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Abstract

Nanomaterials based colorimetric detection is an area of vital importance in the field of sensing
applications. The nanoparticles are the main component of colorimetric sensor in replacing the
natural enzyme based sensor. In this context, zero valent nanoparticles have revolutionized the field of
optical sensing especially due to easily shift of electron, facile and low cost of preparation, and ease of
surface modification. In this work, zero valent manganese nanoparticles (ZV-Mn NPs) are prepared
through a simple and very quick method and modulated with new type of ionic liquid (IL). As-
prepared materials were characterized through FE-SEM, HR-TEM, BET, FTIR, and XRD.
Subsequently, the peroxidase like catalytic activity of pure and modified ZV-Mn NPs to catalyze
oxidation of N,N’,N,N’-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H,0,)
investigated. Moreover, the absorbance peak is observed at wavelength 652 nm. The enhanced
catalytic activity of ZV-Mn NPs was attributed to the fast transfer of electron mechanism in between
substrate and H,O,. The coating of IL on ZV-Mn NPs permitted a low limit of detection 0.2 uM with a
linear range of 10-280 M. This work can find wide spread interest in the colorimetric sensing
applications. In order to verify the successful demonstration of H,O, sensor, we have applied it in the
dairy milk products with satisfactory results.

1. Introduction

Hydrogen peroxide (H,0,) is one of the important constituents of the human body, which is formed as a by-
product of oxidative metabolism in the organism. A large number of oxidases through catalytic reaction
produces H,O,. There is a key role of naturally existing peroxidase in the biological system for the catalytic
degradation of H,0, [1]. The concentration of hydrogen peroxide is regulated by peroxidase, which is normally
produced by the kidneys and red blood cell of the human body [2]. In this sequence, the concentration of

© 2020 The Author(s). Published by IOP Publishing Ltd
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hydrogen peroxide is controlled by the peroxidase, but the favorable working conditions are required (e.g.,
temperature, pH, and time, etc) [3]. Hydrogen peroxide is considered to be a significant mediator in food,
clinical, industrial, pharmaceutical, and environmental analyses [4]. Many analytical techniques were widely
utilized for the detection of hydrogen peroxide such as electrochemical [5-14], titrimetry [15], fluorescence

[16, 17], and colorimetric [18-26]. In comparison with other reported methods, there are considerable
advantages of colorimetric detection of various analytes over other conventional sensing techniques e.g., cost-
effectiveness, facile and reliable method, and practicability and quick response. The visualization of the color
variations to the unaided eye during the course of the reaction is the most attractive characteristic of colorimetric
sensing. Subsequently, there exist two different routes of colorimetric detection of hydrogen peroxide based on
enzyme and nanomaterials [20]. Detection based on nanomaterials has been considered to be more suitable than
natural enzymes. Natural enzymes have high selectivity and specificity to the substrates; however, some
drawbacks are associated with enzymes, such as high cost, instability, denaturing phenomenon, gentle handling,
and required controlled environment [27].

Since in the past two decades, natural enzymes were replaced with artificial nano-enzymes having the
remarkable advantages like, easy preparation, cost-effectiveness, large surface area, high catalytic activity,
stability, and comfort in manipulation as compared to natural enzymes [28]. This is all possible just because of
the integration of nanotechnology to substitute natural enzymes containing many bottlenecks [29]. In this
context, large number of nanoparticles (NPs), including magnetic NPs, noble metals NPs, metal oxide NPs,
polyoxometalates, conjugated polymers, and carbon materials as well as their derivatives have been employed as
ananozymes to displace the natural enzymes [30-33]. However, artificially designed biomimetic NPs mainly
suffer from poor dispersion, low catalytic activity, less surface area, and precipitation under harsh atmospheric
conditions. Therefore, it is inevitably needed to search for new approaches to prepare the low-cost biomimetic
NPs to overcome the above limitations of nanozymes. The combination of ionic liquids (ILs) and nanoparticles
can be employed to obtain high dispersibility, simple procedure of preparation, large surface area, and high as
well stable catalytic activity under various pH and different temperatures [29, 34].

Ionic Liquids (ILs) prepared by the combination of fused salts and maintained the low melting point below
100 °C are the fascinating characteristics of organic solvents in the field of chemistry. ILs have been recognized as
an organic solvent having negligible vapor potential, wide temperature range, high stability, and tune-able
properties with suitable functionalization of cations and anions, as well the capability of dispersing numbers of
materials [35]. These versatile characteristics of ILs have been used in a variety of applications [36, 37].
Furthermore, in order to enhance the catalytic performance of catalyst various literature have been reported that
ILs have the properties to enhance the catalytic performance and stabilize the reactive catalytic species or
reaction intermediates [38]. More significantly, ILs have been used as a modulator in artificial enzymes as well as
stabilizing mediator to thermally stabilize the enzymatic product, consequently make it possible to occur the
catalytic reactions at high temperature [39].

In this work, all of these unique features are integrated to design a novel construct of nanoparticles modified
with an ionic liquid to synergistically enhance the stability and detection limits of colorimetric sensors.
Zerovalent Manganese (Mn) nanoparticles (ZV- Mn) NPs were used as promising peroxidase mimics for
colorimetric detection of H,O,. Mn NPs were prepared by a quick, low cost, and facile method and
characterized with various characterization tools, such as FE-SEM, HR-TEM, BET, FTIR, and XRD. The as-
prepared ZV-Mn NPs were modified with a new type of IL i.e. 1-H-3-Methylimidazolium formate (HMIM OF)
to enhance the catalytic activity, high thermal stability, and high dispersibility as compared to other peroxidase
mimetics for colorimetric detection of H,O,.

2. Materials and methods

2.1. Reagents and materials

All the chemicals including Manganese (II) chloride (MnCl,.4H,0, 99%), N,N,N,N-tetramethylbenzidine
(TMB), L-Ascorbic acid, Dimethyl sulfoxide (DMSO) and sodium borohydride (NaBH,) were purchased
received from Sigma Aldrich (https:/ /www.sigmaaldrich.com/). Hydrogen peroxide (H,0,, 35%) was
obtained from MerckGaA (https://www.merckgroup.com/en). 1-methylimidazole C;HgN, (99.2%) and
Phosphate buffer saline (PBS, pH-7.4) were acquired from Alfa Aesar (https://www.alfa.com/en/). Dopamine
was obtained from MerchKGaA (https://www.merckgroup.com/en). Formic acid CH,0, (98%-100%) was
received from BioM. Urea (98%) was obtained from ACROS (http://www.acros.com/). Cuvettes (Quartz) of 10
mM were purchased from Hangzhou CHN Spec Tech. having a capacity volume of 2 ml. The most important
thing is that all chemicals used were of without further purifications. All the solutions were made in deionized
water from ELGA PURELAB @ Ultra water deionizer.
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2.2. Characterization

Double beam Perkin Elmer UV-vis spectrophotometer Lambda-25 (UV-25, Perkin Singapore) was utilized to
record the UV—vis absorption spectra in a 10 mm disposable cuvettes capacity of containing solution 2 ml and 1
nm bandwidth setting in the range of 400—800 nm.

Field Emission Surface morphology of ZV-Mn NPs was studied using the Field emission scanning electron
microscope (FESEM, JEOL JSM7100F Japan). Accelerated voltage of 10 kV applied to take images at alter
magnification. The internal structure, the shape of the material and the elemental distribution of as prepared Mn
NPs were studied through a Tecnai G2 F30 S-TWIN 300 kV / FEG High resolution transmission Electron
Microscopy (HR-TEM) of the as-prepared materials equipped with the BRUKER energy dispersive
spectrometer (EDS). The surface area, pore volume, pore size and adsorption and desorption of Nitrogen gas of
ZV-Mn NPs were measured through surface area and porosity analyzer Brunauer—-Emmett-Teller (BET; Mike
Tristar I1 3020 Version 3.02, USA) of Micrometrics Instrument Corporation. The functional groups attached to
ZV-Mn NPs were studies through Fourier-transform Infrared (FTIR) spectra using Thermo Fisher Scientific
(Nicolet iS 50) spectrometer over the wave range of 400-4000 cm ™" at a resolution of 8 cm ™. The crystal
structures of ZV-Mn NPs were investigated using as-prepared powder by Bruker D8 advanced X-ray
diffractometer (Germany, Bruker Corporation with Cu K, radiation, A = 1.5418 A) over the 20 range of 20°-80°
with a step 0f 0.02 degree. All refinement of the XRD was done by MJAD 6.5 software.

2.3. Synthesis of Manganese nanoparticles

Sodium borohydride (NaBH,, 140 mM) solution was prepared separately in the deionized deoxygenated water
used to avoid any oxidation. At the same time, the manganese Chloride (MnCl,.4H,0, 20 mM) was prepared in
asolution of 3 mL ethanol absolute and 22 mL deionized water. The solution of sodium borohydride was added
dropwise into manganese chloride solution through titration followed by the simultaneous formation of
particles of Mn NPs having black color. During titration, the resulting black materials were stirred for the
formation of homogeneity. The proposed reaction for this process is given as follows;

2Mn*? + 4BH; + 12H,0 — 2Mn°
+ 14 H, + 4B(OH)s. (1)

An excess amount of borohydride solution was used for the better formation of ZV-Mn NPs. However, the
nanoscale zerovalent manganese (ZV-Mn) was allowed to be aged overnight. After aging, the prepared ZV-Mn
was separated by filtration apparatus and micron filter paper (0.45 M) was used to separate solution. To remove
the surface impurities attached with particles, the current particles were washed through deionized (DI) water
three times and then same with anhydrous ethanol and dried in Oven at 100 °C for overnight. After drying, the
dried particles were calcined in the furnace at 500 °C for 5 h. at the ramp of 5 °C/min followed by ground to get
homogenous powder of ZV-Mn NPs. Repeated the same calcination in order to eradicate any possibility of
impurity in powder. It was observed that the prepared materials oxidized quickly in the air. Beside other
characterizations, the prepared materials were utilized for the sensing applications.

2.4. Preparation of ionic liquid

The 1 H-3-Methylimidazolium formate was prepared using the modified protocol reported by Petrovié et al
[40]. 1- methylimidazole (0.01 mol) was neutralized with formic acid (0.01 mol) in two neck flasks under the
cooling condition and subsequently, the resulting mixture was stirred at room temperature for 12 hr to obtain
the desired IL medium. Furthermore, to avoid the presence of the unreacted reactants in the solution, the
solution was led to the rotary evaporator for 8 hr at 90 °C under the moist environment at low pressure. The
prepared ionic liquid (after subjecting to rotary evaporator) was characterized using NMR Bruker Avance
(500 MHz).

2.5. Coating of nanoparticles

IL coated Mn NPs were prepared in such a way: initially, ZV-Mn NPs (5 mg) was added into the protic IL 1-H-3-
Methylimidazolium formate (HMIM OF) (1 mL) and mechanically ground for 30 min in the pestle-mortal until
awell-dispersed ionic liquid coated ZV-Mn NPs was achieved. Then prepared dispersed solution was further
used for characterizations and colorimetric applications.

2.6. Peroxidase like-catalytic activity of ionic liquid coated nanoparticles

The peroxidase-like activity was evaluated through colorimetric detection of H,O, using N,N,N,N-
tetramethylbenzidine (TMB) as a chromogenic substrate. The procedure was carried out as follow; 35 L of
stock solution of dispersed IL coated NPs, 100 ul of TMB (10 mM), 100 pl of Ionic Liquid and 575 pL of
phosphate buffered saline were mixed. Subsequently, to investigate the optical change, 100 uL of H,O, (2.8 mM)
was added into the reaction solution and was incubated for 5 min as a result a dark blue color was observed.
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Figure 1. Nitrogen adsorption/desorption isotherm (A); pore width distribution of zero-valent manganese catalyst (B).

Furthermore, UV—vis spectroscopy measurement was used to understand and measure the quantitative relation
among IL coated NPs, TMB and varying concentration of H,O, of the resultant solution.

2.7. Detection of Hydrogen peroxide

The detection of hydrogen peroxide was carried out in a similar to the above description but only difference was
adding different concentrations of H,O, were mixed in ascending order in total volume of prepared solution
very properly. The total solution was incubated for 5 mint at different temperature in the physiological
environment, and then the resulting solution was diluted with water for the absorption spectroscopy
measurements.

3. Results and discussion

3.1. Characterizations analysis

The inset in figure S1(a) is available online at stacks.iop.org/MRX/7/035018 /mmedia presents surface
morphology of the ZV-Mn NPs powders. In the image of scanning electron microscopy (SEM) all the particles
were distributed homogeneously, which is helpful in generating high area for catalytic activity. High resolution
transmission electron microscopy (HR-TEM) images indicated that the particle size of ZV-Mn NPs was less than
50 nm and are well dispersed figure S1(b-c). The small size of ZV-Mn NPs provide a greater surface to volume
ratio of the material and thus is responsible for high reactivity due to the greater number of active sites of the
reaction. This can be associated with an intense homogeneous nucleation kinetics, where a large number of
nucleation sites are formed, mainly due to the molar excess of borohydride added to the manganese salt solution
that helped in providing the rapid reduction of the metallic ions; thus, without having time to form nanoparticle
clusters, as a result the particle size is nanometric size. The planes provided by x-ray diffraction were verified by
the TEM image in figure S1(d). The energy dispersive x-rays analyses were also carried out for ZV-Mn NPs to
confirm the presence of the targeted elements at the nano-level with the BRUKER supported energy dispersive
x-rays analyses associated with TEM. The elemental mapping is shown in figure S1(e-h). It can be clearly
identified that all elements of ZV-Mn NPs are presented in the results confirming the proper synthesis of the
proposed ZV-Mn NPs. Moreover, in-line with SEM results, the crystallinity, and homogeneity in the size
distribution of particles are confirmed by the XRD analysis where sharp peaks corresponding to reflection from
planes are observed.

For pores size distribution and surface area analysis of fabricated zero-valent manganese catalyst, nitrogen
adsorption-desorption measurements were used, which is shown in figure 1(A-B). From figure 1(A), it’s quite
obvious that it belongs to type IV isotherm, which confirms an excellent interaction between adsorbate and
adsorbent [41]. The pores sizes were found to be bigger than the molecular diameter of N, (3.5 A), which can be
detected by nitrogen adsorption-desorption experiment [42]. In our case, the pore volume was in the range of
10-100 nm, which confirms the mesoporosity of the material [43] see figure 1(B). The specific surface area, pore
volume, and pore size were found to be 6.0568 m* g~ *,0.018187 cm’ g~ ', and 12.011 nm respectively. The H,O,
can be easily absorbed on the fabricated catalyst due to its large surface area that increases the effectiveness of the
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reaction. Moreover, it was revealed by the BET results that fabricated catalyst can be used easily for H,O, and
other organic pollutants sensing due to its large surface area.

Fourier transform Infrared (FTIR) was performed in order to get information and identify the attached
functional groups with ZV-Mn NPs in the range of 500-4000 cm ™, as shown in figure S2. Many peaks were
observed in the spectra of manganese nanoparticles such as, at 632.54 cm ™" ascribed to O-Br stretching because
the preparation involved the borohydride and partially oxygen got attached. Additionally, a peak observed at
1010 cm ™" that can be assigned to the stretching vibration of O-H hydroxyl group bending belongs to
physisorbed water molecules present on the surface of the adsorbent. Likewise, two more strong peaks at 1351
cm'and 1604 cm ™' were observed, which can be attributed to the bending vibrations of a hydroxyl group to
the metal oxides such M-OH (M = Mn) [44, 45].

In order to get the structural information of ZV-Mn NPs at room temperature, X-ray diffraction analysis was
performed as depicted in figure S3. There amorphous peaks of MnO, were observed at 23.18°, 53.48°, 67.98°,
and 72.32°, which are perfectly matched by JADE 6.5 software. Furthermore, strong peaks were observed for
Mn,0; at the 20 values 18.41°,29.67°, 35.53°,61.41°, 66.33° and 73.54° (JCPDS No. 98—006—1726). In addition,
the peaks obtained at 32.58°,43.33°, 44.28°,48.85°, 58.31°, and 75.11° corresponds to the diffraction peaks of
Mn® (JCPDS No. 01-081-7623). However, the major characteristics peaks of Mn° located at 20 = 40.09° and
41.48° were of very low intensity compared to the characteristic peaks due to the effect of MnO, and Mn,Os.
These results showed that the as-synthesized materials have enough presence of nZV-Mn; as presented in figure
S3.Ithas been reported that the oxidation of Mn to MnO, and Mn, O3 nanocrystal can take time but it also
depends upon environmental conditions and size of particles [46]. From this study, considering the peak at
degrees, average particle size has been estimated by using Debye—Scherrer formula;

p= @
w Cos 0
Where k and ) are the shape factor (~0.90) and the wavelength of the x-ray (1.5405 A), respectively. Whereas, w
represents the full width at half-maximum (FWHM) of specified peak and 6 is the diffraction angle and D is
particle diameter size. The calculated mean crystallite size of the ZV-Mn NPs was approximately 25 nm.

3.2. Peroxidase like activity of Ionic Liquid coated nanoparticles

The peroxidase-like activity of nanoparticles has been investigated by the catalytic oxidation of TMB substrate in
the presence of H,O,, along with IL as a stabilizing and modulating to enhance the biomimetic activity of a single
assay [17,22,27]. IL has been widely utilized in the field of biomedical applications. Many methods have been
reported to stabilize the nanoparticles and enhance the catalytic activity but coated moieties block the diffusion
of other molecules through the surface. Subsequently, the idea was followed to determine the stability of IL, as-
prepared nano-zerovalent manganese nanoparticles were dissolved in phosphate buffered saline in the presence
and absence of an appropriate proportion of IL. Figure 2(C) shows that IL has displayed a highly dispersive
media and enhanced the dispersibility of ZV-Mn NPs for a longer time while on the other side agglomerates/
precipitates were formed. IL can stabilize the nanoparticles and can be the possible reason to the formation of
ionic layer on the surface of the metal nanoparticles as well as to the enhancement of the catalytic activity.
Furthermore, the peroxidase-like catalytic activity of IL coated ZV-Mn NPs was investigated. The catalytic
activity of IL coated ZV-Mn NPs was found to be many folds higher than pure ZV-Mn NPs and the intense blue
color product was observed in the IL coated ZV- Mn NPs system than that of pure ZV- Mn NPs system under the
same experimental conditions, as depicted in the inset of figure 2(A-B). The catalytic activity can be attributed to
the metal centers. The peroxidase substrate adsorbed on the surface of IL coated ZV- Mn NPs as a result
formation of - interaction occurred. However, the interaction of H,O, with metal ions in the presence of
molecular oxygen and their conversion to double ®OH helped in the catalytic activity as well as in the oxidation
of TMB.

The ZV- Mn NPs easily oxidize in air, get redox state Mn ™, and yield the product of H,0, in the aqueous
solution following the Fenton type of oxidation mechanism, the same Fenton type reaction was employed on
zero-valent iron nanoparticles as well in iron-cupper nanoparticles [47, 48].

The redox reaction can be expressed as following equation;

MHO + 02 — Ml’lﬂk1 + HzOz. (3)
In addition, hydrogen peroxide easily oxidize the ZV- Mn NPs
Mno —+ H202 — Mn“ =+ OH7 (4)

It is well known that ZV- Mn NPs are very unstable and can be easily be oxidized into Mn " state and helps in
releasing the electron to reduce the other components,

5
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Figure 2. UV-vis spectra and optical inset for IL (1-H-3-methylimidazolium formate) coated nano-zerovalent manganese
nanoparticles (5 mg ml™ Yin the presence of (a) ImM of TMB, 0.28 mM of H,0, and 100 yul of IL (1-H-3-methylimidazolium
formate) in reaction medium of 2 ml, (b) control in the presence of only TMB, (c) control in the presence of H,O, (A); IL (1-H-3-
methylimidazolium formate) coated nano-zerovalent manganese nanoparticles (5 mg ml ') (a) and nano-zerovalent manganese
nanoparticles (5 mg ml ™) (b) in the presence of I mM of TMB, 0.28 mM of H,O, and 100 y of IL, (1-H-3-methylimidazolium
formate) in reaction medium of 2 ml (B); Dispersion of nano-zerovalent manganese nanoparticles in (a) buffer medium and (b) Ionic

Liquid (C).

Mn“ + H202 — Mn+2 + 0OH + OH_. (5)

Hence, it is observed from the above chemical reactions that higher oxidation states i.e. Mn ™'/ Mn 2 play a key
role in the peroxidase catalytic activity of manganese nanoparticles. Furthermore, H,O, absorbs on the surface
of manganese nanoparticles and produces the Mn "' to generate the hydroxyl ®OH, the ®OH further help in the
oxidation of TMB substrate to generate an intense blue color.

In addition, control experiment was performed where the absorbance of pure ZV-Mn NPs was found to be
negligible as compared to IL coated ZV- Mn NPs, as shown in figure 2(A-B). The coating of IL over the
manganese nanoparticles played a vital role in the enhancement of catalytic activity. The presence of pi-electron
density in both of the imidazolium cations and carboxylate anions in IL were employed to enhance the medium
conductivity. The high salvation power of IL is considered to play a positive role in the enhanced catalysis process
[30] as well the presence of large number of cations and anions and their weak interactions with oxidized
products were further expected to improve the activity. The chemical structure of IL (1-H-3-
methylimidazolium formate) is presented in figure S4. Likewise, the decomposition of H,0, into OH radical
that is used for further catalyze the oxidation of chromogenic substrate TMB can be associated with the presence
of nascent acidic hydrogen of the cationic part of IL.

Interestingly, the color of a catalyzed product was stable for more than 25 h.; afterwards, a slight color loss
was observed as compared to the oxidized product in pure buffer medium without IL (maximum degradation
occurred approximately after 1 h.) and the relative degradation of catalytic activity of oxidized product shown in
figure S5. The oxidized product turns into a colorless product with the passage of time while the IL due to its
attractive properties not only stabilized the nanomaterial but also enhanced the long-term stability of TMB. It
has been reported in the literature that instability is one of the alarming constituents of the catalyzed product
whereas our work has demonstrated the long term stability. Up to the best of our knowledge, very rare data of
long-time stability of the catalyzed product is available in literature and stability of catalyzed product can pursue
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Figure 3. Optimization of volume of Tonic Liquid based nano-zerovalent manganese nanoparticles (stock dispersion 5 mg ml™") in
the presence of TMB (1 mM) and H,O, (0.28 mM) (A); concentration of TMB (B).

Table 1. A comparison of the K,,,and V/,, values for the pure and IL-
based ZV-Mn NPs.

K, [mM] V,, [107*MS™']
Catalyst TMB H,0, TMB H,0,
IL coated ZV-Mn NPs 0.32 0.59 9.1 6.8
Pure ZV-Mn NPs 0.21 4.2 5.2 12

avital role in biomedical research. It has been verified that IL is not only a powerful stabilizing agent but also
modulate and increase the catalytic properties of manganese nanoparticles without disrupting the surface
properties. Although various types of ILs have been reported in the literature but for the catalytic activity, specific
kind of IL (1-H-3-methylimidazolium formate) must be used having the aromaticity in its structure.

3.3. Optimization of experimental conditions

Optimization of experimental conditions play a crucial rule in order to obtain the high catalytic activity of
artificial enzymes depending upon various factors, amount of biomimetic materials, volume of IL in reaction
mixture, concentration of TMB and H,0,. The maximum peroxidase-like catalytic activity was obtained under
following conditions; pH 7.4, 25 °C, 5 min incubation time, 35 pl IL coated NPs, 10 mM TMB and 2.8 mM H,0,
as shown in figure 3 (A-B). Moreover, our system worked at various pH value of buffer medium and high
temperature due to the good stability of IL, indicating the stable catalytic activity of ZV-Mn NPs and the
obtained catalyzed products.

The kinetic parameters were measured for the catalytic oxidation of TMB in the presence of H,O, to
determine the peroxidase-like catalytic activity of nanomaterials by using Line weaver-Burk plots including
Michaelis - Menton (Km) and maximum initial velocity (Vm) by changing the concentration of TMB and H,O0..
The kinetic parameters measured for IL coated ZV-Mn NPs and pure ZV-Mn NPs data are presented in table 1.
To perform the kinetic analysis, the concentration of one substrate was varied while the other was kept constant.
The comparative study was performed to measure the kinetic parameters of both IL coated ZV-Mn NPs as well
as the pure ZV-Mn NPs. The obtained kinetic parameters for IL coated ZV-Mn NPs was many folds better than
the pure ZV-Mn NPs. The lower Km value suggests that the lower concentration of oxidizing agent (H,0,) is
required to achieve maximum catalytic response with IL based ZV-Mn NPs.

3.4. Detection of hydrogen peroxide

A simple calorimetry assay was used to detect hydrogen peroxide based on the optimized experimental
condition and biomimetic IL coated ZV-Mn NPs. There was a color change in a calorimetric method and this
method was used to determine the direct relationship between the concentrations of H,O, and obtained
absorbance at 652 nm for IL coated ZV-Mn NPs as shown in figure 4(A). The method enabled us to detect the
H,0, with alinear range of 10-280 1M, the obtained limit of detection (LOD) was 0.20 p:M; calibration curve
presented in figure 4(B), and the standard deviation was 5 to 6% as shown in table S1. There are various methods
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Figure 5. The interfering and selectivity analysis of glucose with other analyte concentration; 5 uM glucose and 1 mM for the rest of
interfering compounds.

reported to detect H,O, but the calorimetric method offers a very simple procedure and can be visualized with
naked eyes. There is no need for any complex instruments or technical persons. In addition, the generation of
OH radical as a result of adsorption of H,0, on the nano-surface which are subsequently involved in the
oxidation of TMB to give a blue-green color product.

3.5. Interference study

The selectivity of the proposed calorimetric detection based on the prepared IL coated ZV-Mn NPs as a
peroxidase mimetic was further explored by studying the potential interfering compounds. The relative activity
extracted from the investigating system of various interfering compounds such as dopamine, uric acid and
ascorbic acid is shown in figure 5. From figure 5, it can be seen that the other interfering compounds having
elevated concentration as compared to glucose showed very less response confirming the selectivity of the
purposed peroxidase-like catalytic activity of IL coated ZV-Mn NPs induced by H,O..

3.6. Real sample analysis

It is pretty known to everyone that H,O, is used as stabilizer in commercial milk products but their residual must
be controlled due to its harmful effects on the skin of human beings. The accredited maximum H,0, quantity
allowed by US FDA is 0.05 wt% (ca. 15 uM) [49]. Therefore, the sensitive and selective detection of H,O, is
mandatory for the long time storage of pasteurized milk used in practical and healthy life. In order to confirm the
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Table 2. Colorimetric H,O, sensor based on obtained recovery percentages.

Milk samples Added (uM) H,0,; found (uM) R.S.D % (M) R.E % (uM) R % (uM)
1 250 247 32 3 98
2 180 171 3.8 4 96

real sample analysis, we have taken two samples of milk from Key Lab of Separation and Purification, Huazhang
Agriculture Science University, Wuhan, China, the colorimetric detection of H,O, was used under the
optimized conditions to determine the concentration of H,O, in two samples of acquired milk. Therefore,
selective and sensitive detection of H,O, is very important in the milk industry during the course of storing the
pasteurized milk for long duration. Standard addition methods were used to detect H,O, spiked in milk
samples. Samples were tested two times, and then averaged H,0, concentration was calculated from the
calibration curve. The recoveries and relative standard deviation (RSD) values are acceptable for the proposed
H,O, sensor array as shown in table 2.

4, Conclusion

The present work demonstrated the peroxidase like catalytic activity of nano zerovalent manganese. In addition,
the new type of IL namely 1 H-3-Methylimidazolium formate was utilized to modify the surface of ZV-Mn NPs
to synergistically enhances its catalytic performance in oxidation of TMB by H,0,. The impact of work is
associated with demonstration of ZV-Mn NPs as a peroxidase mimetic and application of IL coated ZV-Mn NPs
for fast, highly sensitive and selective colorimetric detection of H,O,. The easy to prepare peroxidase mimetic,
low degradation oxidized product, stable, and environmentally friendly procedure were investigated. This
concept can be further extended to modulate the properties of nanozymes towards construction of colorimetric
assays.
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