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Abstract
Two-dimensional (2D)materials have attracted extensive attention in various fields due to their good
flexibility, high specific surface area and fast ion transfer rate. Herein, theα-Fe2O3 nanoparticles/
graphene composites have been prepared through a hydrothermalmethod, which is followed by
hydrogen annealing to produce oxygen vacancies. Electrochemical properties and photoelectrochem-
ical properties are investigated. The results present a high specific capacitance and the electrochemical
properties are improved ascribing to the synergistic effect of graphene’s large specific surface area and
excellent electrical conductivity, as well as the pseudocapacitance of transitionmetal oxides.
Moreover, it also promotes the photoelectric response performances in visible light. This work
provides a basis for the development and application of transitionmetal oxide in electrochemical and
photoelectricfields.

1. Introduction

In recent decades, the development and utilization of new energy has become amajor research trend. The energy
storage devices and photoelectric conversion devices have beenwidely studied to use for the need of energy
storage and conversion [1–5]. Supercapacitors are one of themost promising candidates, which benefit from
their high-power density, fast charging rate, long cycle life, environmental protection and safety. The electrode
material have attracted extensive attentions as an important component of capacitors. However, it is difficult to
apply high-performancematrixmaterials on a large scale because of low reserves and high production cost.
Therefore, it is emergency and important to develop a low-cost and affordable electrodematerial tomeet the
need for electrochemical energy storage devices is desired.

Transitionmetal oxides are attractive electrodematerials due to their excellent pseudocapacitive properties
and photoelectrical properties, including TiO2, ZnO, Fe2O3, V2O5, Co3O4, SnO2, BiVO4, andWO3, etc [6–12].
Hematite (α-Fe2O3) is one of themost typical n-type semiconductormaterials. According to its relatively high
theoretical capacitance, variable oxidation states, the rich natural reserves, suitable workingwindow, non-toxic,
and narrow band-gap (2.1 eV), etc [6, 13–15], it is generally considered to have broad prospects in
thermoelectricity, photoelectricity, energy storage, catalytic degradation and other fields [16–21]. Especially in
energy storage, Fe2O3 has a broad application prospect as an anodematerial. Nevertheless, its large-scale
application is severely limited because of the easy agglomeration of nanoparticles during synthesis, the lower
electronic conductivity, indirect transitions (d→d type), and short hole diffusion distance [6, 22, 23]. To
overcome these shortcomings, the combination ofα-Fe2O3 and othermaterials to form compositematerial is
considered as a potential direction through synergistic effects to obtain higher performance than single-
component oxides, such as 0 dimension (0D:metal ion,metal oxide), 1 dimension (1D: carbon nanotubes,
carbon fiber), and 2 dimension (2D: graphene) [13, 24–28]. As expected, the composite demonstrates superior
performance comparedwith singleα-Fe2O3.

Among them, the development of 2Dnanomaterials has received a sharp increase in attention[29–34].
Represented by graphene is a single layer of carbon atoms, a hexagonal honeycomb structuremade up of sp2

hybrid orbitals [35, 36], which has a unique layered structure and excellent physical and chemical properties
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[37–40]. Typically, graphene is often used in double-layer capacitors according to the adsorption/desorption
mechanism.Unfortunately, several factors have limited its performance gains, such as the fact that the surface of
amaterial is not easy soaked by the electrolyte; and the stronger van derWaals force between sheets is easily
causing agglomeration of graphene sheets [41, 42]. Therefore, combining graphenewithmetal oxide particles to
form spacers between the layers not only prevents the layers from stacking but also further improves their
performance due to synergistic effects [36, 43–45]. Before that, it has been reported that different shapes of iron
oxide and graphene compound, showing the expected excellent properties.Wang et al [46] prepared single-
crystallineα-Fe2O3/rGO composite aerogel with a specific capacitance of up to 908 F g−1 at a current density of
2 A g−1.Wu et al [47] reported Fe2O3 on rGOnanosheets to obtained Fe2O3/graphene composite by a one-step
hydrothermalmethodwith a specific capacitance of 1083 F g−1 at a current density of 2 A g−1. Bin Xiang et al
[48] synthesized 2Dnanometer roundα-Fe2O3/rGO composites with an excellent specific capacitance of
621.3 F g−1 at 5 mV s−1 and 533 F g−1 at 1 A g−1 by a simple and inexpensive hydrothermal process. These
higher specific capacitance of the samples are due to the fact that the introduction of graphene intometal oxides
can accelerate the electronmigration rates, increase the active sites and reduces the agglomeration of the
α-Fe2O3 nanoparticles [49].

Moreover, the defect structure ofmetal oxidematerials has an important influence on its physical and
chemical properties. The formation energy of oxygen vacancy ismuch lower and easier to achieve than that of
metal atomvacancy. In addition, oxygen vacancy can promote electrochemical charge transfer by generating gap
electron states, so it is an important condition for impurity diffusion and semiconducting in crystals [50–54, 55].
In general, oxygen vacancy formation usually requires reductive reagents, hydrogenation treatment, and high-
temperature treatment. The induced defects will affect the geometric structure, electronic structure and
chemical properties ofmetal oxides, thus affecting the properties ofmaterials.

Herein, the synthesis of rGO/α-Fe2O3 composite by hydrothermalmethod has good properties, which not
only solves the agglomeration ofα-Fe2O3 but also avoids the interlayer stacking of rGO.Moreover, the
nanocomposites with oxygen vacancywere prepared by hydrogen annealing. As expected, these unique features
endow rGO/α-Fe2O3 composite a better crystal structure and a faster electron transfer rate, exhibiting an
excellent electrochemical and photoelectric property.

2. Experience section

2.1. Preparation ofGO
All the chemical reagents are analytical grade in the experiment andwithout further purification. The graphene
(rGO)was exfoliated fromnatural graphite using amodified hummermethod in this experiment. The
experimental process is as follows: graphite powder (1.5 g)was immersed in a beakerwith cold concentrated
sulfuric acid (H2SO4) (50.7 ml). Then, sodiumnitrate (1.14 g)was added to themixture solutionwhile stirring
for 30 minKMnO4 (6 g)was added slowlywhile stirring for 2 h. After 3 days, 5%H2SO4 solution (150 ml)was
slowly added and the reactionwasfinally terminated by the addition of 30%H2O2 (4.5 ml). After which the color
of the solution change to bright yellow. 10%HCl (200 ml)was added to themixture to remove themetal ions.
Finally, themixture waswashedwith plenty of deionizedwater until PH=6, and then freeze-dry the precipitate
to obtainGO.

2.2. Preparation ofα-Fe2O3/rGO
Theα-Fe2O3/graphenewas synthesized by a one-step hydrothermalmethod. As shown infigure 1, GO (40 mg)
wasfirst added to ethanol (40 ml) and dispersed by ultrasound for 2 h. Then, 1.352 g FeCl3·6H2Owas slowly
added to the aboveGO solution, and a trace amount of deionizedwater was added and vigorously stirred for
30 min. Subsequently, add 4 g of sodium acetate while stirring and continue to stir for 1 h. After that, themixed
solutionwas transferred to the reaction kettle (100 mL) and the hydrothermal reactionwas conducted for 24 h at
180 °C. After the solutionwas cooled to room temperature, it was centrifugewashed for 3–4 timeswith
deionizedwater and ethanol, respectively. The collected precipitationwas dried in vacuum at 60 °C for 10 h to
obtain nanopowder of compositematerials. The obtained sample wasα-Fe2O3/rGO composite, denoted as
GFC4.Other samples were prepared by the same process, with noGOadded andwithGOof different content
(20 mg, 60 mg, 80 mg)denoted as Fe2O3, GFC2,GFC6,GFC8. In addition, GFC4was treated by hydrogenated
annealed for 3 h at 300 °Cwith a hydrogen ratio of 2%.

2.3. Characterization
The structure andmorphology of the preparedα-Fe2O3 and its composites were characterized by x-ray
diffraction (XRD) andfield-emission scanning electronmicroscopy (FESEM,Quanta 250 FEG). XRDwas used
for the BrukerD8Advance diffractometer withCuKα radiation (λ=1.5418 Å). Themicrostructure of the
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samples was further characterized by transmission electronmicroscopy (TEM, JEOL JEM–2100). Nitrogen
adsorption-desorption isothermswere obtained at 77 Kusing amicromeritics ASAP 2020 analyzer. The specific
surface area (SBET)was evaluated using the Brunauer–Emmett–Teller (BET)method. Thermogravimetric
analysis (TGA)was performed on SDTQ600 underN2 from room temperature to 900 °Cat 10 °Cmin−1. X-ray
photoelectron spectroscopic (XPS)wasmeasured using a Thermo Scientific ESCALAB 250Xi using AlKα
radiation (USA). TheUV–visible diffuse reflectance spectrumsweremeasured by aUV-visible
spectrophotometer.

2.4. Electrochemical performance test
Themeasuring system is a three-electrodemeasuring system, and the instrument used is an electrochemical
workstation (Shanghai chenhua). The sample electrodewasmixed evenly according to the proportion of active
material 80%, conductive acetylene 10%andpolytetrafluoroethylene (PTFE) 10%, and then anhydrous ethanol
was added as a solvent to form a paste. Finally, it was uniformly applied on conductive foamnickel with an area
of 1 cm2. The electrodewas dried in a vacuumdrying box at 50 °C for 6 h and then press tightly with the tablet
press to prevent the sample from falling off during the test. The electrodewas immersed in the electrolyte for 8 h
before the test. The prepared electrodewas used as theworking electrode, the reference electrodewas a saturated
calomel electrode, and the counter electrodewas platinumplate. Electrochemical tests were performed in 6 mol
KOHelectrolyte solution, including cyclic voltammetry (CV), galvanostatic charge-discharge (GCD, voltage
window from0.2–0.6), and impedance spectra (EIS, 100 kHz to 0.01 Hz). Themass-specific capacitance is
calculated by formula:

( )=
D
D

C
I t

m V
1

where I is the charge-discharge current,Δt is the discharge time,ΔV is voltage window,m is themass of the
activematerial.

2.5. Photoelectric performance test
The photoelectric properties ofα-Fe2O3 and other composite sample electrodes were tested on an
electrochemical workstation using a xenon lamp (CHF-XM-500W) as a simulate of sunlight. The electrolyte was
0.1 MNa2SO4 aqueous solution. Each samplewas sonically dissolved in an ethanol solvent at a concentration of
1 mg ml−1, and then the same amount of solutionwas dripped through the pipette onto conductive glass
(Indium tin oxide ITO)with an area of 1 cm2. Finally, theywere dried in a vacuumoven at 50 °C for 6 h, and the
I-T curves and linear sweep voltammetry (LSV)were tested. The prepared electrode, platinum foil, andHg/HgO
were used asworking, counter and reference electrodes, respectively.

3. Results and discussing

3.1. Structure andmorphology analysis
The hydrothermal process of one-step preparation ofα-Fe2O3/rGO compositematerials is illustrated in
figure 1. In the hydrothermal process, the Fe3+ cations fromFeCl3 react in solution to formFeOOH,which is
attached to the surface ofGO. Then, the hydrophilic functional groups on the surface of GOare partially
removed during the reduction process, andGO is converted to rGO. After that, the FeOOHon the surface of
rGO gradually decomposes into Fe2O3 [46]. Detailed steps are in the experiment section.

Figure 1. Fabricationmechanismofα-Fe2O3/rGOby hydrothermalmethod.
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XRDpatterns of the structure and phase characteristics of 2DGFC, rGO and Fe2O3 are shown infigure 2(a).
The result shows that no extra diffraction peaks of possible impurity comparedwith the pristine sample. All the
diffraction peaks are consistent with the initial phase ofα-Fe2O3 (space group:R3c), which are corresponds well
with the standard card (JCPDS no. 33–0664). This happenswhen the graphene lamellar structure collapses or is
regularly distributed [56]. According to the analysis of themorphology of the corresponding samples, this
phenomenon is caused by the high crystallization ofα-Fe2O3 and the uniformdispersion on the surface of
graphene. It is noteworthy that the peak (002) of graphene at the position of 26° indicates that GO can be
reduced to rGOby hydrothermal reaction [57]. TheXRDpattern fromGO to rGO exhibits theGOhas been
successfully reduced (the right infigure 2(b)).

To determine the loading amount of Fe2O3 in the Fe2O3/rGO composites, TGAmeasurement ofGO and
GFC4was carried out in air conditions (figure 2(c)). After the product had been calcined at 900 °C in air, the
graphene content is shown in the illustration to be almost zero. It can be seen that the curve decline of the sample
can be divided into two stages. Thefirst stage is due to the absorbedwater and impurities, and the second stage is
themass loss of graphene. The content of Fe2O3 in Fe2O3/rGO composites was calculated to be 83.02%. In
addition, the specific surface area of theGFC4 samples are characterized by nitrogen adsorption-desorption
isothermsmeasurements. As shown infigure 2(d), the typical type-IV isothermofGFC4 indicates the presence
ofmesoporous structures. The BET specific surface area ofGFC4 is larger than Fe2O3 powder values in the
references [46, 58, 59]. This result demonstrates the advantages of the present rGOdecorated route to produce
large accessible surface area and prevent the restacking of graphene sheets.

Figure 3 shows themorphologies and sizes of theα-Fe2O3 and its composites characterized by FESEM. It can
be seen fromfigure 3(a) thatα-Fe2O3 shows a hexagonal structure of uniform size. The highmagnification
image ofα-Fe2O3/rGO composite indicates that theα-Fe2O3 isfirmly confined to the rGOnanosheet, with an
average size of about 50–60 nmand evenly distributed. This prevents the agglomeration ofα-Fe2O3 itself and the
stacking between the rGO layers. In addition, the dispersion ofα-Fe2O3 nanoparticles on rGObecomesmore
andmore sparse with the increases of rGO content (figures 3(b)–(e)), whichmay have a certain influence on the
performance of the electrode. Infigure 4(a), themicrostructure of theGFC4 after hydrogen annealing shows no
significantly change. Furthermore, themicrostructure of theGFC 4 after hydrogenation is employed byTEM.
Typical regular lattice fringes in the selected region are shown infigure 4(b), and the d-spacing is 0.57 nm,
corresponding to the d spacing of (110) planes [46].

Figure 2. (a)XRDpattern of 2Dα-Fe2O3/rGO compared to those of rGO and pristineα-Fe2O3 nanoparticles. (b)XRDpattern of
rGO andGO. (c)TGA curve ofGFC4 from room temperature to 900 °Cand the illustration is the TGAdiagramof rGO. (d) the
nitrogen adsorption desorption isotherm curve of theGFC4.
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The oxygen vacancies in semiconductor play key roles in promoting photoelectricity activity. X-ray
photoelectron spectroscopy (XPS) characterizationwas applied to reveal the valence of cations and the existence
of oxygen vacancies onGFC 4 before and after hydrogen annealing, respectively. The Fe atomhas a doublet
spectrum corresponding to Fe 2p3/2 and Fe 2p1/2 states as shown infigures 5(a), (c). The 2p3/2 spectra of Fe atom
can be described as the superposition of two peaks byGaussian distribution, which refers to the co-existence of
both Fe3+ and Fe2+ ions of binding energies 711.4 and 710.7 eV, respectively[52, 60].Meanwhile, theO 1 s
spectra (figures 5(b), (d)) can be divided into two characteristic peaks of Fe–O (530.2 eVOI), defect sites with a
lowoxygen coordination (531.6 eVOII) [61]. The higherOII value ofGFC4 after hydrogen annealing indicated
that the composite possessedmore oxygen vacancies [54].

( )   +O V
1

2
O 22

( )   + -V eV 2 3o

( )+ + - +Fe e Fe 43 2

Equations (1) and (2) show that the oxygen vacancies are responsible to create conduction electrons, and
equation (3) shows themultivalent Fe-ions also could be key the factor to promote conduction process [60].

Figure 3.The SEM images of (a)α-Fe2O3, (b)GFC2, (c)GFC4, (d)GFC6, (e)GFC8 samples.

Figure 4. (a) SEMand (b)TEM image ofGFC4 after hydrogenation.
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3.2. Electrochemical properties
The electrochemical properties of sample electrodes withα-Fe2O3 and its different graphene composite
proportions aremeasured in the three-electrode system. The comparison of CV curves at a scan rate of
50 mV s−1 are plotted infigure 6(a). It can be seen that all the samples show a pair of obvious redox peaks,
indicating that the charge storagemechanism of the electrode belongs to the Faraday battery generated by the
valence state change of Fe2+/Fe3+. Among them, the area enclosed by theCV curve of electrodeGFC4 is largest,
which indicates that the electrode has the highest specific capacitance. It reveals that adding the appropriate
amount of graphene can increase the storage performance of thematerial, which takes advantage of the
synergistic effect between the pseudo-capacitance property ofα-Fe2O3 and the double-layer properties of rGO.
TheGCDcurves of the different samples electrode at the current density of 1 A g−1 are shown infigure 6(b).
According to the calculation of formula (1), the specific capacitance of the electrode are 420, 537.4, 551.5, 436.6
and 276.1 F g−1 (corresponding toα-Fe2O3, GFC2,GFC4,GFC6,GFC8), respectively.Meanwhile, the rate
properties of the electrode at different current densities (1, 2, 3, 5, 10 A g−1) indicate that the compositematerials
have better overall specific capacitance when dopedwith a small amount of graphene, but the performancewill
declinewhen the excess is added. This is because excess graphene can lead to a re-stacking between the sheets,
reducing the pore structure and surface area. The results show that the high concentration of rGOwill affect the
nanostructures of thematerial, which does not favor the diffusion of electrolyte in the hole and cannot provide a
good channel for electrolyte ion conduction, and reduces the storage space of ions.

In addition, EIS characterizationwas used to deeper understand the electrodynamics of the electrode
material, and theNyquist plots of each sample are shown infigure 6(d). The illustration is an electrochemical
equivalent circuit and a localmagnification of the high frequency region.Where the distance of the curve from
the origin on theX-axis represents the intrinsic resistance of the activematerial (Rs), and a smaller the intercept
reveals a smaller resistance. The arc radius of the high-frequency region represents the sumof the contact
resistance between the activematerial and the collector and the charge transfer contact resistance (Rct) between
the electrode and electrolyte. The low-frequency region is the resistance of ionmovement from the electrolyte to
the electrode/electrolyte interface, which is theWarburg impedance (W0) caused by ion diffusion [62], and a
larger the slope of the line represents a smallerW0. Therefore, theGFC4 electrode has relatively small resistance
and high conductivity. The results demonstrates that adding appropriate amount of graphene can promote the

Figure 5.XPS spectra for (a) Fe (b)Oand (c) Fe (d)O inGFC4 before and after hydrogenation, respectively.
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utilization rate and reaction kinetics of the active substances, and is beneficial to improve the performance of
electrodematerial.

Figure 7 shows the comparison of electrochemical properties ofα-Fe2O3, GFC4 andGFC4 after hydrogen
annealing. It is worth noting that hydrotreating does not significantly promote the discharge time of the
electrode at low current density. (figures 7(a)–(b)). However, the specific capacitance ofGFC4 at high current
density is improved comparedwith that before hydrogenation (figure 7(c)), and the clearer values are shown in
table 1.Meanwhile, the cyclic stability tests of 8000 times at 10 A g−1 also indicates that hydrogenation annealing
improved the stability of thematerial and had superior performance (figure 7(d)). This result is attributed to the
faster diffusion rate of the ion after hydrogen annealing, due to its higher crystallinity, and the formation of
oxygen vacancy. Figures 7(e)–(f) shows theCV andGCDcurves of GFC4 after hydrogen annealing electrode at
different scanning rates. The shapes change of the curves in the figure is not obvious, which indicates that the
electrodematerial has good stability and reversibility. Therefore, theα-Fe2O3/rGOcomposite can provide
superior electrochemical performance. It can be inferred that the photoelectric response performance of the
samplewill increase after hydrogen annealing.

3.3. The photoelectrochemical performance
Considering that the semiconductor properties of Fe2O3 aremore sensitive to light, the photoelectric properties
of samples were studied under the light in 0.5 MNa2SO4. Figure 8(a) presents a typical transient current diagram
(I-T) under chopped illumination, which shows a good switching behavior and uniform responsewhen the
lights are on and off. It shows the photocurrent of theGFC4 is highest than the pristineα-Fe2O3, and other
composites. Furthermore, the linear sweep voltammetry (LSV) curves at voltage from−1.75 to 0 V for the
rGO/α-Fe2O3 composites and that of the pristineα-Fe2O3 are shown infigure 8(b). The results show that the
electrical rectification behavior of samples is obviously, and the performance improvement is consistent with the
trend of I-T.

Figure 9(a) shows the impedance spectrumof the samples before and after hydrogen annealing. The
resistance of the sample is decreased after hydrotreatment. This provides a good basis for the improvement of
photoelectric performance. The test results infigures 9(c)–(d) verify the improvement of conductivity and
confirm the relationship between defect and photoelectric performance. TheUV-vis diffuse reflectance spectra
show the absorption of light fromα-Fe2O3, GFC4 andGFC4 samples after hydrogen annealing. It is well known
that semiconductors have awide band, and the threshold is set according to its bandgap. The absorption

Figure 6.Electrochemical test results forα-Fe2O3, GFC2,GFC4, GFC6, GFC8. (a)CVand (b)GCDcurves (c) Specific capacitance
comparison and (d)Nyquist plot.
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threshold ofα-Fe2O3 is about 590 nm, and the absorption threshold of the sample formed after recombination
with graphene in figure 9(b) is about 600 nm,which is consistent with the bandgap ofα-Fe2O3.However, due to
the zero-band gap of graphene, the absorption intensity of composite in the visible region increases significantly.
This is because the electron transfer between the energy bands of the composite nanocrystals and the oxygen

Figure 7.Electrochemical test results forα-Fe2O3, GFC4,GFC4 after hydrogen annealing. (a)CV curves and (b)GCDcurves, (c)
Specific capacitance comparison and (d)Cycling stability performance at 10 A/g. (e)CV curves at different scanning rates (f)GCD
curves at different current density of GFC4 after hydrogen annealing.

Table 1. Specific capacitance (F/g) comparison at different current density of
GFC4 after hydrogen annealing.

Samples 1 A/g 2 A/g 3 A/g 5 A/g 10 A/g

α-Fe2O3 420.2 350.35 325.05 294.25 247.5

GFC4 551.532 457.84 419.84 374.65 316.24

GFC4 after

hydrogen

annealing

546.1 445 412 385.1 347.3
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vacancy generated internally change the electron density in the crystals, ensuring good electron and ion
transportmechanics.

The complex theoreticalmechanismof the electron-holemigration theory of rGO/α-Fe2O3 complex under
illumination is discussed infigure 10. According to early reports, the conduction band-edge (Ec) and valance
band-edge (Ev) of Fe2O3 are−4.78 eV and−6.88 eV, respectively, and the band-gapwidth is 2.1 eV [6, 8]. Thus,
charge separation cannot be carried out by the formula if thewavelength is lower than the 590 nm threshold
( /l=E hc ,g max h=4.13567×10–15 eV s, c=3×1017 nm s−1). The electron-hole recombination rate of
single Fe2O3 is high, while the graphenewith high conductivity in the compositematerial can rapidly separate
charge carriers and reduce the recombination rate. This is of great significance to the application of visible light
in photoelectricity and energy production.

Figure 8. (a) I-T curves (b) LSV curves ofα-Fe2O3, GFC2,GFC4, GFC6, GFC8 samples.

Figure 9. (a)Nyquist plot (b)UV–vis diffuse reflectance spectra (c) I-T curves (d)LSV curves ofα-Fe2O3, GFC4 andGFC4 after
hydrogen annealing.
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4. Conclusions

In summary, a series of the rGO/α-Fe2O3 composite electrodematerials are successfully prepared by controlling
themass of rGO in the hydrothermal process. TheGFC4 sample exhibits an optimal electrochemical
performancewith a specific capacitance of 551.5 Fg−1 and has an excellent retention rate after 8,000 cycles with a
current density of 10 A g−1 in a three-electrode system.What’smore, the oxygen vacancy generated by hydrogen
annealing greatly improves the photoelectric response of the electrode. The improvement of these properties is
mainly attributed to the combination of the large specific surface area and high conductivity of rGO, as well as
the pseudo-capacitance ofα-Fe2O3, and the generation of oxygen vacancies further facilitates the conductance
process. This study provides a promising alternative strategy to develop excellent electrochemical and
photoelectrochemical electrodes for energy storage devices.
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