility of the solvent)
instead of cytotoxic solvents while preparing the solvent for synthesizing electrospun gelatin nanofibers. These
authors were successful in spinning gelatin nanofibers of 85 nm diameters, the lowest reported to date. During
their investigations, they found that crosslinked gelatin nanofibers (after soaking the nanofibers in 2.5% of
glutaraldehyde aqueous solution for 72 h and then being washed using de-ionized water before drying) were
compatible with mouse mesangial cells. The drug delivery nanofibrous mats are required to be dissolved quickly
in aqueous solutions. Aytac et al [42] found that the electrospun gelatin nanofibers encapsulated with
ciprofloxacin/hydroxypropyl-beta-cyclodextrin-inclusion complex could dissolve faster in water than
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Table 1. Use of ultrathin electrospun curcumin based nanofibers for biomedical applications.

About curcumin based nanofibers Biomedical applications References

Curcumin with polycaprolactone-polyethylene glycol nanofibers, Curcumin Better wound healing potential [17-20]
with poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV), Cur-
cumin with poly(lactic acid)-hyperbranched polyglycerol, and Curcumin
with e-polycaprolactone/ polyvinylalcohol multilayer nanofibers

Curcumin with gum tragacanth/poly(e-caprolactone) nanofibers Improved antibacterial implementation and [21]
diabetic wound healing (in vivo)

Curcumin with almond gum/ polyvinyl alcohol (PVA) composite nanofibers Improved bioavailability and therapeutic [22]
potential

Zinc-curcumin with coaxial nanofibers Asbone substitute [23]

Curcumin with zein fibers Improved antibacterial potential [24]

Curcumin with cellulose acetate/polyvinylpyrrolidone nanofibers, Curcumin Antibacterial performance [25-27]

with polyurethanes nanofibers, and Curcumin with gelatin nanofibers
Curcumin nanofibers Anti-adhesion potential [28]
Curcumin with chitosan/ poly (vinyl alcohol) (PVA) nanofibers Drug delivery potential [29]

electrospun gelatin nanofibers loaded with ciprofloxacin. Yabing et al [40] synthesized drugs (inhibitors such as
SP600125, c-Jun N-terminal kinase and SB203580, p38 MAP kinase)-loaded micelles (poly(ethylene glycol)-
block-caprolactone copolymer) using dialysis method and incorporated these drugs into electrospun gelatin
nanofibers. The dual drugs delivery electrospun gelatin nanofibrous mats were used as scaffolds for the
treatment of infections around the teeth. Nanofibrous mats prepared from electrospun nanofibers have large
surface areas and they are expected to play a significant role in tissue engineering. The use of formic acid asa
solvent for electrospinning biofunctional nanofibers has resulted in their use in various biomedical applications,
such as immobilization of enzymes, bone regeneration materials, antibacterial and antifungal activities in release
of drugs, encapsulation of bioactive materials during food packaging and wound dressing [53].

Turmeric is derived from Curcuma longa (common turmeric, an herbaceous plant) and has been widely used
in India and China as a bioactive compound with powerful anti-inflammatory and antioxidant medicinal
properties. Curcumin is one of the components of turmeric. It has been shown that synthetic
dimethoxycurcumin is more potent to destroy cancer (a leading cause of every sixth death worldwide) cells than
natural curcumin (derived from the plant) [54-64]. Ramirezagudelo et al [55] incorporated antibiotic
doxycycline drugs (inhibitors of mitochondrial biogenesis, could restrict cancer stem cells in initial breast cancer
stages) into electrospun hybrid poly-caprolactone/gelatin/hydroxyapatite soft nanofibrous mats and evaluated
these drug delivery meshes as effective anti-tumor and antibacterial scaffolds. The use of formic acid as solvent
for solutes such as curcumin and gelatin has been the preferred choice in many biomedical researches. Authors
have prepared solutions of curcumin and dimethoxycurcumin using formic acid [54, 65-67]. Curcumin is a
natural monomer (as shown in figure 1(a)), and nanofibers containing poly(curcumin) (as shown in figure 1(b))
can be used in medical treatments such as curing the skin injuries, as shown in figure 2(a). More curcumin would
be expected to release with a specific rate from higher concentrations, such as 17% curcumin loaded poly (e-
caprolactone) (PCL) nanofibers than the lower concentrations, such as 3% curcumin loaded PCL nanofibers,
after 12 h (as shown in figure 2(b)) [30]. Using PCL-curcumin solutions, biofunctional electrospun nanofibers
were prepared [30-33, 68]. Hoang et al [68] fabricated curcumin loaded PCL/chitosan nonwoven mats (for
wound dressings) using formic acid and acetone together as solvents while electrospinning nanofibers. They also
investigated the release of curcumin (via an in vitro approach) from nonwoven mats of these fibers (having fiber
diameters in the range between 267 nm to 402 nm); it was found to be nearly 80% during the initial 100 h. The
gelatin nanofibers were found to serve as vehicles to release the drugs in controlled manner. These electrospun
nanofibers were prepared in such a way that they had highly functionalized surface areas and their mats had
excellent porosity to both, incorporate curcumin and allow curcumin diffusion out of the matrix, thereby
improving their drug releasing capabilities. Xinyi et al [33] prepared curcumin/gelatin nanofibrous mats and
investigated the release of curcumin on rat models (acute wounds) via in vitro approach, as shown in figure 2(c)
[33]. While investigating crosslinked curcumin/gelatin nanofibers (after placing in a 25% glutaraldehyde
solution with ethanol (1% v/v) before vacuum drying for 72 h at 4 °C), the authors found improved mechanical
strength of this electrospun nanofibers, as shown in figure 3 [33].The wound healing was tested by treating rats
using the curcumin/gelatin nanofibrous mats (healing analyses are shown in figure 4 for the 3rd, 7th, and 15th
days after wounding). This encouraged us to prepare curcumin loaded gelatin nanofibers suitable for fabrication
of nanofibrous mats for the application of sustained release of curcumin and oxygen to the wound (during
healing).
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Figure 1. The biofunctional curcumin nanofibers. (a) Molecular structure of curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-
heptadiene-3,5-dione) (Reprinted with permission from [30]. Copyright 2009 John Wiley and Sons). (b) Application of curcumin-
loaded nanofibers in wound healing (Reprinted with permission from [31]. Copyright 2018 John Wiley and Sons).

In the present study, an electrospining method was adapted to prepare the curcumin loaded gelatin
nanofibers; characterizations of the nanofibers were done using scanning electron microscopy (SEM).
Investigations were done to find the effects of critical process parameters such as distance between the spinneret
and collector, polymer solution flow rate, voltage and viscosity on the preparation of uniform and ultrathin
porous nanofibers having applications in wound dressings. In the present investigation the curcumin loaded
gelatin nanofibers were selected in the hope of having improved mechanical and wound healing properties
assuming these nanofibers should release the curcumin at appropriate rates which is of extreme importance to
permit application of its biological effects during wound healing applications. It has been shown that the
electrospun curcumin/gelatin nanofibers with lower diameters have larger surface area to volume ratios and
porosity than larger diameter fibers and thus these nanofibers can be developed for sustained release of
curcumin and oxygen (due to enough porosity) to the wound [31]. Curcumin/gelatin nanofibers can be further
crosslinked for improved mechanical (tensile) strength (if required) for further development of nanofibrous
mats for wound healing. These nanofibrous mats would have then anti-oxidant and anti-inflammatory features
that could address wound healing in a very efficient way [31, 68—86].

1.2. Mechanism behind electrospinning of curcumin/gelatin nanofibers

Electrospinning uses an electric field which is applied across a spinneret and a ground electrode to withdraw a jet

of polymer solution from the orifice of the spinneret. In electrospinning the Maxwell or electrical stress is given
eV?

as —, where ¢ is the permittivity, V is the voltage, and d is the electrode separation. The critical voltage (V,)

which is \/g , must be exceeded before any jet can spread out from the electrospinning tip. In particular, for
v=10"%g/s%, d =10"2m, ¢ = 10719C2/(Jm) and R = 10~*m, avoltage of order 10 KV is required to
form anyjet [87].

Yeo et al [87] assumed a priori equilibrium conical shape for the Taylor cone (for the fluid drop) formation at
the tip of the spinneret. The solution of the Laplace equation (used in the formulation) in the weak polarization
limit describes the electrostatics in the fluid phases in an axisymmetric spherical coordinate system (r, 6, ¢)
with the vertex of the Taylor cone at the origin which can be shown using equation (1).

@ (r, 0) = A, r"B,(cos 8); for 6, > 6 > 0,
and
& (1, 0) =B, r"Bycos (m — 0); form > 6> 6, )]
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Figure 2. Release of curcumin with time. (a) Comparison of wound closure as a function of time. The wound was healed through
release of curcumin from PCL nanofibers (Reprinted with permission from [30]. Copyright 2009 John Wiley and Sons). (b) *Plots of
cumulative discharge of curcumin with time. Significant release of 17% curcumin from curcumin-loaded PCL nanofibers after 12 h
(Reprinted with permission from [30]. Copyright 2009 John Wiley and Sons). (c) Release of curcumin from curcumin/gelatin
nanofibrous mats as a function of time (in vitro) (Reprinted with permission from Ref. 33. Copyright 2017 Springer Nature). “Note:
Pro 7.5 software program was used to analyze the release of curcumin from curcumin loaded Poly (e-caprolactone) PCL nanofibers
using one-way ANOVA with Tukey’s test. p < 0.05 was considered significant.
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In the above equation (1), the volume of the fluid drop is given by V = %wﬁ, where 7 is the distance from the

cone vertex of angle 26, to the tip of the spinneret and the shape of drop is represented using a Taylor cone, thus
r is characterized as r = R(z). Further, the z — axis is parallel to the applied electric field with z € [—] ],
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Control
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Figure 4. Wound (acute back-skin) closure (day-wise performance) after application of “curcumin/gelatin nanofibrous mats (NM)
on rats (in vivo) (Reprinted with permission from [33]. Copyright 2017 Springer Nature. CC BY 4.0) “Note: Healing in three different
ways: wound treated without mats (control) or using curcumin/gelatin (Cc/Glt) NM or using Glt NM. Wounds (6 mm in diameter)
were created in the back (after they were shaved at their backs) of each rat.

where [ is the length of the semi long axis of the drop and the boundary condition 6y > 6 > 0 represents the
region occupied by the fluid. B, [x]is the Legendre function, and A, and B, are constants. They suggested a
model for electrospinning composite nanofibers which is based on a sink-like flow towards the vertex of the
Taylor cone. The solution of the flow in axisymmetric polar coordinates (r, €, 0) was given using equations (2)
and (3).

vy = vE(¢e) @)

r

F(e) = b<{3tanh? l( f%b)(a — )+ 1.146] -2 3)

In the above equations (2) and (3), v, is the radial velocity of flow, v is the kinematic viscosity of flow, « is the
wedge/Taylor cone halfangle, b is a parameter which determines the inertial concentration of flow into the
Taylor cone vertex/Taylor cone. Mass and charge conservations led to expressions for v and ¢ in terms of R and
E, and the momentum and E-field equations were recast using second-order differential equations. Slope of the
jetsurface (R’) is supposed to be highest at the origin of the nozzle and thus initial value of z is equal to zero.
Further, boundary conditions were set using the set of equation (4) [88, 89].

R(O) = 1
E(0) = Eo
!
Tprr = Zr,,%
0
Tpzz = _ZTprr (4)

In the above equation (4), Ry is the initial radius of jet and the jet velocity (vy) is calculated using the formula
,where Q is the flow rate of the solution, and K is the conductivity of liquid solution. The electric

field (E, ) is calculated using the formula E, = WR%K and the surface charge density (oy) is calculated using the
0
formula EE; , where Z is the dielectric constant of ambient air and E; is the constant to be used during

simulation of the electrospinning. The viscous stress (7p) is calculated using the formula 7, = %. A power-law
0

Q
Uy = —5—
0™ TRK

m
fluid is a generalized Newtonian fluid and for that the shear stress (), is givenas 7 = K’ (Z_;) .Itis observed

that the electric field is induced by the surface charge gradient and thus it is insensitive to the thinning of the
electrospun jet, as shown in equation (5) [88].
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Figure 5. Plots showing behavior of process parameters as functions of axial position (Reprinted with permission from [88]. Copyright
2014 Romanian Academy Publishing House).

d(oR) ( dR )
—— =~ —|2R—|/Pe 5
dz dz / ©)
Thus, the variation of E with respect to axial position (z) can be shown using equation (6) [88].
d(E) d’R? )
——= = Iny|——|/Pe 6
- x( = / (6)

In figure 5 plots are shown for the changes of various parameters, radius of jet (R), electric field (E), radial
normal stress (7,,r) and axial viscous normal stress (7,.;) with the respect to axial position (Z). It is observed that
the electric field (E) increased to a peak and then relaxed to some extent. The model discussed so far was shown
to be capable of predicting the behavior of the process parameters of electrospinning [88]. Through these plots
the flow procedure in relation to the jetting process involved in the electric field is outlined.

1.3. Applications of biofunctional curcumin nanofibers

Ultrathin porous nanofibrous mats can be prepared using electrospinning for various biomedical applications.
Various researchers have emphasized the curcumin based nanofibers in their investigations to find their
potential uses in wound healing, drug-delivery and antibacterial applications (as shown in table 1). The
structures of these electrospun nanofibers can be tailored for large surface area and length up to kilometers using
the electrostatically driven jet of polymer solution. Further, it was found that bioactive molecules of graphene
oxide and a Zn-curcumin complex, when combined with the electrospun nanofibers, had potential application
in bone regeneration, as shown in table 1.

2. Electrospinning of curcumin/gelatin nanofibers

The electrospinning set-up we used is shown in figure 6(a). There were four components associated with the
electrospinning process: spinneret, voltage supply, drum collector and dispenser. In our electrospinning process

7
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avoltage gradient is set across the length of the drum collector (loaded with an aluminium sheet), and a
polymeric solution (taken in a 2 ml syringe) is placed in the dispensor. Nanofibers are stretched out from the
polymeric solution containing a polar organic solvent and a polymer solute in the desired amounts. These
nanofibers are collected over the drum collector which is rotated at a speed around 1000 rpm to reduce the
nanofibers diameter by stretching them and aligning them linearly in addition to improving their mechanical
properties. During this process, four critical parameters, distance, flow rate, voltage and viscosity, are taken into
consideration. These were our control parameters in preparation of the biofunctional nanofibers.

A polymeric solution was prepared by mixing 1% curcumin (0.1 g) with 1.5% gelatin (0.15 g) in 10 ml of
formic acid, HCOOH (98% concentrated). Another polymeric solution was prepared by mixing 1.2% curcumin
(0.12 g) with 2% gelatin (0.2 g) in 10 ml of formic acid, HCOOH (98% concentrated), both at room
temperature. The experiments were conducted at room temperature, in ambient air which had moisture around
80%. Nanofibers were prepared by varying the distance between the spinneret (10 cm and 15 cm), flow rate
(0.1mlh 'and0.15 ml h "), voltage (15 KV and 20 KV), and viscosity (65 cP and 70 cP, due to the additives
concentrations). The mats were dried at room temperature for 48 h to completely remove the formic acid before
characterization. The diameters of the nanofibers were then measured using scanning electron microscopy
(SEM) (the set-up is shown in figure 6(b)).

3. Results and discussions

The diameters (nm) of the nanofibers prepared during the electrospinning processes are shown in table 2. The
significant trends in the results (in terms of the diameters of the nanofibers) observed were as follows: at a higher
voltage, such as 15 KV (at 15 cm distance, 0.1 ml h ™" flow rate and 65 cP viscosity) using a solution having 1.5%
gelatin, 1% curcumin in 10 ml of 98% concentrated formic acid, the diameters of the nanofibers were around
254 nm (254 £ 28 nm) which is considerably higher than the 181 nm (181 £ 66 nm) (as shown in figure 6(c))
diameter obtained at 10 KV using the same solution and keeping the other parameters the same. At a higher flow
rate, such as 0.15 ml h~' (at 10 cm distance, 15 KV voltage and 65 cP viscosity) using a solution having 1.5%
gelatin, 1% curcumin in 10 ml of 98% concentrated formic acid, the diameters of nanofibers were measured
around 147 nm (147 £ 34 nm) (as shown in figure 6(d)) which is considerably lower than 260 nm

(260 + 26.5 nm) as the diameter obtained at 0.1 ml h ™" flow rate using the same solution and keeping the other
parameters the same. At a higher flow rate, such as 0.15 ml h ™' (at 15 cm distance, 10 KV voltage and 70 cP
viscosity) using a solution having 2% gelatin, 1.2% curcumin in 10 ml of 98% concentrated formic acid, the
diameters of nanofibers were measured around 206 nm (206 + 56 nm) (as shown in figure 6(e)) which is only
slightly lower than 229.5 nm (229.5 + 60 nm) (as shown in figure 6(f)) as the diameter obtained at 0.1 ml h ™" (at
15 cm distance, 15 KV voltage and 70 cP viscosity) using the same solution. For a higher concentration (2%
gelatin, 1.2% curcumin in 10 ml of 98% concentrated formic acid), the viscosity was measured (using a viscosity
meter) to be 70 cP and then the diameter of the fibers increased to 235 nm (235 & 47 nm) (as shown in

figure 6(g)), at 10 cm distance, 0.15 ml h~' flow rate and 15 KV voltage, from 147 nm (147 + 34 nm) (as shown
in figure 6(d)) (measured at 1.5% gelatin, 1% curcumin in 10 ml 0f98% concentrated formic acid) at 10 cm
distance, 0.15 ml h™ ' flow rate, 15 KV voltage and 65 cP viscosity. At a higher distance, such as 15 cm

(0.15 ml h ™" flow rate, 15 KV voltage and 70 cP viscosity) using a solution having 2% gelatin, 1.2% curcumin in
10 ml 0f98% concentrated formic acid, the diameters of nanofibers were measured around 274 nm

(274 £ 53 nm) (as shown in figure 6(h)) which is higher than the 235 nm (235 + 47 nm) (as shown in

figure 6(g)) diameter obtained for 10 cm distance using the same solution and keeping the other parameters

the same.

3.1. Design of experiments
The 2 factorial design was implemented to conduct the experiments after considering the four independent
variables (each varied at two different levelsi.e. low (—) and high (+)); these were the distance between the
spinneret and collector, flow rate, voltage and viscosity [90—-92]. Thus, the total number of observations were
2%ie. 16.

All 16 samples were examined under scanning electron microscopy (SEM) for diameters in nanometers (as
shown in table 2). A few sample images of the curcumin/gelatin nanofibers examined under SEM are shown in
figures 6(c)—(h). The ultrathin porous nanofibers membranes were prepared under all process conditions.

3.2. Analysis of variance

It was done to find the significance of the contributions of the individual parameters in achieving the minimum
diameter of the nanofibers. Calculations for the correction factor, CF (to compute the sum of squares of input
variables) were conducted using equation (7).
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Specifications Model -VI

Power Supply 0-40 KV

Voltage (KV) IMa
Drum Speed
Syringe Size 2,5,10, and
S}nge Needle 20 mL
Pump Disposal
Syringes
Flow Rate From 0.05
(mL/h) up to 100
Emergency mL/h
Switch dependent
upon
i syringe type
Drum Collector Spinneret Discharge Gun Collector 125%40
Drum

(Ixdia.) (mm)

Disc diameter 100x100

Plate
(1xb) (mm)
(@
FEI
QUANTA
SEM Series
200 with
EDS
Product
4.1.13.2167
Version
High
vacuum,
Mode of
Low
Operation

vacuum and

ESEM

Magnification 2,00000 X

(b)

Figure 6. The electrospun curcumin/gelatin nanofibers. (a) “Electrospinning set-up and its specifications. (b) SEM set-up and its
specifications. (c) Sample 2: 15 cm, 0.1 ml h™',10 KV and 65 cP: 181 nm (181 + 66 nm) average fiber diameter. (d) Sample 7: 10 cm,
0.15ml h™', 15KV and 65 cP: 147 nm (147 + 34 nm) average fiber diameter. () Sample 12: 15 cm, 0.15 ml h™*, 10 KV and 70 cP:
206 nm (206 £ 56 nm) average fiber diameter. (f) Sample 14: 15 ¢cm, 0.1 ml h~', 15 KV and 70 cP: 229.5 nm (229.5 + 60 nm)
average fiber diameter. (g) Sample 15: 10 cm, 0.15 ml h™ ', 15KV and 70 cP: 235 nm (235 =+ 47 nm) average fiber diameter. (h)
Sample 16: 15 cm, 0.15 ml h™', 15KV and 70 cP: 274 nm (274 + 53 nm) average fiber diameter. “Note: The electrospinning chamber
is provided with a residual charge discharge gun/stick which is used to remove/short static charges for safe operations.

3.2.1. Correction factor (CF)
The CF for diameter (nm) was calculated as

CF — X)? _ (4085.5)2
n 16

~ 1043207 )

Where, the > X is the gross total of observed diameters and # is the number of iterations, i.e. 16 (both as shown
in table 2)
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Figure 6. (Continued.)

The effect of the factors can be given using equation (8).

Yiien |
[ZYZOW]Z _|_ |:Z hgh] _ CF (8)
n n

Where, Yis an input variable, such as the distance (A), and Yy, and Yj,,, stand for the sum of all average
diameters prepared at high (4-) and low (—) levels, respectively, for the particular input variable with each sum
taken over the high and low values of the other variables. The corresponding values of average diameters for the
high (+) and low (—) levels of the particular input variable were taken from table 2.

10
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Figure 6. (Continued.)

1. Sum of squares, distance factor (cm), S54

> Aww " [ZAhigh]z _CF
n n

~ [205 + 270 + 260 + 147 + 287 + 375 + 308 + 235]*
8
" [181 + 280 + 254 + 286 + 288 + 206 + 229.5 + 274]?
8

—1043207 = 489.5

Similarly,
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Figure 6. (Continued.)

2. Sum of squares, flow rate factor (ml h™1), S,

[>"Biow I [ZBhigh]z
n

— CF = 228.5
n
3. Sum of squares, voltage factor (KV), SS¢
2
2 Chi

n n
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Table 2. Results of experiments.

Iteration No. Distance (cm) A Flow Rate (mL/h) B Voltage (KV) C *Viscosity (cP) D Average Diameters (nm)
1 (—)10 (—)0.1 (—)10 (—)65 205 + 22.5
2 (+)15 (—)0.1 (—)10 (—)65 181 =+ 66
3 (—)10 (+)0.15 (—)10 (—)65 270 + 16
4 (+)15 (+)0.15 (—)10 (—)65 280 + 20
5 (—)10 (—)0.1 (+)15 (—)65 260 &+ 26.5
6 (+)15 (—)0.1 (+)15 (—)65 254 + 28
7 (—)10 (+)0.15 (+)15 (—)65 147 + 34
8 ()15 (+)0.15 (+)15 (—)65 286 =+ 31
9 (=)10 (—)0.1 (—)10 (+)70 287 + 77
10 (H)15 (—)0.1 (—)10 (+)70 288 + 57
11 ()10 (+)0.15 ()10 (+)70 375 £ 96
12 (+)15 (4+)0.15 (—)10 (+)70 206 + 56
13 (—)10 (—)0.1 ()15 (+)70 308 + 74
14 (+)15 (—)0.1 ()15 (+)70 229.5 + 60
15 ()10 (+)0.15 (+)15 (+)70 235 + 47
16 ()15 (+)0.15 ()15 (+)70 274 + 53

Total "X = 4085.5

* Where, (+) indicates high value and (—) indicates low value of parameters.
“Note: Change in concentration of curcumin (from 1% to 1.2%) and gelatin (from 1.5% to 2%) increased the viscosity (from 65 cP to 70 cP).
The effect of concentration is mapped in terms of viscosity.

4. Sum of squares, viscosity factor (cP), SSp

[ZDlow ]2 + [EDhigh ]2

n n

— CF = 6380

To examine the interaction, table 3 was formulated. The Sum of squares for each pair of interactions is given
using equation (9).

[>ABiow I* n [EABhigh]z _

n n

CF (C))

Where, AB represents interaction between distance (cm), A, and flow rate (ml h™ "), B. The corresponding values
of average diameters for the high (4-) and low (—) levels of the particular interaction between variables were
taken from table 3.

The values of the sum of squares for the various interactions are as follows

1. Sum of squares for interaction AB, SS 45

CF

(ABo? |, [DABio]”

n n

_[181 + 270 + 254 + 147 + 288 + 375 + 229.5 + 235]2

B 8

n [205 + 280 + 260 + 286 + 287 + 206 + 308 + 274]2
8

—1043207 = 1000

Similarly,

2. Sum of squares for interaction AC, SS,c

[>ACiw n [ZAChigh ]2

n n

— CF = 47435
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Table 3. Interaction table (curcumin nanofibers).

NJKanuetal

S.no. AB AC AD BC BD CD ABC BCD ACD ABCD Diameters (nm) as in table 2
1 + + + + + + — — — + 205 + 22.5
2 — — — + + + + — + — 181 + 66
3 — + + — — + + + — — 270 + 16
4 + — - — -+ — + + + 280 + 20
5 + — + — + — + + + — 260 + 26.5
6 — + — — + — — + — + 254 + 28
7 — — + + - - — — + + 147 + 34
8 + + — + — — + — — — 286 + 31
9 + + — + e + + — 287 + 77
10 — — + + — — + + — + 288 + 57
11 — + — — + — + — + + 375 + 96
12 + -+ — 4+ e — — — 206 + 56
13 + — — — + + — — + 308 + 74
14 — + + — — + — — + — 229.5 + 60
15 — — — + + + — + — — 235 & 47
16 + + + + + + + + + + 274 + 53
1. Sum of squares for interaction AD, SS4p
2 T
(SADw P, Al o
n n
2. Sum of squares for interaction BC, SSzc
2 T
(2ACuT [(Z8Cu | CF = 4882.5
n n

3. Sum of squares for interaction BD, SSgp,

[>"BDjow I n [ZBD high ]2

n n

4. Sum of squares for interaction CD, SS¢p

[>-CDjpy, | n [ZCDhigh]z

n n

5. Sum of squares for interaction ABC, SSac

[ABCw? |, [ZABCiw ]

— CF = 695.5

— CF =907.5

n n

6. Sum of squares for interaction BCD, SSpcp

[ZBCDun [SBCDyigh |

n n

7. Sum of squares for interaction ACD, SS,cp

[Z:ACDlow]z + I:ZACDhigh]2

—CF=21

n n

— CF = 9925

— CF = 2769

14
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Table 4. Effect estimation-final ANOVA table.

MODEL/ Factor/ Effect

Remark ERROR Interaction estimation Sum of square (SOS) % Contribution

Factors/interactions having MODEL ABC 50 9925 24

significant contributions

MODEL AD —41 6662.5 16
MODEL D 40 6380 15.5
MODEL BC —35 4882.5 12
MODEL AC 34.5 4743.5 11.5
MODEL BCD 26 2769 6.7
MODEL ABCD 22 1947 4.7
MODEL AB 16 1000 2.4
MODEL CD —15 907.5 2.2
MODEL BD —13 695.5 1.7
MODEL C —12 606 1.5
MODEL A —11 489.5 1.2
MODEL B 7.5 228.5 0.5

Factor/interaction NOT having ERROR ACD -2 21 0.05

significant contribution
>-SOS = 41257.5

8. Sum of squares for interaction ABCD, SSapcp

2
[XABCDi P [S°ABCDyig |
n n
Highest value = 9925 for ABC interaction

Errors, which are listed in table 4 can be pooled together and the Ratio, MS,,,,, canbe calculated using the
equation (10).

— CF = 1947

MSerror = Sserror/‘/;rrar =21 (10)

Where, V,,,,, represents the number of errors, and in our case it is one.

Now, in the calculation of the F ratio, using the F-distribution table, we have found the F value for 95% level
of confidence as 7.71 and further concluded that the diameter primarily depends upon factors: (a) ABC-
Interaction between distance (cm), flow rate (ml h™*) and voltage (KV), (b) AD-Interaction between distance
(cm) and viscosity (cP), (¢) D-Viscosity (cP), (d) BC-Interaction between flow rate (ml h™ Y and voltage (KV),
(e) AC-Interaction between distance (cm) and voltage (KV), (f) BCD-Interaction between flow rate (ml h™ b,
voltage (KV) and viscosity (cP), (g) ABCD-Interaction between distance (cm), flow rate (ml h "), voltage (KV)
and viscosity (cP), (h) AB-Interaction between distance (cm) and flow rate (ml h™"), (i) CD-Interaction between
voltage (KV) and viscosity (cP), (j) BD-Interaction between flow rate (ml h~") and viscosity (cP), (k) C-Voltage
(KV), (1) A-Distance (cm), and (m) B-Flow rate (ml h ™). These are treated as models and further tested for their
contribution to the diameters of nanofibers (nm) (at 5% level of significance) in table 4. During the effect
estimation, it is found about the factor ACD-Interaction between distance (cm), voltage (KV) and viscosity (cP)
that it affects the diameter (nm) by 0.05% which is not significant and thus it is indicated as an error in table 4.

3.3. Regression analysis

As each input variable has two levels i.e. high (+) and low (—) levels and has one degree of freedom, thus an
ordinary regression model was employed to calculate the minimum diameter of nanofibers after substitution of
suitable values of the interaction effects such as 3, 32, B4 55, Bs» 87, Bs» Bo, and By (in terms of
contributions of interactions between ABC-Interaction between distance (cm), flow rate (ml h~") and voltage
(KV), AD-Interaction between distance (cm) and viscosity (cP), BC-Interaction between flow rate (ml h™ "and
voltage (KV), AC-Interaction between distance (cm) and voltage (KV), BCD-Interaction between flow rate
(mlh™b), voltage (KV) and viscosity (cP), ABCD-Interaction between distance (cm), flow rate (ml h™ b, voltage
(KV) and viscosity (cP), AB-Interaction between distance (cm) and flow rate (ml h "), CD-Interaction between
voltage (KV) and viscosity (cP), BD-Interaction between flow rate (ml h ) and viscosity (cP), respectively) as
well as the main effects, such as 3, 011, (12, and (3 (in terms of contributions of D-Viscosity (cP), C-Voltage
(KV), A-Distance (cm), and B-Flow rate (ml h ™), respectively), in equation (11).

Y= 00+ 6iXi + 32X + B X5 + ...+ Bu Xy + & (11)
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Where,

4085.5
16

= 255.344

N
Y
ﬂo—i;N

Further, the effect of each factor, P, was calculated using the formula Yp = Yp, — Yp_, where, ¥p, and
Yp_ stand for the sums of all average diameters prepared at high (+) and low (—) levels, respectively, for the
particular input variable. The corresponding values of the average diameters for the high (4-) and low (—) levels
of the particular input variable were taken from tables 2 and 3.

As an example, the effect of factor B can be calculated as follows:

D == ?D+ - YD,
_ [287 + 288 + 375 + 206 + 308 + 229.5 + 235 + 274]

8
_ [205 4 181 4 270 + 280 + 260 + 254 + 147 + 286] _

8

40

Similarly, the effects of the other factors, such as
ABC, AD, BC, AC, BCD, ABCD, AB, CD, BD, C, A, B,and ACD were calculated as 50, —41, —35,
34.5,26,22,16,—15,—13,—12,—11,7.5,and —2, respectively (as shown in table 4).

Therefore, the % contribution for ABC = (9925/41257.5) x 100 = 24

O = %(effect estimate for factor ABC) = 25
Br = %(eﬁ’ect estimate for factor AD) = —20.5
Bs = %(eﬁ‘ect estimate for factor D) = 20
Ba = %(eﬂ‘ect estimate for factor BC) = —17.75

Os = %(eﬁ‘ect estimate for factor AC) = 17.25

1 .
B = E(ejj‘ect estimate for factor BCD) = 13

87 = %(ejj‘ect estimate for factor ABCD) = 11
Bs = %(eﬁ‘ect estimate for factor AB) = 8
B = %(eﬁ‘ect estimate for factor CD) = —7.5
Bro = %(ejj‘ect estimate for factor BD) = —6.5
B = %(eﬁ‘ect estimate for factor C) = —6
B2 = %(eﬁ(ect estimate for factor A) = —5.5
Bz = %(eﬂfect estimate for factor B) = 3.75

The general form of the regression analysis equation is shown in equation (12). The minimum diameter of
curcumin/gelatin nanofibers (nm) attainable using our system, can be calculated after substituting the suitable
values of the coefficients (such as 31, 32, B4 Bs, Bs» 375 Bs» B9, and By) of the interaction effects (such as
Xuges Xap> Xgo> Xac, Xpeps Xasep, Xap, Xcp,and Xpp) as well as the coefficients (such as 35, 511, Bi2
and (3;3) of the main effects (suchas Xp, X, Xy, and Xp)in equation (12).

Diameter (nm) = 255.344 + 25X,pc — 20.5X4p + 20Xp — 17.75Xpc

+ 17-25XAC + 13XBCD + IIXABCD + SXAB
— 7.5Xcp — 6.5Xpp — 6Xc — 5.5X4 + 3.75Xp (12)

The above model equation (12) is valid in the regions such as (a) 10 < X4 < 15(cm), (b) 0.10 < X <
0.15(mlh ™), (€)10 < X < 15(KV),and (d) 65 < Xp < 70(cP).
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The plot of the variation in average diameters of nanofibers versus the runs (also known as the time series
plot of average diameters) for a random correlation is shown in figure 7(a) as per the values listed in table 2 for all
sixteen iterations. The main effects and interactions plots for the means of the average diameters (nm) with
respect to the critical process parameters were plotted using MINITAB 17 software, as shown in figure 7(b) and
(¢). They show that ABC-Interaction between distance (cm), flow rate (ml h~") and voltage (KV), AD-
Interaction between distance (cm) and viscosity (cP), D-Viscosity (cP), BC-Interaction between flow rate
(ml h™") and voltage (KV), AC-Interaction between distance (cm) and voltage (KV), BCD-Interaction between
flow rate (mlh™Y), voltage (KV) and viscosity (cP), ABCD-Interaction between distance (cm), flow rate (ml h™h,
voltage (KV) and viscosity (cP), AB-Interaction between distance (cm) and flow rate (ml h™1), CD-Interaction
between voltage (KV) and viscosity (cP), BD-Interaction between flow rate (ml h™Yand viscosity (cP), C-
Voltage (KV), A-Distance (cm), and B-Flow rate (ml h™") have the significant impact over preparation of
minimum diameter of curcumin/gelatin nanofibers, as shown in table 4, figures 7(b) and (¢).

The variations in diameters of nanofibers with respect to all four critical process parameters are shown in
figure 7(b). It was found that with an increase in distance and voltage, the diameter of nanofibers was reduced.
However, with an increase in flow rate and viscosity, the diameter of nanofibers was increased. A good
interaction among all the four critical process parameters occurred is shown in figure 7(c). The effects of the
contribution of ABC-Interaction between distance (cm), flow rate (ml h ') and voltage (KV), AD-Interaction
between distance (cm) and viscosity (cP), D-Viscosity (cP), BC-Interaction between flow rate (ml h™ Yand
voltage (KV), and AC-Interaction between distance (cm) and voltage (KV) were found to be considerable (table 4
and figure 7(c)).

The response contour lines maps of the average diameters (nm) of curcumin/gelatin nanofibers as a
function of the critical process parameters are shown in figures 7(d), (f), (h), (j), (1), and (n) to define the
relationships between two variables and a response. The predicted 3D response surface plots of the average
diameters (nm) of curcumin/gelatin nanofibers produced by the fitted model, are shown in figures 7(e), (g), (i),
(k), (m), and (o). The darkest shade in contour plots represents locations where the diameters of the nanofibers,
was maximum (> 280 nm) and the lightest shade represents locations where the diameters of the nanofiber was
minimum (< 240 nm).

It was clear after the ANOVA calculations (final ANOVA, table 4), that the factor ACD-Interaction between
distance (cm), voltage (KV) and viscosity (cP) had the least contribution (in producing minimum diameters of
curcumin/gelatin nanofibers because of the fact that it was coming as an error in DOE analysis. The effects of the
contribution of ABC-Interaction between distance (cm), flow rate (ml h ") and voltage (KV), AD-Interaction
between distance (cm) and viscosity (cP), D-Viscosity (cP), BC-Interaction between flow rate (ml h ") and
voltage (KV), and AC-Interaction between distance (cm) and voltage (KV) had the considerable impacts of 24%,
16%, 15.5%, 12%, and 11.5% respectively, over the preparation of the minimum diameters of the curcumin/
gelatin nanofiber.

The optimized parameter settings are shown in figure 7(p). The impacts of the critical process parameters on
the average diameters (nm) of curcumin/gelatin nanofibers could be estimated by shifting the red lines to find
optimal values of process parameters within the range. In our case the composite desirability, D, is 0.8129, which
is close to 1. The horizontal blue line represents the current response values (figure 7(p)). The average diameter
of ultrathin curcumin/gelatin nanofibers was predicted around 189.6563 nm using the optimized setting of a
solution having 1.5% gelatin, 1% curcumin in 10 ml of 98% concentrated formic acid, with the electrospining
unit having a voltage of 10 KV, distance from the spinneret to collector drum of 15 cm, flow rate of 0.1 ml h™ v
viscosity of 65 cP and drum collector speed of 1000 rpm. The figure 6(c) shows the SEM image of the curcumin/
gelatin nanofibers havinga 181 nm (181 & 66 nm) average diameter, prepared under similar condition using
the same solution. Thus, the estimated diameter (nm) of curcumin/gelatin nanofibers in the optimization
process only has an 8% difference with the prepared diameter which shows the efficacy of present investigation.

We suggest these light weights, and ultrathin nanofibers having enough film porosity could be used in
wound dressing applications due to their high surface area to volume ratio with respect to length and diameter.
Researchers have been optimizing the input parameters to prepare minimum diameters of curcumin based
nanofibers for various biomedical applications for the last 12 years as shown in figure 8 and table 5. In the present
investigation, the optimum conditions were achieved to synthesize the minimum average diameter
(181 + 66 nm) of ultrathin curcumin/gelatin nanofibers so far which could be suitable for dressing diabetic
chronic ulcers due to its unique properties such as light weight, nontoxic, biocompatible as well as water
absorbent and fluid affinity.

Sharjeel et al[100] were successful in electrospinning a novel and hybrid polymeric nanofibrous meshes for
dressing the burn wounds after incorporating gabapentin (a neuropathic pain killer) into polyethylene
nanofibers and acetaminophen (a class of analgesics) into sodium alginate nanofibers, using the optimized
setting of a polymeric solution of the polyethylene oxide and sodium alginate mixed in 80:20 blend proportion.
The hybrid mechanism could be a safe choice in wound dressing applications. Sharjeel e al [101] used acetic acid
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Figure 7. The process optimization of the electrospun curcumin/gelatin nanofibers. (a) The plot of the variation in average diameters
of nanofibers versus the runs (also known as the time series plot of average diameters). (b) The variation in average diameters (nm) of
curcumin/gelatin nanofibers with respect to the critical parameters. (c) The interaction plot to demonstrate effects of the critical
process parameters on the average diameter (nm) of curcumin/gelatin nanofibers. The response contour plots of the average
diameters (nm) of curcumin/gelatin nanofibers as a function of (d) distance (cm) and flow rate (ml h™ Yatan applied voltage of
12.5KV and at a viscosity of 67.5 cP, (f) distance (cm) and voltage (KV) at a flow rate of 0.125 ml h ™" and a viscosity of 67.5 cP, (h)
distance (cm) and viscosity (cP) at a flow rate of 0.125 ml h ™" and at an applied voltage of 12.5 KV, (j) flow rate (ml h™~") and voltage
(KV) atadistance of 12.5 cm from the spinneret to collector drum and a viscosity of 67.5 cP, (1) flow rate (ml h Y and viscosity (cP) at
adistance of 12.5 cm from the spinneret to collector drum and at an applied voltage of 12.5 KV, and (n) voltage (KV) and viscosity (cP)
ata distance of 12.5 cm from the spinneret to collector drum and a flow rate of 0.125 ml h™". The 3D response surface plots of the
average diameters (nm) of curcumin /gelatin nanofibers as a function of (e) distance (cm) and flow rate (ml h™") at an applied voltage
0f 12.5 KV and at a viscosity of 67.5 cP, (g) distance (cm) and voltage (KV) at a flow rate of 0.125 ml h ™" and a viscosity of 67.5 cP,

(i) distance (cm) and viscosity (cP) at a flow rate of 0.125 ml h™'and at an applied voltage of 12.5 KV, (k) flow rate (ml h™"and
voltage (KV) at a distance of 12.5 cm from the spinneret to collector drum and a viscosity of 67.5 cP, (m) flow rate (ml h~') and
viscosity (cP) ata distance of 12.5 cm from the spinneret to collector drum and at an applied voltage of 12.5 KV, and (o) voltage (KV)
and viscosity (cP) at a distance of 12.5 cm from the spinneret to collector drum and a flow rate 0£0.125 ml h™ ! (p) The optimized
responses for the minimum average diameter (nm) of curcumin/gelatine nanofibers.

and water (50:50, v/v) while preparing the solvent for synthesizing electrospun polyethylene oxide and chitosan
(each dissolved separately in acetic acid and water solution in 5% weight-to-volume ratio) nanofibers (the ratio
of polyethylene oxide and chitosan in the polymeric solution was 80:20). The authors incorporated
nanoparticles of zinc oxide and ciprofloxacin drugs into electrospun polyethylene oxide-chitosan nanofibers
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Figure 7. (Continued.)

and evaluated these drug delivery meshes as effective antibacterial systems. The authors were successful in
optimizing electrospun polyethylene oxide-chitosan nanofibers of 116 nm diameters (with standard deviation
of only 21 nm) using response surface methodology. They also observed that (a) a higher distance yielded lower
diameters, (b) a higher voltage resulted in lower diameters, (c) with an increase in flow rate, the diameters of the
nanofibers were increased, and (d) with an increase in concentration of zinc oxide nanoparticles and
ciprofloxacin, the diameters of the nanofibers were increased from 116 to 210 nm and enhanced the
antibacterial efficiency.

4. Future research

The application of curcumin loaded nanofibers still needs to be explored for efficient drug release during various
stages of wound healing as it is still a challenge. On the basis of types of drugs to be released and various stages of
wound healing, specific polymers for electrospun curcumin nanofibers have to be selected. However, the use of
cytotoxic chemicals may spoil the recent research outputs in pharmaceutical applications, particularly during
wound dressing. Recent studies of curcumin in nanofibers reveal a new field of research to synthesize potential
biomaterials for applications in bone tissue engineering [22], treatment of diabetic chronic ulcers [20], cancers
[102, 103] etc.

5. Conclusions

Our review of curcumin based, electrospun nanofibers encompassed all aspects, including the importance and
need of the biofunctional nanofibers as well as the nanofibrous mats in wound healing, cancer treatment, tissue
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Figure 7. (Continued.)

engineering, etc to motivate researchers who are desirous to work in this innovative field of research to solve
various biomedical issues using biofunctional nanofibers. The electrospinning mechanism (numerical
investigations of the mechanism) was reviewed in depth in the first section of article to have better control over
preparation of ultrathin curcumin/gelatin nanofibers.

In the present investigation, the mechanism behind electrospinning was discussed as used to prepare
curcumin/gelatin nanofibers which would have applications in wound dressing. Gelatin was selected as the fiber
material due to its nontoxic and biocompatible nature as well as it being water absorbent (fluid affinity), thus
supporting moist wound healing in further applications. Gelatin is commercially available at relatively low cost
and thus was the obvious choice in the present investigation. Using electrospining, light weight, ultrathin, and
porous nanofibers having average diameters of 147 nm (147 £ 34 nm) were prepared successfully at a higher
voltage, such as 15 KV (at 10 cm distance, 0.15 ml h™ ! flow rate, 65 cP viscosity and drum collector speed of
1000 rpm) using the solution having 1.5% gelatin, and 1% curcumin in 10 ml of 98% concentrated formic acid
(figure 6(d) and table 2).

After determining the relative effects of the various spinning factors, as shown in table (table 4), we arrived at
the following conclusions: (a) ABC-Interaction between distance (cm), flow rate (ml h™Yand voltage (KV),
AD-Interaction between distance (cm) and viscosity (cP), D-Viscosity (cP), BC-Interaction between flow rate
(mlh ') and voltage (KV), and AC-Interaction between distance (cm) and voltage (KV) have the considerable
impacts of 24%, 16%, 15.5%, 12%, and 11.5% respectively, over the preparation of the minimum diameters of
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y = 189.6563

d = 0.81291

(p)

the curcumin/gelatin nanofiber, (b) BCD-Interaction between flow rate (ml h™h, voltage (KV) and viscosity

(cP), ABCD-Interaction between distance (cm), flow rate (ml h™1), voltage (KV) and viscosity (cP), AB-

Interaction between distance (cm) and flow rate (ml h™}!), CD-Interaction between voltage (KV) and viscosity
(cP), BD-Interaction between flow rate (ml h™") and viscosity (cP), C-Voltage (KV), A-Distance (cm), and B-
Flow rate (ml h ") have the significant impact over preparation of minimum diameter of curcumin/gelatin
nanofibers, and (¢) ACD-Interaction between distance (cm), voltage (KV) and viscosity (cP) affects the diameter

(nm) by 0.05% only which is not significant.

The 2* factorial design of experiment was used as an efficient technique to empirically examine the effects of
all four critical process parameters on the diameter of the nanofibers. MINITAB 17 software was used for
plotting graphs for study of the variation in diameters of nanofibers with respect to input parameters. The
variation in diameters of nanofibers with respect to the critical process parameters that were observed include (a)
ahigher distance yielded lower diameters, (b) a higher voltage resulted in lower diameters, (c) with an increase in
flow rate, the diameters of the nanofibers were increased, and (d) with an increase in viscosity, the diameters of

the nanofibers were increased.

The optimum condition for the development of ultrathin curcumin/gelatin nanofibers having a
189.6563 nm average diameter was estimated using the optimized setting of a solution having 1.5% gelatin, 1%
curcumin in 10 ml of 98% concentrated formic acid, with the electrospining unit having a voltage of 15 KV,
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Figure 8. Synthesis of lowest diameter of curcumin /gelatin nanofibers.

distance from the spinneret to collector drum of 15 cm, flow rate of 0.1 ml h™ !, viscosity of 65 cP and drum
collector speed of 1000 rpm. The estimated average diameter (nm) of curcumin/gelatin nanofibers in the
optimization process only has an 8% difference with the prepared average diameter, i.e., 181 nm

(181 +£ 66 nm), which shows the efficacy of the present investigation.

These ultrathin nanofibers having enough film porosity were biocompatible, nontoxic as well as
biodegradable in nature and thus it is suggested that they could be used in dressing problematic wounds, such as
diabetic chronic ulcers, as these have unique properties, such as high surface area to volume ratio and light
weight, for sustained release of curcumin during healing. This research paper presented so far is very different
from its kind as it encompasses (a) the entire electrospinning mechanism (numerical investigations of the
mechanism) to have better control over preparation of ultrathin nanofibers, and (b) the applications of the
nanofibrous mats (incorporating biofunctional nanofibers) which are in use now-a-days, after reviewing
sufficient number of papers prior to actual optimization for the lowest diameter range using theoretical analysis
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Table 5. Recent achievements in optimization of curcumin based electrospun nanofibers.

Average diameters of

Researchers nanofibers (nm) Details of nanofibers
Rramaswamy et al (2018) [93] 600 (£ 50) Tetrahydro curcumin (THC) loaded poly (vinyl pyrrolidone)
(PVP) nanofibers
Buietal (2014)[17] 553 Curcumin contatining polycaprolactone (PCL) nanofibers
Perumal et al (2017) [19] 516 Poly (lactic acid)/curcumin nanofibers
Chuan et al (2015) [94] 485 (+123) Curcumin loaded polyvinyl pyrrolidone (PVP) nanofibers
Sridhar etal (2014) [95] 286 (+90) Curcumin loaded PCL/aloe vera nanofibers
Boroumand et al (2017) [28] 220 (£ 100) Curcumin contatining polycaprolactone (PCL) nanofibers
Mutluetal (2018) [18] 207 (£ 56) Curcumin loaded poly (3-hydroxy butyric acid-co-3-hydroxy
valeric acid) (PHBV) nanofibers
Merrell et al (2009) [30] 200 Curcumin loaded poly(e-caprolactone) nanofibers
Mamidi et al (2018) [74] 195 (£ 200) Curcumin embedded gelatin-polylactic acid nanofibers
Ranjbar-Mohammadi et al 191(£24) Curcumin loaded poly(e-caprolactone)/gum tragacanth
(2015) [96] nanofibers
Sedghi eral (2018) [23] 153 (£ 31) Zinc-curcumin loaded coaxial nanofibers
Present research 147 (£ 34) Curcumin/gelatin nanofibers
Gamze et al (2013) [97] 138 (+£39) Curcumin loaded polyethylene oxide (PEO)/hydroxypropyl
methylcellulose (HPMC) nanofibers
Priscilla et al (2013) [98] 123.6 (£ 26.8) Poly(lactic-co-glycolic acid) /curcumin nanofibers
Thien et al (2016) [29] 100 Curcumin loaded chitosan/poly (vinyl alcohol) PVA nanofibers
Rezaeietal (2018) [22] 98 (+18) Curcumin loaded almond gum nanofibers
Bhaarathi et al (2013) [99] 66.81 Curcumin loaded chitosan/poly (lactic acid) nanofibers

(which are validated too using experimental results). Finally, the optimized settings (to obtain ultrathin
nanofibers) were proposed for the electrospinning process parameters to prepare nanofibers mats for
biomedical applications, such as wound healing (through sustained release of curcumin during crucial hours of
healing).
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