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Abstract
Electrospinninghas receivedwide attention for thepreparationofuniformdiameternanofibers (ranging
from5nmto several hundrednanometers) infilmswith randomaswell as aligned fashionsof thefibers of
variousmaterials for use inbiomedical applications. Electrospinning researchhasprovided an in-depth
understandingof thepreparationof lightweight, ultrathin, porous, biofunctional curcumin/gelatin
nanofibers having applications inwounddressing, drug release, tissue engineering, etc. In thefirst half of
this article, prior researchonelectrospuncurcumin/gelatinnanofibers is reviewed indepthwithnanofibers
beingdesireddue to their lowdiameters since thesewouldhave then large surface area to volume ratio and
enoughfilmporosity aswell as improvedmechanical (tensile) strength so thatwhenprepared asmats these
nanofibers (havinghighbiocompatibility) couldbeused for sustained releaseof curcuminandoxygen to
woundsduringhealing.The synthesis ofultrathinnanofibers (havingminimumaveragediameter) is not a
simple taskunless numerical investigation is carefullydone in thefirst half of this research article.The
authors researchdescribedhere examined the effects of critical processparameters (in the secondhalf of the
paper) such asdistancebetween the spinneret and collector,flowrate, voltage and solutionviscosity, on the
preparationofuniformandultrathinnanofibers using scanning electronmicroscopy (SEM) for
characterizationof thenanofibers.A2k factorial designof experimentwas found tobe a suitable andefficient
technique tooptimize the critical processparametersused in thepreparationof thebiofunctionalnanofibers
with thepurposeofhaving applications in the treatmentofproblematicwounds suchasdiabetic chronic
ulcers.After parametric investigation, thedistance,flowrate andvoltagewhen taken together,were found to
have themost significant contributions to thepreparationofminimumdiameternanofibers.Theprimary
objective of this researchwas fulfilledwith thedevelopmentof ultrathin curcumin/gelatinnanofibers
having a181 nm (181±66 nm) averagediameterusing theoptimized settingof a solutionhaving1.5%
gelatin, and1%curcumin in10mlof 98%concentrated formic acid,with the electrospiningunit having a
voltageof 10KV,distance from the spinneret to collectordrumof15 cm,flowrateof 0.1ml h−1, viscosityof
65 cPanddrumcollector speedof 1000 rpm.However, the lowest averagediameter ofnanofiberwas
measured around147 nm (147±34 nm)whichwasprepared at ahigher voltage, such as 15KV (at 10 cm
distance, 0.15ml h−1flowrate and65 cPviscosity)using the solution.Thedesignof this researchpaper is
basedon the view thatmerelyoptimizationofbiofunctionalnanofibersmaynot fully satisfy researchers/
engineersunless they are alsoprovidedwith sufficient information about (a) the entire electrospinning
mechanism (numerical investigationsof themechanism) tohavebetter controloverpreparationofultrathin
nanofibers, and (b) applicationsof the resultingultrathinbiofunctionalnanofiberswhile fabricating
nanofibrousmats (asusednow-a-days) for sustained release of curcuminduring the critical hoursofwound
healing andother biomedical applications.
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1. Introduction

1.1. Electrospun curcumin/gelatin nanofibers: review of the state-of-the-art
The impact of nanotechnology on health sciences is widespread. The potential roles of nanofibers in biomedical
applications, such as drug release and tissue engineering have been investigated recently. Preparation of
polymeric fibers is not a simple task. There aremany preparation processes possible which can vary the
characteristics of polymeric fibers of the available techniques, electrospinning is considered as an efficient
technique to prepare polymeric nanofibers that are polymeric, synthetic or natural, biodegradable or non-
biodegradable, etc, having uniformdiameters (5 nm to several hundred nanometers) from awide variety of
polymers and composite solutions [1–3]. Electrospinning is preferred over other conventionalmethods in
recent research papers to prepare polymer nanofibers. The apparatus is relatively easy to operate whichmakes
this process cost effective [4–6]. The nanofibers produced so far have applications inmany disciplines of
engineering andmedical sciences. The basics of nanofiber spinning of biopolymers have been described by Jamil
et al [7]; Pham et al [8]; Vasita and katti et al [9]; Kriegel et al [10]; Shekh et al [11]; Tuerdimaimaiti et al [12];
Amariei et al [13]; Yoon et al [14]; Alharbi et al [15]; Chen et al [16].

The proteins and their derivatives aswell as biodegradable and nontoxic biopolymers such as chitosan,
cellulose, collagen, gelatin, etc, are extracted from living organisms and they are used for electrospinning of
polymeric nanofibers. The limitations of biopolymers such as their limited solubility in organic solvents due to
their high crystallinity, their expensive purification processes and further their viscous solutions due to their
tendency to formhydrogen bonds, are overcome after blendingwith synthetic polymers otherwise these
limitationsmay restrict their electrospinning into nanofibrousmats [10]. The nanofibrousmats prepared from
electrospun collagen nanofibers have been used as scaffolds for tissue engineering applications [7]. Aloe vera, a
natural polymer also holds potential for tissue engineering applications due to its antioxidant and nontoxic
nature [11]. The biomedical applications of few electrospun nanofibers are listed in table 1.

Gelatin (amixture of proteins and peptides) is a natural polymerwhich is biocompatible, nontoxic and
biodegradable, and hence is considered as a fair and safe choicewhen selecting fibermaterial for dressing
problematic wounds such as diabetic chronic ulcers. The light weight ultrathin nanofibers can serve as
mechanical support duringwound dressings due to their significant tensile strength as compared to
conventional fibers (having diameters in the range of over 100 nm) and also act as barriers to cover thewound
[30–33]. Gelatin is also known for its excellent water absorption and fluid affinity, whichmakes it a good choice
to supportmoist wound healing. Gelatin (a natural biopolymerwhich is a denatured formof collagen) is quite
soluble in formic acid. Collagen is a protein available in the extra cellularmatrix (ECM) of animals and humans,
and is expensive due to itsmanufacturing processes. However, gelatin is easily available at amuch lower price
than collagen and thus is a preferred source for biomaterials. Gelatin nanofibers (like collagen) have been used in
biomedical applications such as cosmetics, wound dressing, tissue engineering, surgical treatments, etc [34].
Gelatin nanofibers (having sufficientmechanical properties to be used in these applications as nanofibrous
mats) have been electrospun for ultrathin nanofibers [34–44]. These authors also reported that the properties of
these nanofibers can be tailored as per requirements by optimizing input parameters such as voltage, viscosity,
distance between the spinneret and rotating drum collector, and flow rate. These authors have spun nanofibers
of diameters in the range of 76–100 nm for drug delivery andwound dressing applications. It is evident that
formic acid is used as an organic volatile solvent to dissolve gelatin at room temperature for the electrospinning.

The use of gelatin nanofibers having enough tensile strength for fabricating nonwovenmats has received
attention recently for use for antimicrobial applications [45–49]. Successful spinning ofminimumdiameter
nanofibers results in the surface areas of these nanofibers being increased in addition to their light weight. This is
basically required forwound dressings and other biomedical applications as listed in table 1. For instance
Mindru et al [50]were successful in preparing nonwovenmats of required thickness and improved strengths for
biomedical applications using a solvent system consisting of formic acid.Numerous questions have arisen
however, due to use of cytotoxic solvents while preparing solutions for electrospinning of gelatin nanofibers to
be used in real biomedical applications. Instead of cytotoxic solvents,Maleknia et al [51] used formic acid/water
to prepare solutions for electrospinning of gelatin nanofibers for biomedical applications such aswound
dressing, drug release, and tissue engineering. These authorswere successful in spinning gelatin nanofibers with
diameters as small as 197 nm.Chen et al [52] used formic acid and ethanol (to improve volatility of the solvent)
instead of cytotoxic solvents while preparing the solvent for synthesizing electrospun gelatin nanofibers. These
authors were successful in spinning gelatin nanofibers of 85 nmdiameters, the lowest reported to date. During
their investigations, they found that crosslinked gelatin nanofibers (after soaking the nanofibers in 2.5%of
glutaraldehyde aqueous solution for 72 h and then beingwashed using de-ionizedwater before drying)were
compatible withmousemesangial cells. The drug delivery nanofibrousmats are required to be dissolved quickly
in aqueous solutions. Aytac et al [42] found that the electrospun gelatin nanofibers encapsulatedwith
ciprofloxacin/hydroxypropyl-beta-cyclodextrin-inclusion complex could dissolve faster inwater than
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electrospun gelatin nanofibers loadedwith ciprofloxacin. Yabing et al [40] synthesized drugs (inhibitors such as
SP600125, c-JunN-terminal kinase and SB203580, p38MAP kinase)-loadedmicelles (poly(ethylene glycol)-
block-caprolactone copolymer) using dialysismethod and incorporated these drugs into electrospun gelatin
nanofibers. The dual drugs delivery electrospun gelatin nanofibrousmats were used as scaffolds for the
treatment of infections around the teeth.Nanofibrousmats prepared from electrospun nanofibers have large
surface areas and they are expected to play a significant role in tissue engineering. The use of formic acid as a
solvent for electrospinning biofunctional nanofibers has resulted in their use in various biomedical applications,
such as immobilization of enzymes, bone regenerationmaterials, antibacterial and antifungal activities in release
of drugs, encapsulation of bioactivematerials during food packaging andwound dressing [53].

Turmeric is derived fromCurcuma longa (common turmeric, an herbaceous plant) and has beenwidely used
in India andChina as a bioactive compoundwith powerful anti-inflammatory and antioxidantmedicinal
properties. Curcumin is one of the components of turmeric. It has been shown that synthetic
dimethoxycurcumin ismore potent to destroy cancer (a leading cause of every sixth deathworldwide) cells than
natural curcumin (derived from the plant) [54–64]. Ramírezagudelo et al [55] incorporated antibiotic
doxycycline drugs (inhibitors ofmitochondrial biogenesis, could restrict cancer stem cells in initial breast cancer
stages) into electrospun hybrid poly-caprolactone/gelatin/hydroxyapatite soft nanofibrousmats and evaluated
these drug deliverymeshes as effective anti-tumor and antibacterial scaffolds. The use of formic acid as solvent
for solutes such as curcumin and gelatin has been the preferred choice inmany biomedical researches. Authors
have prepared solutions of curcumin and dimethoxycurcumin using formic acid [54, 65–67]. Curcumin is a
naturalmonomer (as shown infigure 1(a)), and nanofibers containing poly(curcumin) (as shown infigure 1(b))
can be used inmedical treatments such as curing the skin injuries, as shown infigure 2(a).More curcuminwould
be expected to release with a specific rate fromhigher concentrations, such as 17% curcumin loaded poly (ε-
caprolactone) (PCL)nanofibers than the lower concentrations, such as 3% curcumin loaded PCLnanofibers,
after 12 h (as shown infigure 2(b)) [30]. Using PCL-curcumin solutions, biofunctional electrospun nanofibers
were prepared [30–33, 68]. Hoang et al [68] fabricated curcumin loaded PCL/chitosan nonwovenmats (for
wound dressings) using formic acid and acetone together as solvents while electrospinning nanofibers. They also
investigated the release of curcumin (via an in vitro approach) fromnonwovenmats of thesefibers (having fiber
diameters in the range between 267 nm to 402 nm); it was found to be nearly 80%during the initial 100 h. The
gelatin nanofibers were found to serve as vehicles to release the drugs in controlledmanner. These electrospun
nanofibers were prepared in such away that they had highly functionalized surface areas and theirmats had
excellent porosity to both, incorporate curcumin and allow curcumin diffusion out of thematrix, thereby
improving their drug releasing capabilities. Xinyi et al [33]prepared curcumin/gelatin nanofibrousmats and
investigated the release of curcumin on ratmodels (acutewounds) via in vitro approach, as shown infigure 2(c)
[33].While investigating crosslinked curcumin/gelatin nanofibers (after placing in a 25%glutaraldehyde
solutionwith ethanol (1%v/v) before vacuumdrying for 72 h at 4 °C), the authors found improvedmechanical
strength of this electrospun nanofibers, as shown infigure 3 [33].Thewound healingwas tested by treating rats
using the curcumin/gelatin nanofibrousmats (healing analyses are shown infigure 4 for the 3rd, 7th, and 15th
days after wounding). This encouraged us to prepare curcumin loaded gelatin nanofibers suitable for fabrication
of nanofibrousmats for the application of sustained release of curcumin and oxygen to thewound (during
healing).

Table 1.Use of ultrathin electrospun curcumin based nanofibers for biomedical applications.

About curcumin based nanofibers Biomedical applications References

Curcuminwith polycaprolactone-polyethylene glycol nanofibers, Curcumin

with poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV), Cur-

cuminwith poly(lactic acid)-hyperbranched polyglycerol, andCurcumin

with e-polycaprolactone / polyvinylalcoholmultilayer nanofibers

Better wound healing potential [17–20]

Curcuminwith gum tragacanth/poly(ε-caprolactone) nanofibers Improved antibacterial implementation and

diabetic wound healing (in vivo)
[21]

Curcuminwith almond gum/ polyvinyl alcohol (PVA) composite nanofibers Improved bioavailability and therapeutic

potential

[22]

Zinc-curcuminwith coaxial nanofibers As bone substitute [23]
Curcuminwith zein fibers Improved antibacterial potential [24]
Curcuminwith cellulose acetate/polyvinylpyrrolidone nanofibers, Curcumin

with polyurethanes nanofibers, andCurcuminwith gelatin nanofibers

Antibacterial performance [25–27]

Curcumin nanofibers Anti-adhesion potential [28]
Curcuminwith chitosan/ poly (vinyl alcohol) (PVA) nanofibers Drug delivery potential [29]
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In the present study, an electrospiningmethodwas adapted to prepare the curcumin loaded gelatin
nanofibers; characterizations of the nanofibers were done using scanning electronmicroscopy (SEM).
Investigationswere done tofind the effects of critical process parameters such as distance between the spinneret
and collector, polymer solutionflow rate, voltage and viscosity on the preparation of uniform and ultrathin
porous nanofibers having applications inwound dressings. In the present investigation the curcumin loaded
gelatin nanofibers were selected in the hope of having improvedmechanical andwound healing properties
assuming these nanofibers should release the curcumin at appropriate rates which is of extreme importance to
permit application of its biological effects duringwound healing applications. It has been shown that the
electrospun curcumin/gelatin nanofibers with lower diameters have larger surface area to volume ratios and
porosity than larger diameterfibers and thus these nanofibers can be developed for sustained release of
curcumin and oxygen (due to enough porosity) to thewound [31]. Curcumin/gelatin nanofibers can be further
crosslinked for improvedmechanical (tensile) strength (if required) for further development of nanofibrous
mats for wound healing. These nanofibrousmats would have then anti-oxidant and anti-inflammatory features
that could address wound healing in a very efficient way [31, 68–86].

1.2.Mechanismbehind electrospinning of curcumin/gelatin nanofibers
Electrospinning uses an electric fieldwhich is applied across a spinneret and a ground electrode towithdraw a jet
of polymer solution from the orifice of the spinneret. In electrospinning theMaxwell or electrical stress is given

as e ,V

d

2

2 where e is the permittivity,V is the voltage, and d is the electrode separation. The critical voltage Vc( )

which is
g
e

,d

R

2

must be exceeded before any jet can spread out from the electrospinning tip. In particular, for

g e= = = =- - - -kg s d m C Jm R m10 , 10 , 10 and 10 ,2 2 2 10 2 4( )/ / a voltage of order 10KV is required to
form any jet [87].

Yeo et al [87] assumed a priori equilibrium conical shape for the Taylor cone (for thefluid drop) formation at
the tip of the spinneret. The solution of the Laplace equation (used in the formulation) in theweak polarization
limit describes the electrostatics in the fluid phases in an axisymmetric spherical coordinate system q fr, ,( )
with the vertex of the Taylor cone at the originwhich can be shownusing equation (1).

j q q q q

j q p q p q q

=

= -

 

 

r A r P for

r B r P for

, cos ; 0,
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, cos ; 1

l n
n

n
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0
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Figure 1.The biofunctional curcumin nanofibers. (a)Molecular structure of curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-
heptadiene-3,5-dione) (Reprintedwith permission from [30]. Copyright 2009 JohnWiley and Sons). (b)Application of curcumin-
loaded nanofibers inwound healing (Reprintedwith permission from [31]. Copyright 2018 JohnWiley and Sons).
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In the above equation (1), the volume of thefluid drop is given by p=V r ,4

3
3 where r is the distance from the

cone vertex of angle q2 0 to the tip of the spinneret and the shape of drop is represented using a Taylor cone, thus
r is characterized as =r R z .( ) Further, the -z axis is parallel to the applied electric fieldwith Î -z l l ,[ ]

Figure 2.Release of curcuminwith time. (a)Comparison ofwound closure as a function of time. Thewoundwas healed through
release of curcumin fromPCLnanofibers (Reprintedwith permission from [30]. Copyright 2009 JohnWiley and Sons). (b) *Plots of
cumulative discharge of curcuminwith time. Significant release of 17% curcumin from curcumin-loaded PCLnanofibers after 12 h
(Reprintedwith permission from [30]. Copyright 2009 JohnWiley and Sons). (c)Release of curcumin from curcumin/gelatin
nanofibrousmats as a function of time (in vitro) (Reprintedwith permission fromRef. 33. Copyright 2017 SpringerNature). *Note:
Pro 7.5 software programwas used to analyze the release of curcumin from curcumin loaded Poly (ε-caprolactone)PCLnanofibers
using one-wayANOVAwithTukey’s test. p 0.05was considered significant.

Figure 3.Crosslinked nanofibers having improvedmechanical strength (Reprintedwith permission from [33]. Copyright 2017
SpringerNature). CCBY 4.0
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where l is the length of the semi long axis of the drop and the boundary condition q q  00 represents the
region occupied by thefluid. P xn[ ] is the Legendre function, and An and Bn are constants. They suggested a
model for electrospinning composite nanofibers which is based on a sink-likeflow towards the vertex of the
Taylor cone. The solution of the flow in axisymmetric polar coordinates er, , 0( )was given using equations (2)
and (3).

e
=v

vF

r
2r

( ) ( )

e a e=
-

- + -F b
b

3 tanh
2

1.146 2 32
⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎡
⎣
⎢⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎫
⎬
⎭

( ) ( ) ( )

In the above equations (2) and (3), vr is the radial velocity offlow, v is the kinematic viscosity offlow, a is the
wedge/Taylor cone half angle, b is a parameter which determines the inertial concentration offlow into the
Taylor cone vertex/Taylor cone.Mass and charge conservations led to expressions for v and s in terms of R and
E, and themomentum andE-field equations were recast using second-order differential equations. Slope of the
jet surface ¢R( ) is supposed to be highest at the origin of the nozzle and thus initial value of z is equal to zero.
Further, boundary conditions were set using the set of equation (4) [88, 89].

t

t t

=
=

=
¢

= -

h

R
E E

r
R

R

0 1
0

2

2 4

prr

pzz prr

0

0

0
3

( )
( )

( )

In the above equation (4), R0 is the initial radius of jet and the jet velocity u0( ) is calculated using the formula

u =
p

,Q

R K0
0
2 where Q is the flow rate of the solution, and K is the conductivity of liquid solution. The electric

field E0( ) is calculated using the formula =
p

E I

R K0
0
2 and the surface charge density s0( ) is calculated using the

formula eE ,0¯ where ē is the dielectric constant of ambient air and E0 is the constant to be used during
simulation of the electrospinning. The viscous stress t0( ) is calculated using the formula t = h u

.
R0
0 0

0
Apower-law

fluid is a generalizedNewtonian fluid and for that the shear stress t ,( ) is given as t = ¢ ¶
¶

K .v

y

m( ) It is observed

that the electric field is induced by the surface charge gradient and thus it is insensitive to the thinning of the
electrospun jet, as shown in equation (5) [88].

Figure 4.Wound (acute back-skin) closure (day-wise performance) after application of *curcumin/gelatin nanofibrousmats (NM)
on rats (in vivo) (Reprintedwith permission from [33]. Copyright 2017 SpringerNature. CCBY 4.0) *Note:Healing in three different
ways: wound treatedwithoutmats (control) or using curcumin/gelatin (Cc/Glt)NMor usingGlt NM.Wounds (6 mm in diameter)
were created in the back (after theywere shaved at their backs) of each rat.
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dz
R

dR

dz
Pe2 5⎜ ⎟⎛

⎝
⎞
⎠

( ) ( )/

Thus, the variation of E with respect to axial position z( ) can be shown using equation (6) [88].

c=
d E

dz
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dz
Peln 6

2 2

2

⎛
⎝⎜

⎞
⎠⎟

( ) ( )/

Infigure 5 plots are shown for the changes of various parameters, radius of jet R ,( ) electric field E ,( ) radial
normal stress tprr( ) and axial viscous normal stress tpzz( )with the respect to axial position Z .( ) It is observed that
the electricfield E( ) increased to a peak and then relaxed to some extent. Themodel discussed so farwas shown
to be capable of predicting the behavior of the process parameters of electrospinning [88]. Through these plots
theflowprocedure in relation to the jetting process involved in the electric field is outlined.

1.3. Applications of biofunctional curcumin nanofibers
Ultrathin porous nanofibrousmats can be prepared using electrospinning for various biomedical applications.
Various researchers have emphasized the curcumin based nanofibers in their investigations tofind their
potential uses inwoundhealing, drug-delivery and antibacterial applications (as shown in table 1). The
structures of these electrospun nanofibers can be tailored for large surface area and length up to kilometers using
the electrostatically driven jet of polymer solution. Further, it was found that bioactivemolecules of graphene
oxide and a Zn-curcumin complex, when combinedwith the electrospun nanofibers, had potential application
in bone regeneration, as shown in table 1.

2. Electrospinning of curcumin/gelatin nanofibers

The electrospinning set-upwe used is shown infigure 6(a). Therewere four components associatedwith the
electrospinning process: spinneret, voltage supply, drum collector and dispenser. In our electrospinning process

Figure 5.Plots showing behavior of process parameters as functions of axial position (Reprintedwith permission from [88]. Copyright
2014Romanian AcademyPublishingHouse).
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a voltage gradient is set across the length of the drumcollector (loadedwith an aluminium sheet), and a
polymeric solution (taken in a 2 ml syringe) is placed in the dispensor. Nanofibers are stretched out from the
polymeric solution containing a polar organic solvent and a polymer solute in the desired amounts. These
nanofibers are collected over the drumcollector which is rotated at a speed around 1000 rpm to reduce the
nanofibers diameter by stretching them and aligning them linearly in addition to improving theirmechanical
properties. During this process, four critical parameters, distance,flow rate, voltage and viscosity, are taken into
consideration. Thesewere our control parameters in preparation of the biofunctional nanofibers.

A polymeric solutionwas prepared bymixing 1% curcumin (0.1 g)with 1.5% gelatin (0.15 g) in 10 ml of
formic acid,HCOOH (98%concentrated). Another polymeric solutionwas prepared bymixing 1.2%curcumin
(0.12 g)with 2%gelatin (0.2 g) in 10 ml of formic acid,HCOOH (98% concentrated), both at room
temperature. The experiments were conducted at room temperature, in ambient air which hadmoisture around
80%.Nanofibers were prepared by varying the distance between the spinneret (10 cm and 15 cm),flow rate
(0.1 ml h−1 and 0.15 ml h−1), voltage (15KV and 20KV), and viscosity (65 cP and 70 cP, due to the additives
concentrations). Themats were dried at room temperature for 48 h to completely remove the formic acid before
characterization. The diameters of the nanofibers were thenmeasured using scanning electronmicroscopy
(SEM) (the set-up is shown infigure 6(b)).

3. Results and discussions

The diameters (nm) of the nanofibers prepared during the electrospinning processes are shown in table 2. The
significant trends in the results (in terms of the diameters of the nanofibers) observedwere as follows: at a higher
voltage, such as 15KV (at 15 cmdistance, 0.1 ml h−1

flow rate and 65 cP viscosity)using a solution having 1.5%
gelatin, 1% curcumin in 10 ml of 98% concentrated formic acid, the diameters of the nanofibers were around
254 nm (254±28 nm)which is considerably higher than the 181 nm (181±66 nm) (as shown infigure 6(c))
diameter obtained at 10KVusing the same solution and keeping the other parameters the same. At a higherflow
rate, such as 0.15 ml h−1 (at 10 cmdistance, 15KV voltage and 65 cP viscosity) using a solution having 1.5%
gelatin, 1% curcumin in 10 ml of 98% concentrated formic acid, the diameters of nanofibers weremeasured
around 147 nm (147±34 nm) (as shown infigure 6(d))which is considerably lower than 260 nm
(260±26.5 nm) as the diameter obtained at 0.1 ml h−1

flow rate using the same solution and keeping the other
parameters the same. At a higher flow rate, such as 0.15 ml h−1 (at 15 cmdistance, 10KV voltage and 70 cP
viscosity) using a solution having 2%gelatin, 1.2% curcumin in 10 ml of 98%concentrated formic acid, the
diameters of nanofibers weremeasured around 206 nm (206±56 nm) (as shown infigure 6(e))which is only
slightly lower than 229.5 nm (229.5±60 nm) (as shown infigure 6(f)) as the diameter obtained at 0.1 ml h−1 (at
15 cmdistance, 15KV voltage and 70 cP viscosity) using the same solution. For a higher concentration (2%
gelatin, 1.2% curcumin in 10 ml of 98% concentrated formic acid), the viscosity wasmeasured (using a viscosity
meter) to be 70 cP and then the diameter of the fibers increased to 235 nm (235±47 nm) (as shown in
figure 6(g)), at 10 cmdistance, 0.15 ml h−1

flow rate and 15KVvoltage, from147 nm (147±34 nm) (as shown
infigure 6(d)) (measured at 1.5% gelatin, 1% curcumin in 10 ml of 98% concentrated formic acid) at 10 cm
distance, 0.15 ml h−1

flow rate, 15KV voltage and 65 cP viscosity. At a higher distance, such as 15 cm
(0.15 ml h−1

flow rate, 15KV voltage and 70 cP viscosity) using a solution having 2%gelatin, 1.2% curcumin in
10 ml of 98%concentrated formic acid, the diameters of nanofibers weremeasured around 274 nm
(274±53 nm) (as shown infigure 6(h))which is higher than the 235 nm (235±47 nm) (as shown in
figure 6(g)) diameter obtained for 10 cmdistance using the same solution and keeping the other parameters
the same.

3.1.Design of experiments
The 2 k factorial designwas implemented to conduct the experiments after considering the four independent
variables (each varied at two different levels i.e. low (−) and high (+)); thesewere the distance between the
spinneret and collector, flow rate, voltage and viscosity [90–92]. Thus, the total number of observations were
2 4 i.e. 16.

All 16 samples were examined under scanning electronmicroscopy (SEM) for diameters in nanometers (as
shown in table 2). A few sample images of the curcumin/gelatin nanofibers examined under SEMare shown in
figures 6(c)–(h). The ultrathin porous nanofibersmembranes were prepared under all process conditions.

3.2. Analysis of variance
It was done tofind the significance of the contributions of the individual parameters in achieving theminimum
diameter of the nanofibers. Calculations for the correction factor, CF (to compute the sumof squares of input
variables)were conducted using equation (7).
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3.2.1. Correction factor (CF)
TheCF for diameter (nm)was calculated as

= å = @CF
X

n

4085.5

16
1043207 7

2 2( ) ( ) ( )

Where, theåX is the gross total of observed diameters and n is the number of iterations, i.e. 16 (both as shown
in table 2)

Figure 6.The electrospun curcumin/gelatin nanofibers. (a) *Electrospinning set-up and its specifications. (b) SEM set-up and its
specifications. (c) Sample 2: 15 cm, 0.1 ml h−1, 10 KV and 65 cP: 181 nm (181±66 nm) average fiber diameter. (d) Sample 7: 10 cm,
0.15 ml h−1, 15KV and 65 cP: 147 nm (147±34 nm) average fiber diameter. (e) Sample 12: 15 cm, 0.15 ml h−1, 10KV and 70 cP:
206 nm (206±56 nm) average fiber diameter. (f) Sample 14: 15 cm, 0.1 ml h−1, 15 KV and 70 cP: 229.5 nm (229.5±60 nm)
average fiber diameter. (g) Sample 15: 10 cm, 0.15 ml h−1, 15KV and 70 cP: 235 nm (235±47 nm) average fiber diameter. (h)
Sample 16: 15 cm, 0.15 ml h−1, 15KV and 70 cP: 274 nm (274±53 nm) average fiber diameter. *Note: The electrospinning chamber
is providedwith a residual charge discharge gun/stickwhich is used to remove/short static charges for safe operations.
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The effect of the factors can be given using equation (8).

å +
å

-
Y

n

Y

n
CF 8low high2

2⎡⎣ ⎤⎦[ ] ( )

Where,Y is an input variable, such as the distance (A), and Yhigh and Ylow stand for the sumof all average
diameters prepared at high (+) and low (−) levels, respectively, for the particular input variable with each sum
taken over the high and low values of the other variables. The corresponding values of average diameters for the
high (+) and low (−) levels of the particular input variable were taken from table 2.

Figure 6. (Continued.)
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1. Sumof squares, distance factor (cm), SSA

å +
å

-

=
+ + + + + + +

+
+ + + + + + +

- =

A

n

A

n
CF

205 270 260 147 287 375 308 235

8
181 280 254 286 288 206 229.5 274

8
1043207 489.5

low high2
2

2

2

⎡⎣ ⎤⎦[ ]

[ ]

[ ]

Similarly,

Figure 6. (Continued.)
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2. Sumof squares, flow rate factor (ml h−1), SSB

å +
å

- =
B

n

B

n
CF 228.5low high2

2⎡⎣ ⎤⎦[ ]

3. Sumof squares, voltage factor (KV), SSC

å +
å

- =
C

n

C

n
CF 606low high2

2⎡⎣ ⎤⎦[ ]

Figure 6. (Continued.)
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4. Sumof squares, viscosity factor (cP), SSD

å +
å

- =
D

n

D

n
CF 6380low high2

2⎡⎣ ⎤⎦[ ]

To examine the interaction, table 3was formulated. The Sumof squares for each pair of interactions is given
using equation (9).

å +
å

-
AB

n

AB

n
CF 9low high2

2⎡⎣ ⎤⎦[ ] ( )

Where, AB represents interaction between distance (cm),A, andflow rate (ml h−1), B.The corresponding values
of average diameters for the high (+) and low (−) levels of the particular interaction between variables were
taken from table 3.

The values of the sumof squares for the various interactions are as follows

1. Sumof squares for interactionAB, SSAB

å +
å

-

=
+ + + + + + +

+
+ + + + + + +

- =

AB

n

AB

n
CF

181 270 254 147 288 375 229.5 235

8
205 280 260 286 287 206 308 274

8
1043207 1000

low high2
2

2

2

⎡⎣ ⎤⎦[ ]

[ ]

[ ]

Similarly,

2. Sumof squares for interactionAC, SSAC

å +
å

- =
AC

n

AC

n
CF 4743.5low high2

2⎡⎣ ⎤⎦[ ]

Table 2.Results of experiments.

IterationNo. Distance cm( ) A FlowRate mL h( )/ B Voltage KV( ) C aViscosity cP( ) D AverageDiameters nm( )

1 - 10( ) - 0.1( ) - 10( ) - 65( ) 205±22.5
2 + 15( ) - 0.1( ) - 10( ) - 65( ) 181±66
3 - 10( ) + 0.15( ) - 10( ) - 65( ) 270±16
4 + 15( ) + 0.15( ) - 10( ) - 65( ) 280±20
5 - 10( ) - 0.1( ) + 15( ) - 65( ) 260±26.5
6 + 15( ) - 0.1( ) + 15( ) - 65( ) 254±28
7 - 10( ) + 0.15( ) + 15( ) - 65( ) 147±34
8 + 15( ) + 0.15( ) + 15( ) - 65( ) 286±31
9 - 10( ) - 0.1( ) - 10( ) + 70( ) 287±77
10 + 15( ) - 0.1( ) - 10( ) + 70( ) 288±57
11 - 10( ) + 0.15( ) - 10( ) + 70( ) 375±96
12 + 15( ) + 0.15( ) - 10( ) + 70( ) 206±56
13 - 10( ) - 0.1( ) + 15( ) + 70( ) 308±74
14 + 15( ) - 0.1( ) + 15( ) + 70( ) 229.5±60
15 - 10( ) + 0.15( ) + 15( ) + 70( ) 235±47
16 + 15( ) + 0.15( ) + 15( ) + 70( ) 274±53

å =Total X 4085.5

a Where, (+) indicates high value and (−) indicates low value of parameters.
*Note: Change in concentration of curcumin (from1% to 1.2%) and gelatin (from1.5% to 2%) increased the viscosity (from 65 cP to 70 cP).
The effect of concentration ismapped in terms of viscosity.
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1. Sumof squares for interactionAD, SSAD

å +
å

- =
AD

n

AD

n
CF 6662.5low high2

2⎡⎣ ⎤⎦[ ]

2. Sumof squares for interactionBC, SSBC

å +
å

- =
BC

n

BC

n
CF 4882.5low high2

2⎡⎣ ⎤⎦[ ]

3. Sumof squares for interactionBD, SSBD

å +
å

- =
BD

n

BD

n
CF 695.5low high2

2⎡⎣ ⎤⎦[ ]

4. Sumof squares for interactionCD, SSCD

å +
å

- =
CD

n

CD

n
CF 907.5low high2

2⎡⎣ ⎤⎦[ ]

5. Sumof squares for interactionABC, SSABC

å +
å

- =
ABC

n

ABC

n
CF 9925low high2

2⎡⎣ ⎤⎦[ ]

6. Sumof squares for interactionBCD, SSBCD

å +
å

- =
BCD

n

BCD

n
CF 2769low high2

2⎡⎣ ⎤⎦[ ]

7. Sumof squares for interactionACD, SSACD

å +
å

- =
ACD

n

ACD

n
CF 21low high2

2⎡⎣ ⎤⎦[ ]

Table 3. Interaction table (curcumin nanofibers).

S. no. AB AC AD BC BD CD ABC BCD ACD ABCD Diameters nm( ) as in table 2

1 + + + + + + — — — + 205±22.5
2 — — — + + + + — + — 181±66
3 — + + — — + + + — — 270±16
4 + — — — — + — + + + 280±20
5 + — + — + — + + + — 260±26.5
6 — + — — + — — + — + 254±28
7 — — + + — — — — + + 147±34
8 + + — + — — + — — — 286±31
9 + + — + — — — + + — 287±77
10 — — + + — — + + — + 288±57
11 — + — — + — + — + + 375±96
12 + — + — + — — — — — 206±56
13 + — — — — + + — — + 308±74
14 — + + — — + — — + — 229.5±60
15 — — — + + + — + — — 235±47
16 + + + + + + + + + + 274±53
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8. Sumof squares for interactionABCD, SSABCD

å +
å

- =
ABCD

n

ABCD

n
CF 1947low high2

2⎡⎣ ⎤⎦[ ]

Highest value=9925 for ABC interaction
Errors, which are listed in table 4 can be pooled together and the Ratio MS, error can be calculated using the

equation (10).

= =MS SS V 21 10error error error ( )

Where,Verror represents the number of errors, and in our case it is one.
Now, in the calculation of the F ratio, using the F-distribution table, we have found the F value for 95% level

of confidence as 7.71 and further concluded that the diameter primarily depends upon factors: (a)ABC-
Interaction between distance (cm), flow rate (ml h−1) and voltage (KV), (b)AD-Interaction between distance
(cm) and viscosity (cP), (c)D-Viscosity (cP), (d)BC-Interaction between flow rate (ml h−1) and voltage (KV),
(e)AC-Interaction between distance (cm) and voltage (KV), (f)BCD-Interaction betweenflow rate (ml h−1),
voltage (KV) and viscosity (cP), (g)ABCD-Interaction between distance (cm),flow rate (ml h−1), voltage (KV)
and viscosity (cP), (h)AB-Interaction between distance (cm) andflow rate (ml h−1), (i)CD-Interaction between
voltage (KV) and viscosity (cP), (j)BD-Interaction between flow rate (ml h−1) and viscosity (cP), (k)C-Voltage
(KV), (l)A-Distance (cm), and (m)B-Flow rate (ml h−1). These are treated asmodels and further tested for their
contribution to the diameters of nanofibers (nm) (at 5% level of significance) in table 4. During the effect
estimation, it is found about the factorACD-Interaction between distance (cm), voltage (KV) and viscosity (cP)
that it affects the diameter (nm) by 0.05%which is not significant and thus it is indicated as an error in table 4.

3.3. Regression analysis
As each input variable has two levels i.e. high (+) and low (−) levels and has one degree of freedom, thus an
ordinary regressionmodel was employed to calculate theminimumdiameter of nanofibers after substitution of
suitable values of the interaction effects such as b b b b b b b b, , , , , , , ,1 2 4 5 6 7 8 9 and b10 (in terms of
contributions of interactions betweenABC-Interaction between distance (cm), flow rate (ml h−1) and voltage
(KV),AD-Interaction between distance (cm) and viscosity (cP),BC-Interaction between flow rate (ml h−1) and
voltage (KV),AC-Interaction between distance (cm) and voltage (KV),BCD-Interaction betweenflow rate
(ml h−1), voltage (KV) and viscosity (cP),ABCD-Interaction between distance (cm),flow rate (ml h−1), voltage
(KV) and viscosity (cP),AB-Interaction between distance (cm) andflow rate (ml h−1), CD-Interaction between
voltage (KV) and viscosity (cP),BD-Interaction between flow rate (ml h−1) and viscosity (cP), respectively) as
well as themain effects, such as b b b, , ,3 11 12 and b13 (in terms of contributions ofD-Viscosity (cP),C-Voltage
(KV),A-Distance (cm), andB-Flow rate (ml h−1), respectively), in equation (11).

b b b b b x= + + + + ¼+ +Y X X X X 11n n0 1 1 2 2 3 3 ( )

Table 4.Effect estimation-final ANOVA table.

Remark

MODEL/

ERROR

Factor/

Interaction

Effect

estimation Sumof square (SOS) %Contribution

Factors/interactions having
significant contributions

MODEL ABC 50 9925 24

MODEL AD −41 6662.5 16

MODEL D 40 6380 15.5

MODEL BC −35 4882.5 12

MODEL AC 34.5 4743.5 11.5

MODEL BCD 26 2769 6.7

MODEL ABCD 22 1947 4.7

MODEL AB 16 1000 2.4

MODEL CD −15 907.5 2.2

MODEL BD −13 695.5 1.7

MODEL C −12 606 1.5

MODEL A −11 489.5 1.2

MODEL B 7.5 228.5 0.5

Factor/interactionNOThaving

significant contribution

ERROR ACD −2 21 0.05

å =SOS 41257.5
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Where,

åb = = =
=

Y

N

4085.5

16
255.344

i

N
i

0
1

Further, the effect of each factor,P,was calculated using the formula = -+ -Y Y Y ,P P P¯ ¯ where, +YP̄ and

-YP̄ stand for the sums of all average diameters prepared at high (+) and low (−) levels, respectively, for the
particular input variable. The corresponding values of the average diameters for the high (+) and low (−) levels
of the particular input variable were taken from tables 2 and 3.

As an example, the effect of factor B can be calculated as follows:

= -

=
+ + + + + + +

-
+ + + + + + +

=

+ -D Y Y
287 288 375 206 308 229.5 235 274

8
205 181 270 280 260 254 147 286

8
40

D D¯ ¯
[ ]

[ ]

Similarly, the effects of the other factors, such as
ABC AD BC AC CD ABCD AB D BD C A B, , , , B , , , C , , , , , and ACD were calculated as 50,−41,−35,
34.5, 26, 22, 16,−15,−13,−12,−11, 7.5, and−2, respectively (as shown in table 4).

Therefore, the = ´ =contribution for ABC% 9925 41257.5 100 24( )

b = =effect estimate for factor ABC
1

2
251 ( )

b = = -effect estimate for factor AD
1

2
20.52 ( )

b = =effect estimate for factor D
1

2
203 ( )

b = = -effect estimate for factor BC
1

2
17.754 ( )

b = =effect estimate for factor AC
1

2
17.255 ( )

b = =effect estimate for factor BCD
1

2
136 ( )

b = =effect estimate for factor ABCD
1

2
117 ( )

b = =effect estimate for factor AB
1

2
88 ( )

b = = -effect estimate for factor CD
1

2
7.59 ( )

b = = -effect estimate for factor BD
1

2
6.510 ( )

b = = -effect estimate for factor C
1

2
611 ( )

b = = -effect estimate for factor A
1

2
5.512 ( )

b = =effect estimate for factor B
1

2
3.7513 ( )

The general formof the regression analysis equation is shown in equation (12). Theminimumdiameter of
curcumin/gelatin nanofibers (nm) attainable using our system, can be calculated after substituting the suitable
values of the coefficients (such as b b b b b b b b, , , , , , , ,1 2 4 5 6 7 8 9 and b10) of the interaction effects (such as
X X X X X X X X, , , , , , , ,ABC AD BC AC BCD ABCD AB CD and XBD) aswell as the coefficients (such as b b b, , ,3 11 12

and b13) of themain effects (such as X X X, , ,D C A and XB) in equation (12).

= + - + -
+ + + +
- - - - +

Diameter nm X X X X
X X X X

X X X X X

255.344 25 20.5 20 17.75
17.25 13 11 8
7.5 6.5 6 5.5 3.75 12

ABC AD D BC

AC BCD ABCD AB

CD BD C A B

( )

( )

The abovemodel equation (12) is valid in the regions such as (a)  X10 15A (cm), (b)  X0.10 B

0.15(ml h−1), (c)  X10 15C (KV), and (d)  X65 70D (cP).
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The plot of the variation in average diameters of nanofibers versus the runs (also known as the time series
plot of average diameters) for a random correlation is shown infigure 7(a) as per the values listed in table 2 for all
sixteen iterations. Themain effects and interactions plots for themeans of the average diameters (nm)with
respect to the critical process parameters were plotted usingMINITAB 17 software, as shown infigure 7(b) and
(c). They show thatABC-Interaction between distance (cm), flow rate (ml h−1) and voltage (KV),AD-
Interaction between distance (cm) and viscosity (cP),D-Viscosity (cP),BC-Interaction between flow rate
(ml h−1) and voltage (KV),AC-Interaction between distance (cm) and voltage (KV),BCD-Interaction between
flow rate (ml h−1), voltage (KV) and viscosity (cP),ABCD-Interaction between distance (cm), flow rate (ml h−1),
voltage (KV) and viscosity (cP),AB-Interaction between distance (cm) andflow rate (ml h−1), CD-Interaction
between voltage (KV) and viscosity (cP),BD-Interaction between flow rate (ml h−1) and viscosity (cP),C-
Voltage (KV),A-Distance (cm), andB-Flow rate (ml h−1)have the significant impact over preparation of
minimumdiameter of curcumin/gelatin nanofibers, as shown in table 4,figures 7(b) and (c).

The variations in diameters of nanofibers with respect to all four critical process parameters are shown in
figure 7(b). It was found that with an increase in distance and voltage, the diameter of nanofibers was reduced.
However, with an increase inflow rate and viscosity, the diameter of nanofibers was increased. A good
interaction among all the four critical process parameters occurred is shown infigure 7(c). The effects of the
contribution ofABC-Interaction between distance (cm),flow rate (ml h−1) and voltage (KV),AD-Interaction
between distance (cm) and viscosity (cP),D-Viscosity (cP),BC-Interaction between flow rate (ml h−1) and
voltage (KV), andAC-Interaction between distance (cm) and voltage (KV)were found to be considerable (table 4
andfigure 7(c)).

The response contour linesmaps of the average diameters (nm) of curcumin/gelatin nanofibers as a
function of the critical process parameters are shown infigures 7(d), (f), (h), (j), (l), and (n) to define the
relationships between two variables and a response. The predicted 3D response surface plots of the average
diameters (nm) of curcumin/gelatin nanofibers produced by thefittedmodel, are shown infigures 7(e), (g), (i),
(k), (m), and (o). The darkest shade in contour plots represents locationswhere the diameters of the nanofibers,
wasmaximum (>280 nm) and the lightest shade represents locationswhere the diameters of the nanofiberwas
minimum (<240 nm).

It was clear after the ANOVAcalculations (final ANOVA, table 4), that the factorACD-Interaction between
distance (cm), voltage (KV) and viscosity (cP) had the least contribution (in producingminimumdiameters of
curcumin/gelatin nanofibers because of the fact that it was coming as an error inDOE analysis. The effects of the
contribution ofABC-Interaction between distance (cm),flow rate (ml h−1) and voltage (KV),AD-Interaction
between distance (cm) and viscosity (cP),D-Viscosity (cP),BC-Interaction between flow rate (ml h−1) and
voltage (KV), andAC-Interaction between distance (cm) and voltage (KV) had the considerable impacts of 24%,
16%, 15.5%, 12%, and 11.5% respectively, over the preparation of theminimumdiameters of the curcumin/
gelatin nanofiber.

The optimized parameter settings are shown infigure 7(p). The impacts of the critical process parameters on
the average diameters (nm) of curcumin/gelatin nanofibers could be estimated by shifting the red lines tofind
optimal values of process parameters within the range. In our case the composite desirability, D, is 0.8129, which
is close to 1. The horizontal blue line represents the current response values (figure 7(p)). The average diameter
of ultrathin curcumin/gelatin nanofibers was predicted around 189.6563 nmusing the optimized setting of a
solution having 1.5% gelatin, 1% curcumin in 10 ml of 98%concentrated formic acid, with the electrospining
unit having a voltage of 10KV, distance from the spinneret to collector drumof 15 cm, flow rate of 0.1 ml h−1,
viscosity of 65 cP and drum collector speed of 1000 rpm. Thefigure 6(c) shows the SEM image of the curcumin/
gelatin nanofibers having a 181 nm (181±66 nm) average diameter, prepared under similar condition using
the same solution. Thus, the estimated diameter (nm) of curcumin/gelatin nanofibers in the optimization
process only has an 8%difference with the prepared diameter which shows the efficacy of present investigation.

We suggest these light weights, and ultrathin nanofibers having enough film porosity could be used in
wound dressing applications due to their high surface area to volume ratiowith respect to length and diameter.
Researchers have been optimizing the input parameters to prepareminimumdiameters of curcumin based
nanofibers for various biomedical applications for the last 12 years as shown infigure 8 and table 5. In the present
investigation, the optimumconditionswere achieved to synthesize theminimumaverage diameter
(181±66 nm) of ultrathin curcumin/gelatin nanofibers so farwhich could be suitable for dressing diabetic
chronic ulcers due to its unique properties such as light weight, nontoxic, biocompatible aswell as water
absorbent and fluid affinity.

Sharjeel et al [100]were successful in electrospinning a novel and hybrid polymeric nanofibrousmeshes for
dressing the burnwounds after incorporating gabapentin (a neuropathic pain killer) into polyethylene
nanofibers and acetaminophen (a class of analgesics) into sodium alginate nanofibers, using the optimized
setting of a polymeric solution of the polyethylene oxide and sodium alginatemixed in 80:20 blend proportion.
The hybridmechanism could be a safe choice inwound dressing applications. Sharjeel et al [101]used acetic acid
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andwater (50:50, v/v)while preparing the solvent for synthesizing electrospun polyethylene oxide and chitosan
(each dissolved separately in acetic acid andwater solution in 5%weight-to-volume ratio)nanofibers (the ratio
of polyethylene oxide and chitosan in the polymeric solutionwas 80:20). The authors incorporated
nanoparticles of zinc oxide and ciprofloxacin drugs into electrospun polyethylene oxide-chitosan nanofibers

Figure 7.The process optimization of the electrospun curcumin/gelatin nanofibers. (a)The plot of the variation in average diameters
of nanofibers versus the runs (also known as the time series plot of average diameters). (b)The variation in average diameters (nm) of
curcumin/gelatin nanofibers with respect to the critical parameters. (c)The interaction plot to demonstrate effects of the critical
process parameters on the average diameter (nm) of curcumin/gelatin nanofibers. The response contour plots of the average
diameters (nm) of curcumin/gelatin nanofibers as a function of (d) distance (cm) andflow rate (ml h−1) at an applied voltage of
12.5 KV and at a viscosity of 67.5 cP, (f) distance (cm) and voltage (KV) at a flow rate of 0.125 ml h−1 and a viscosity of 67.5 cP, (h)
distance (cm) and viscosity (cP) at aflow rate of 0.125 ml h−1 and at an applied voltage of 12.5KV, (j)flow rate (ml h−1) and voltage
(KV) at a distance of 12.5 cm from the spinneret to collector drum and a viscosity of 67.5 cP, (l)flow rate (ml h−1) and viscosity (cP) at
a distance of 12.5 cm from the spinneret to collector drumand at an applied voltage of 12.5KV, and (n) voltage (KV) and viscosity (cP)
at a distance of 12.5 cm from the spinneret to collector drumand a flow rate of 0.125 ml h−1. The 3D response surface plots of the
average diameters (nm) of curcumin/gelatin nanofibers as a function of (e)distance (cm) andflow rate (ml h−1) at an applied voltage
of 12.5KV and at a viscosity of 67.5 cP, (g) distance (cm) and voltage (KV) at a flow rate of 0.125 ml h−1 and a viscosity of 67.5 cP,
(i) distance (cm) and viscosity (cP) at aflow rate of 0.125 ml h−1 and at an applied voltage of 12.5KV, (k)flow rate (ml h−1) and
voltage (KV) at a distance of 12.5 cm from the spinneret to collector drumand a viscosity of 67.5 cP, (m)flow rate (ml h−1) and
viscosity (cP) at a distance of 12.5 cm from the spinneret to collector drumand at an applied voltage of 12.5KV, and (o) voltage (KV)
and viscosity (cP) at a distance of 12.5 cm from the spinneret to collector drumand a flow rate of 0.125 ml h−1. (p)The optimized
responses for theminimumaverage diameter (nm) of curcumin/gelatine nanofibers.
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and evaluated these drug deliverymeshes as effective antibacterial systems. The authors were successful in
optimizing electrospun polyethylene oxide-chitosan nanofibers of 116 nmdiameters (with standard deviation
of only 21 nm) using response surfacemethodology. They also observed that (a) a higher distance yielded lower
diameters, (b) a higher voltage resulted in lower diameters, (c)with an increase inflow rate, the diameters of the
nanofibers were increased, and (d)with an increase in concentration of zinc oxide nanoparticles and
ciprofloxacin, the diameters of the nanofibers were increased from116 to 210 nmand enhanced the
antibacterial efficiency.

4. Future research

The application of curcumin loaded nanofibers still needs to be explored for efficient drug release during various
stages of wound healing as it is still a challenge. On the basis of types of drugs to be released and various stages of
wound healing, specific polymers for electrospun curcumin nanofibers have to be selected.However, the use of
cytotoxic chemicalsmay spoil the recent research outputs in pharmaceutical applications, particularly during
wound dressing. Recent studies of curcumin in nanofibers reveal a newfield of research to synthesize potential
biomaterials for applications in bone tissue engineering [22], treatment of diabetic chronic ulcers [20], cancers
[102, 103] etc.

5. Conclusions

Our review of curcumin based, electrospun nanofibers encompassed all aspects, including the importance and
need of the biofunctional nanofibers as well as the nanofibrousmats inwound healing, cancer treatment, tissue

Figure 7. (Continued.)
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engineering, etc tomotivate researchers who are desirous towork in this innovative field of research to solve
various biomedical issues using biofunctional nanofibers. The electrospinningmechanism (numerical
investigations of themechanism)was reviewed in depth in thefirst section of article to have better control over
preparation of ultrathin curcumin/gelatin nanofibers.

In the present investigation, themechanismbehind electrospinningwas discussed as used to prepare
curcumin/gelatin nanofibers whichwould have applications inwound dressing. Gelatinwas selected as the fiber
material due to its nontoxic and biocompatible nature as well as it beingwater absorbent (fluid affinity), thus
supportingmoist woundhealing in further applications. Gelatin is commercially available at relatively low cost
and thuswas the obvious choice in the present investigation. Using electrospining, light weight, ultrathin, and
porous nanofibers having average diameters of 147 nm (147±34 nm)were prepared successfully at a higher
voltage, such as 15KV (at 10 cmdistance, 0.15 ml h−1

flow rate, 65 cP viscosity and drum collector speed of
1000 rpm) using the solution having 1.5% gelatin, and 1%curcumin in 10 ml of 98%concentrated formic acid
(figure 6(d) and table 2).

After determining the relative effects of the various spinning factors, as shown in table (table 4), we arrived at
the following conclusions: (a)ABC-Interaction between distance (cm), flow rate (ml h−1) and voltage (KV),
AD-Interaction between distance (cm) and viscosity (cP),D-Viscosity (cP),BC-Interaction betweenflow rate
(ml h−1) and voltage (KV), andAC-Interaction between distance (cm) and voltage (KV)have the considerable
impacts of 24%, 16%, 15.5%, 12%, and 11.5% respectively, over the preparation of theminimumdiameters of

Figure 7. (Continued.)

20

Mater. Res. Express 7 (2020) 035022 N JKanu et al



the curcumin/gelatin nanofiber, (b)BCD-Interaction between flow rate (ml h−1), voltage (KV) and viscosity
(cP),ABCD-Interaction between distance (cm),flow rate (ml h−1), voltage (KV) and viscosity (cP),AB-
Interaction between distance (cm) andflow rate (ml h−1), CD-Interaction between voltage (KV) and viscosity
(cP),BD-Interaction between flow rate (ml h−1) and viscosity (cP),C-Voltage (KV),A-Distance (cm), andB-
Flow rate (ml h−1) have the significant impact over preparation ofminimumdiameter of curcumin/gelatin
nanofibers, and (c)ACD-Interaction between distance (cm), voltage (KV) and viscosity (cP) affects the diameter
(nm) by 0.05% onlywhich is not significant.

The 2 k factorial design of experiment was used as an efficient technique to empirically examine the effects of
all four critical process parameters on the diameter of the nanofibers.MINITAB 17 software was used for
plotting graphs for study of the variation in diameters of nanofibers with respect to input parameters. The
variation in diameters of nanofibers with respect to the critical process parameters that were observed include (a)
a higher distance yielded lower diameters, (b) a higher voltage resulted in lower diameters, (c)with an increase in
flow rate, the diameters of the nanofibers were increased, and (d)with an increase in viscosity, the diameters of
the nanofibers were increased.

The optimumcondition for the development of ultrathin curcumin/gelatin nanofibers having a
189.6563 nmaverage diameter was estimated using the optimized setting of a solution having 1.5% gelatin, 1%
curcumin in 10 ml of 98% concentrated formic acid, with the electrospining unit having a voltage of 15KV,

Figure 7. (Continued.)
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distance from the spinneret to collector drumof 15 cm,flow rate of 0.1 ml h−1, viscosity of 65 cP and drum
collector speed of 1000 rpm. The estimated average diameter (nm) of curcumin/gelatin nanofibers in the
optimization process only has an 8%difference with the prepared average diameter, i.e., 181 nm
(181±66 nm), which shows the efficacy of the present investigation.

These ultrathin nanofibers having enough film porosity were biocompatible, nontoxic aswell as
biodegradable in nature and thus it is suggested that they could be used in dressing problematic wounds, such as
diabetic chronic ulcers, as these have unique properties, such as high surface area to volume ratio and light
weight, for sustained release of curcumin during healing. This research paper presented so far is very different
from its kind as it encompasses (a) the entire electrospinningmechanism (numerical investigations of the
mechanism) to have better control over preparation of ultrathin nanofibers, and (b) the applications of the
nanofibrousmats (incorporating biofunctional nanofibers)which are in use now-a-days, after reviewing
sufficient number of papers prior to actual optimization for the lowest diameter range using theoretical analysis

Figure 8. Synthesis of lowest diameter of curcumin /gelatin nanofibers.
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(which are validated too using experimental results). Finally, the optimized settings (to obtain ultrathin
nanofibers)were proposed for the electrospinning process parameters to prepare nanofibersmats for
biomedical applications, such aswound healing (through sustained release of curcumin during crucial hours of
healing).
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Mamidi et al (2018) [74] 195 (± 200) Curcumin embedded gelatin-polylactic acid nanofibers

Ranjbar-Mohammadi et al

(2015) [96]
191(± 24) Curcumin loaded poly(ε-caprolactone)/gum tragacanth

nanofibers

Sedghi et al (2018) [23] 153 (± 31) Zinc-curcumin loaded coaxial nanofibers

Present research 147 (± 34) Curcumin/gelatin nanofibers

Gamze et al (2013) [97] 138 (± 39) Curcumin loaded polyethylene oxide (PEO)/hydroxypropyl
methylcellulose (HPMC)nanofibers

Priscilla et al (2013) [98] 123.6 (± 26.8) Poly(lactic-co-glycolic acid)/curcumin nanofibers

Thien et al (2016) [29] 100 Curcumin loaded chitosan/poly (vinyl alcohol)PVAnanofibers
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Bhaarathi et al (2013) [99] 66.81 Curcumin loaded chitosan/poly (lactic acid)nanofibers
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