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Abstract
Ionic liquids attract attention in the last years due to its powerful solvation properties. For this reason,
in current study 1-ethyl-3-methylimidazolium tetrafluoroborate [EMIM-BF4] ILswas used for the
synthesis of high surface TiO2/GOnanocomposite, as an activematerial for heavymetal removal
from aqueousmedia. FT-IR, transmission electronmicroscopy (TEM), scanning electronmicroscope
(SEM), and x-ray diffraction (XRD) techniqueswere employed for identification of the novel
nanocomposite. Batch experiments were conducted for Cd+2 and Pb+2 uptake fromwastewater by
the synthesized nanocomposite. The effect of parameters affecting adsorption capicity, such as contact
time, pH, nanocomposite dosage and the initial concentration of heavymetals were examined for
Cd+2 and Pb+2 removal by the prepared nanocomposite. The removal efficiency of Cd+2 and Pb+2

was 69.36%and 89%, respectively, under optimal conditions confirming the ability to use the
prepared nanocomposite for wastewater treatment fromheavymetals with high efficiency.

1. Introduction

Heavymetals are naturally occurredmetal with high density, high atomicmass and exihibit toxicity at low
concentrations [1]. Thosemetals are resulted from varius sources, such as vehicle traffic emissions, cosmetics,
electronics, pesticides, plastics, paints, herbicides, food, etc [2, 3]. The association of heavymetals with different
sources allows them to expose the environment and global community to a real toxic threat [4]. The heavy
metals risk arises from their ability to accumulate inside food chains and organisms bodies. It is demonstrated
that heavymetals are able to cause seriuos health complications through adsorption into lungs, and skin [5, 6]. In
order to control heavymetal risks, different policies related to the permisible concentrations inwater of heavy
metals have been recommended. For example, according towrold health organization (WHO), the
recommended limit for iron,mercury, cadminumand lead are 0.3–3 mg l−1 and 1 μg l−1, 3 mg l−1, and
0.01 mg l−1 respectively [7, 8].While, as suggested by the American Environmental ProtectionAgency (EPA),
the arsenic and copper acceptable limit is 0.01 mg l−1 for arsenic [9] and 1.3 mg l−1 for copper [10]. Thus, better
humanhealth required thewastewater treatment of heavymetals.

Many treatment techniques, such as adsorption, precipitation, filtrationmembranes and ion exchangewere
explored on heavymetals (e.g. Cd, Cu and Pb) removal fromwater [11–15]. Recently, the adsorption technique
and bioremediation, using nanoadsorbent for heavymetals removal, have beenwidely applied [16, 17]. The
preference of adsoption is due to its simplicity, efficiency at very low concentrations, and economical properties
[16, 17]. For instance, nanostructured TiO2 ,due to its chemical stability, versatility, effectiveness, and cheapness,
is well known as a reliable and efficient heavymetal adsorbent [18, 19]. As another example, carbon-based
nanomaterials, (e.g. graphene) have gained scientific interest in this respect, as a result of their high available
surface, excellent thermal stability and outstandingmechanical strength. Further example is graphene oxide
(GO)which gained great interest because it revealed superbmechanical, chemical, electric, thermal and surface
properties [20, 21]. Additionally, themain benefits of graphen oxide are the inclusion on the edges and the
surface ofGO in various oxygen-containing functional groups.
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Recentlty, extensive efforts have applied to prepare graphene oxide constructed hybrid nanocomposites
[22–24]. Nevertheless, there is still a technological void in research forwhich ideal porosity has to be reached for
adsorption. In general and because of their cost effectiveness besides ease of processing, solutions-phase
processing routes are usually preferred. Recently, spending the ionic liquids (IL)with its unique solvation
features and ionic conductivity, as a template for the preparation of nanostructuredmaterials attracts attention
[25, 26]. Furthermore, permittivity and high viscosity of ILs prevent the accumulation of nanostructured
graphene oxide. In particular, the power of VanderWaals plays amagnificent role for the distribution of
nanoparticles on carbon nanomaterial [27].Many researchers have used ionic liquids for nanomaterials
preparation to benefit from their solvation properties. As examples for the preparedmaterials are phosphate-
basedmicroporous zeolites [28], nanostructured zinc oxide [29], CoPt nanorods [30], andmesoporous SrCO3

spheres [31].Moreover, 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6])was used as a
solvent for the preparation of TiO2-ReducedGrapheneOxideComposites viaOne-StepHydrothermal
method [32].

In light of the advantages of the use of IL as a solvent in the synthesis of nanostructuredmetal oxides and
graphene oxide diffusion, it would be an ideal trial tomodel the IL-supported porousGO-TiO2 composite as a
unique adsorbent. IL can help to disseminate the graphene oxide andTiO2 assembly and thus regulate them
successfully. In this study, IL-supported nanocomposite GO-TiO2was explored as a possible adsorbents for
effective heavymetals removal. However, the excellent applications of ILs confront with it is biologically active
solvents whichmay cause different environmental problems [33]. Therefore, the challenge is expected to focus
on the reduction of the pollutant linked to ILs.

This study reflects that IL, as a unique solvent, can efficiently assist the synthesis of nanostructuredmaterials
of graphene oxide (GO) and titaniumoxide (TiO2) that would exihibit better adsorbent features. Each
component of the proposed nanocomposite plays an important role in its application as absorbent. For example,
GOwill be used as a support to distribute TiO2 and increases its surface area and efficiency. TiO2 is awell-known
as an adsorbent for the removing of pollutants, and ILs solvent enhances the driving force for the dispersion and
stabilization of nanomaterials, which further boosts the surface area of nanocomposite.

Herein, theHummersmethod and hydrothermalmethodwere used for the preparation of nanostructured
graphene oxide and titaniumoxide, respectively. Then, theGO/TiO2 nanocomposite was synthesized using IL
(1-ethyle-3-methylimidazolium tetrafluoroborate) by sol-gelmethod. TEM, SEM, FT-IR, andXRD techniques
were used forGO/TiO2GO, andTiO2 characterization. Then, the prepared nanocomposite efficiency toward
heavymetals removal was studied and discussed.

2. Experimental

2.1. Chemicals
1-Ethyl-3-methylimidazolium tetrafluoroborate (97%) ionic liquid and hydrofluoric acid (HF)were purchased
fromSigma-Aldrich while titanium tetrabutoxide, ethanol, besides graphite supplied fromSinopharm
Chemical Reagent Co., Ltd (China). Sulfuric acid (H2SO4, 98 wt%), cadmium chloride, Potassium
permanganate (KMnO4, 98 wt%), lead nitrate and sodiumnitrate (NaNO3)were purchased fromAl-Nasr Co.,
Egypt.Without further purification, all chemicals were used as obtained. For all preparations, deionizedwater
was used.

2.2. Titaniumdioxide (TiO2)preparation
The hydrothermal techniquewas employed for the preparation of titaniumdioxide (TiO2) [34]. In a typical
method, 0.6 ml of hydrofluoric acid (HF, 45 wt%) that responsible for the formation of TiO2 (101) planewas
added drop by drop to amixture of 2.0 ml titanium tetrabutoxide (C16H36O4Ti) and 82.0 ml anhydrous ethyl
alcohol. After stirring for half an hour, a 100 ml autoclavewas used for heating themixture for 19 h at 180 °C.
The autoclavewas left at room temperature to cool down then themixturewas centrifuged. The resulting
powderwaswashed several timeswith deionizedwater and trackedwith anhydrous ethyl alcohol. Finally, the
synthesizedwhite TiO2was dried at 65 °C for four h under vacuum.

2.3. Graphene oxide (GO)preparation
Graphene oxide (GO)was synthesized through amodifiedmethod ofHummers [35]. Themethodwas as
follows: 12.0 g potassiumpermanganate (KMnO4)was added to amixture of 95 ml of sulfuric acid (H2SO4,
98 wt%), 2.0 g of sodiumnitrate (NaNO3), and 2.0 g graphite in 200 ml beakerwith continuous stirring. Then,
an ice bathwas used to implement the reactants at 5 °C for twoh, followed by heating to 60 °C for 1.5 h. After
heating, 85.0 ml of deionizedH2Owas added slowly over a half-hour to themixture, then 16.0 ml hydrogen
peroxide (H2O2, 30%)was added in order to remove the excess potassiumpermanganate. For dilution, bout

2

Mater. Res. Express 7 (2020) 025038 SMSiddeeg



205 ml of deionizedH2Owas added to themixture, followed by centrifugation andwashing several timeswith
deionizedH2O,while the pH valuewas adjusted at 7. The neutralmixturewas distributed in deionizedwater
after ultra-sonication for half an hour followed by removing theGO aqueous colloidal supernatant which is
centrifuged to get theGOpowder. The powderwaswashed several timeswith 10%HCl and deionizedH2O to
obtain the graphene oxide (GO) as afinal product.

2.4. Synthesis of [EMIM-BF4] assistedGO/Tio2 nanocomposite
Firstly, an ultrasonic bath for three hwas used for the distribution of 50.0 mgGO in 30.0 ml deionizedH2O
followed by the addition of 10.0 ml [EMIM-BF4] to the aqueousGO for the preparation of [EMIM-BF4/GO]
suspension. In order to removeH2O frompreparation of [EMIM-BF4/GO] suspension. In order to remove
H2O from the prepared suspension, the suspentionwas dried at 80 °C for nine h under vacuum. Then, 30.0 mg
of TiO2was prepared in 7.0 ml [EMIM-BF4] and stirred for 1 h beforemixedwith [EMIM-BF4/GO] suspension
at a contineous stirring for another 1 h, to homogenize themixture and pre-concentrate GO/TiO2. Then, the
mixturewas left for two days at 50 °Cand the [EMIM-BF4/GO/TiO2] composite was extracted using ethyl
alcohol. The rotary evaporationwas used for the elimination of the excessH2O and ethyl alcohol at 75 °C. In
order to improve the porosity of the prepared nanocomposite, to avoid oxygen elimination from surfaces of GO,
and for the removing of impurities, the [EMIM-BF4] assistedGO/TiO2 nanocomposite was heated for nine h at
180 oCunder air.

2.5. Preparation of synthetic wastewater and batch experiments
In order to study the efficiency of the prepared nanocomposite, synthetic wastewater was prepared in the
laboratory and batch experiments were conducted. The composition of the synthetic wastewater consisted of Cd
(II) and Pb (II) ionswith concentrations of 0.157 and 0.336 mgl−1, respectively. Ultrapure deionizedwaterwas
used for the preparation of stock solutionswhich renewed everyweek. Aflame atomic absorption
spectrophotometer was used to analyze theCd+2 andPd+2 ions. The synthesized nanocomposite was allowed to
react with thewastewater solution for different times (40, 30, 20, 10, and 5 min) to examine contact time
influence. A Series of 200 ml beakers were used for all experiments. For constant stirring, amagnetic stirrer was
used tomix solutions that centrifuged for 15 min. The supernatant was subsequently filtered through a
Whatman-42filter paper, then the solutionwas analyzed for Cd+2 and Pd+2 concentrations. The pHof all
experiments was adjusted using stock solutions of 0.1 MHNO3 or 0.1 MNaOH. The pH effect was examined by
adjusting the pH value to 8.5, 7.5, and 6.5. Furthermore, the effect of nanocomposite concentrationwas also
studied.

3. Results and discussions

3.1. SynthesizedGOand [EMIM-BF4] assistedGO/TiO2 nanocomposite characterization
Morphological characterization of the preparedGO, and [EMIM-BF4] assistedGO/TiO2 nanocomposite were
performed using SEM images (figures 1(a) and (b)). Figure 1(a) suggestes that the sizes of theGOwere in the
range of 200 nmand the particles tend to form aggromelation. Figure 1(b) shows awell-distributed spherical
shape of TiO2 ontoGOnanosheets. The presence of ILsmedia supports the formation of nanoparticles with
high stability and porosity compared to othermedia [36]. The SEM images show the uniformdeposition of TiO2

overGO sheets which could be related to the effect of ILs.
TEM images of GO andTiO2/GOnanocomposite were presented infigures 1(c) and (d)TheTEM

microgrphs shows the sturcture ofGO andTiO2/GOat approximately 200 nm, and demonstrates that the TiO2

particles were present within theGO at the produced nanocpmposite with porosity in the nanoscale. The
revealed high accumulation of TiO2 overGO surface is related to the excellent growth andnucleation ofGO, due
to the presence of ILsmedium. In conclusion, the SEMandTEMdisplay partially transparent GOnanosheets
with few layers although the exact layer number cannot be estimated from these images [37].

XRDofGO, TiO2, andTiO2/GOwere presented infigure 2. TheXRDwas investigated using (CuKα
radiation, Panalytical X PertPro). TheXRDpattern shows that graphite was completely oxidized to graphene
oxide, which indicated by a sharp peak at 10.55 and the absence of a peak at 25 [37]. In addition, TiO2was
characterized by the presence of peaks at 62.64, 54.99, 48, 37.78, and 25.29, all wellmatchingwith the peaks of
anatase TiO2 [38]. TheXRDpeaks of TiO2/GOare similar to that of TiO2, however, the graphene oxide peak
disappears due to the destroying ofGOnanosheets by interactionwith TiO2. In the range of 3750–400 cm

−1 FT-
IR ofGO, TiO2 andTiO2/GO spectrums are presented infigure 2(b). TheGO range indicates the presence of the
band at 1631 cm−1 as C=C and the bandwithC–O–C stretching vibrations at 577 and 1071 cm−1, respectively.
The bandwith 1726 and 3382 cm−1 is the oxygen-containing functional groups, such asC=OandOH,while the
bandwith 1385 cm−1 reflects C–OHbending vibration [39]. Therefore, the existence of these oxygen functional

3

Mater. Res. Express 7 (2020) 025038 SMSiddeeg



groups saves the sites required for TiO2 adsorption over theGO surface. For TiO2/GOFT-IR, the bands related
to oxygen functional groupswere reduced. The appearance of the band at 460.23 cm−1 denotes Ti–O–C
stretching bands, while the appearance of the band at 524 cm−1 denotes Ti–Ovibration. Thus, FT-IR indicates
the presence of oxygen functional groups in TiO2/GOnanocomposite, which save sites for heavymetals
removal [40].

3.2. TheTime effect on heavymetals removal
Aneutral (pH7.5), ambient (20±2 oC) temperature and 0.5 mg l−1 of Cd (II) and Pb (II) concentrationwere
studied for heavymetals uptake at a varying contact time of 40, 30, 20, 10, and 5 min, while other parameters
were kept consistent at different levels. The concentration of nanocomposite was 0.5 mg l−1. The detected
deletion rates of heavymetal ions Cd+2 and Pb+2 are shown infigure 3(a). According tofigure 3(a), heavymetals

Figure 1. SEM images ofGO (a), TiO2/GO (b) andTEM images of GO (c) andTiO2/GOnanocomposite (d).

Figure 2.GO, TiO2, andTiO2/GOXRD (a) and FT-IR (b).
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removal increased by increasing the contact timewith the prepared nanocomposite. It is observed that Cd+2

removal by the prepared nanocomposite increased from58.18% to 69.36%as the time increased from5 to
40 min. For Pb+2, the removal by the prepared nanocomposite increased from86.3% to 89%, during the studied
contact time. These results suggested that selective adsorption of heavymetals on theGO surfacemight be
connected to the greater efficient removal of Pb+2 thanCd+2 [41].

The rate of heavymetals removal changes with the timewas attributed to the change of the reaction progress
with time. It is noticed fromfigure 4(a) that during period time of 30 min to 40 min, therewas no efficient
removal for heavymetals which could be due to the active sites overlapping. Therefore, 30 minwas taken as the
optimum removal time for Cd+2 andPb+2 ions. Thus, the prepared nanocomposite serves as efficientmaterial
for heavymetals removal withmaximum removal values of 70% forCd+2 and 88.5% for Pb+2.

3.3. The concentration effect of the nanocomposite onheavymetals removal
The nanocomposite dosage effect on the uptake of Pb+2 andCd+2 were studied and shown infigure 3(b). The
Cd+2 and Pb+2 content in the synthetic waterwas 0.5 mg l−1 and theywere studiedwith different dosage of ILs
assisted TiO2/graphene oxide nanocomposite (0.5, 1, 3, 5, and 50 mg l−1)with a time of contact 30 min for the

Figure 3.Time effect onCd+2 andPb+2 removal using ILs assisted TiO2/graphene oxide nanocomposite (a) and nanocomposite
dosage (0.5:50 mg l−1) effect on heavymetals removal at contact time 30 min (b).

Figure 4.The effect of pH value on the removal of Pb+2 ions (a) andCd+2 ions (b) by using ILs assisted TiO2/graphene oxide.
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carried-out experiments. According tofigure 4(b), the Cd (II) and Pb (II) removals improved linearly by
increasing of the nanocomposite dosage. The Pb+2 removals were 87% at 0.5 mg l−1 of the nanocomposite
dosage, while it was 91%at 50 mg l−1 of nanocomposite dosage. TheCd+2 removals were 65% at 0.5 mg l−1 of
the nanocomposite dosage, while it was 87%at 50 mg l−1 of nanocomposite dosage. This indicated that the
available binding sites for heavymetal adsorption increased by increasing the dose of nanocomposite.

3.4.Heavymetals removal at different pHvalues
Todetermine the pH change influence on the cadmiumand lead ion removals fromwater using the ILs assisted
TiO2/graphene oxide nanocomposite, batch experiments were performed at different pH values (8.5, 7.5, and
6.5), as shown infigure 4(a). The experiments were performed at initial 0.5 mg l−1 cadmium and lead ions and
0.5 mg l−1 nanocomposite doses with a 5 to 40 min contact time. From figures 4(a) and (b), it is appeared that
the pH value has significant influence on removals of cadmium and lead. Thismay be related to the great
influence of the acidity on the ILs assisted TiO2/graphene oxide nanocomposite active sites, besides its effect on
the oxidation state of heavymetal ions in the solventmedia. According tofigures 4(a) and (b), the removal
efficiency of Cd+2 and Pb+2 using ILs assisted TiO2/graphene oxide nanocomposite increased by decreasing the
pHvalue, thatmatches with the literature [42]. For the studied pH range, greater than 89%of Pb+2 and 70%of
Cd+2 were removed using the synthesized nanocomposite. This result is an indication of the ability to use the ILs
assisted TiO2/graphene oxide nanocomposite in the neutral pH conditions. The high removal of lead and
cadmiumwas observed at pH value of 6.5which indicate the optimumpHvalue for cadmium and lead removal.

3.5. Effect of heavymetals initial concentration
Todetermine the initial concentration of lead and cadmium ions on the efficiency of treatment using the
prepared ILs assisted TiO2/graphene oxide, the initial concentrations of lead and cadmium ions usedwere 0.2,
0.5, 0.8, 1, 1.2, and 1.5 mg l−1 for each ion asfigure 5(a) reveals. At an optimumpHand contact time of 30 min,
the dose of nanocomposites was 0.5 mg l−1. The efficiency of the removal of two heavymetals was reduced,
according tofigure 5(a), by increasing the initial heavymetal concentration, whichwas connectedwith the
accumulation of adsorbed ions in the synthesized nanocomposite sites. The results of the removal efficiency in
figure 5(a) indicated the ability to use the prepared nanocomposite for heavymetals removal fromwater at
various concentrationwith high efficiency.

3.6. Reusability study of the nanocomposite
The ability to reuse the prepared nanocomposite for cadmium and lead removals was studied for four successive
cycles as can be seen infigure 5(b). The nanocomposite was isolated from the reactionmixture at 6000 rpmand
sevenminutes by centrifugation of the reaction solution at 6000 rpm for sevenminutes, then dried out for seven
hours at 65 °C in a vacuum. Infigure 5(b), the treatment efficiency of cadmium and lead ions decreasedwith the

Figure 5.The removal efficiency of Cd+2 and Pb+2 ions at different initial concentrations of heavymetals with contact time 30 min,
pH=6.5, and nanocomposite dosage of 0.5 mg l−1 (a), and recycling test of nanocomposite for Cd+2 and Pb+2 ions removals.

6

Mater. Res. Express 7 (2020) 025038 SMSiddeeg



increase in cycle number. Themaximum removal of Cd+2 and Pb+2 was achieved in the first cycle, which is 89%
for Pb+2 and 70% forCd+2, respectively. After four successive cycles, the treatment efficiency of cadmium and
lead ionswas still acceptable, which possibly indicates the excellent stability of the prepared ILs assisted
TiO2/graphene oxide. In order to indicate the efficiency of the ionic liquid in increasing the surface area and
nanocomposite pores, the efficiency of TiO2/graphene oxide prepared in the absence of ionic liquid toward
Cd+2 and Pb+2 removal found to be 50%and 75%, respectively. Interestingly, the removal efficiency of the
prepared nanocomposite toward cadmiumand lead ions is promising and competitive with the previously
published studies [43–45].

4. Conclusions

In the present study, the presence of 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquids that have
excellent solvation properties during the TiO2/graphene oxide nanocomposite synthesis facilitate a high surface
generation and nanocomposites possess high number of available active sites. The synthesized composite was
characterized using SEM, TEM, and FT-IR and the obtained results indicate the stability of the prepared
nanocomposite. Different conditions, such as pH, contact time effect, initial heavymetal concentration, and
nanocomposite dosage effect, were studied to evaluate the prepared nanocomposite efficiency toward heavy
metal ions lead and cadmium ions uptake. The prepared high-surface nanocomposite showed extremely high
removal efficiency for Pb+2 andCd+2, thatmeasured at 89 and 69.36, respectively. TiO2/graphhene oxide
synthesized using ILs as a solvent provides a realistic solution to the problemof reducing sewages with high
heavymetal ion concentrations thatmay led to human health improvements in the communities and recycle
wastewater. Our perspective research, according to the obtained results, is that the prepared nanocomposite is a
promising nanomaterial could be applied for the removal of additional pollutants such as dyes, pharmaceuticals,
and other heavymetals. Furthermore, the preparedmaterial could be used as a support for the immobilization of
microorganisms.
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