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Abstract
In recent years, the nanotechnology has gainedmuch attention since the nanoparticles (NPs)have
applications in every field of life. The hetero-structured are of special interest due to their higher
photocatalytic activity. In present investigation, Zinc vanadateNPswere synthesized fromvanadium
and zinc salts bymicrowave assisted precipitationmethod. The Zinc vanadateNPswere characterized
by x-ray PowderDiffraction (XRD), Energy-dispersive x-ray spectroscopy (EDX), Scanning electron
microscope (SEM) andUV-visible techniques. The photocatalytic activity (PCA)was evaluated by
degrading themethylene blue (MB) dye and process variables were optimized. The Zinc vanadate size
was<100 nmand particles were in aggregates form. TheMBdye degradationwas performed at
different conditions of process variables and it was observed thatMBdyewas significantly degraded
using Zinc vanadateNPs underUV light irradiation. The reaction time, catalyst dose and dye initial
concentration showed variable effect on dye degradation. Based on results, it can be concluded that
themicrowave irradiation is viable for the synthesis of Zinc vanadateNPs for photocatalytic activity.
In view of promising efficiency of Zinc vanadateNPs, it can be used for the dye degradation and for the
remediation of textile effluents.

1. Introduction

Metal oxide play pivotal role inmaterial science and can adopt various structural geometries with electronic
distribution that exhibitmetallic or semiconductor character. The semiconductor pure and dopedmetal oxide
properties depend on theirmorphology, structure and grain size [1, 2].Metal oxide nanoparticles have been
used in electroanalysis and detection of biomolecules. The nanoparticles are useful with respect to structural
changes that allow the changes in symmetry and cell parameters. On the other hand, the changes in
electrochemical characteristics and in surface properties increase the band gap that effects the chemical activity
of the nanoparticles [3, 4]. So far, thesematerials have the ability to improve the properties and have enormous
applications inmany fields such asmicroelectronics, batteries, sensing device, nano probes and nanomedicine.
Nanostructure of vanadiumoxide (VO) have been studied [5–8] and a variety of nanostructures in the formof
1D to 3DofV2O5 have been preferred as amodel system for the depiction of nanostructuredmaterials. One of
themajor applications of VO is lithium ion batteries. TheseNPs are usually prepared via hydrothermal heating
of aqueous solution [9, 10]. Nanowires, nano belts or nano-urchin shapes are synthesized by chemical
parameters which depends on the arrangement of aVOnetwork that act as a precursor in synthesized nanotubes
and nanorods [11–14].
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Various strategies i.e. immobilized TiO2, non-thermal plasma, Pt deposited TiO2 films, TiO2 nanofibers,
bismuth degradation have been successfully employed for degradation of pharmaceuticals inwastewater
[14–16]. Themost commonuse of semiconductor photo catalysis is to control pollution. Under theUV light
irradiation these oxides degrade the organic pollutants [17–20].

TheVOact as the catalyst with band gap around 2.6 eV. These active band have an arrow gapmakes in awide
region ofUV light frequencies approaches are frequently implemented. Different parameters of nanomaterials
application have been used for food safety and food packing such as silverNPs as potent antimicrobial agent,
polymer/clay nano composites as high barrier packagingmaterials, nanomaterial, nano-sensors based assays for
the detection of food-relevant analytes.With various compositionsNPs have been preparedby physical and
chemicalmethods. The physicalmethodsmay be evaporation, sputtering, laser ablation, ion ejection, and
electron- beam lithography [15, 16, 21].

The chemicalmethods consist of a salt reductionmethod,micelles, electrochemical sol-gelmethod, gas-
liquid interface, thermolysis and decomposition on ultrasonic treatment. They improved the energy efficiency
of photo generated supported various composition for appropriate co-catalysts. The atavistic has been improved
at which the photocatalytic reaction occurs inwhich electronsmoves to the holes frombulk to reaction active
sites [22–27].

However, in view of the drawbacks faced by low efficiency, instability, semiconductor pure oxides in
photocatalytic process, researchers are now focusing on the synthesis of nano hetero-structured photo catalysts
[28–31].Moreover, owing to their robust nature and versatility inmorphology, the hetero-structuredNPs show
better performance as photo-catalysts and are gaining attention of scientific community [32, 33]. Zinc vanadate
and their derivatives have also been investigated for extensive chemical sensing, lubrication cathodematerials
catalysis and plating [18, 20, 34].

More recently, Zn3(VO4)2 nano rodswith visible light-driven capacity were prepared by hydrothermal
method. The degradation ofMB and 4-nitrophenol over the Zn3(VO4)2 nano rodswere reported, whichwas
synthesized by hydrothermal route. As-synthesized 3DZinc vanadate nanoflowerwas characterized byXRD,
SEM,AFM, EDX, Particle size andUV–vis techniques.Moreover, PCAwas evaluated for the degradation of
cetirizine hydrochloride (C-HCl) using RSMunder CCD [35, 36].

The reports concerning the crystal growth and dimension control of Zinc vanadate without any template
undermicrowave irradiation are rare. Therefore, the present studywas conducted for the synthesis of Zinc
vanadate undermicrowave irradiation. The synthesized Zinc vanadate was characterized by SEM,XRD, EDX,
UV–vis techniques.Moreover, the PCAwas evaluated for the degradation ofmethyl blue dye (figure 1).

2.Materials andmethods

All the chemicals and reagents employed in this studywere of analytical grade andwere purchased fromSigma-
Aldrich.Ultra-pure water (resistivity18.2Mohm.com)was obtained fromMilli-Q plant. Standard stock
solution of each required reagents was prepared by dilutionmethod.Desired concentrations were obtained
from stock solution [37].

2.1. Synthesis procedure
For the synthesis, ammonium vanadate andZnCl2 solutions was prepared andmixedwith each other at 85 °C
under continuous stirring. Then, solutionwas divided into two parts. Onewas heated onmagnetic hot plate,
other undermicrowave treatment and ammoniumhydroxidewas added for pH adjustment of the solution. The
pHwas adjusted 8.8 and then content in the beakerwas left over night at 85 °C to allow the precipitates to settle

Figure 1. Structure ofmethylene Blue (MB) dye.

2

Mater. Res. Express 7 (2020) 015070 M Iqbal et al



down. Solvent was decanted and precipitates waswashedwith ultra-purewater followed by ethanol washing
(thrice) to ensure the removal of unreacted ions and then, calcined at 500 °C for 5 h [38, 39].

2.2. Characterization
In order to characterize the Zinc vanadate catalyst different characterization techniques were used. For shape
andmorphology (structure) of catalyst, scanning electronmicroscopywas performed using SEM (JSM-5910,
JEOL). For elemental analysis, EnergyDispersive x-ray Spectroscopy (EDX)was used. For crystal size and phase,
XRD (JDX-3532)was used [40].

2.3. Photocatalytic activity
The PCAwas evaluated underUV light irradiation using low pressuremercury lamps. For the photolysis and
photocatalysis of aqueous solution ofMBdye, a photochemical apparatus fittedwith a 4W lowpressureHg-UV
lamp (PENARYUSA)was used. Thewavelength of the emitted light byHg-UV lampwas 254 nm.Amagnetic
stirrer was used for stirring the sample to achieve homogenous flowofUV radiation throughout the
solution [41].

TheMBdye solutions of different concentrations were prepared in ultra–purewater and catalyst was added
at specific ratios. In order to dissolve the catalyst, sonicationwas carried out for 10 min. To achieve the
adsorption-desorption equilibrium, dark stirringwas carried out for 30 min. Sample of dark stirringwere
collected and analyzed to get the spectra. TheUV light irradiated samples were collected at different times and
filtered throughmicro syringe filter. Then the remaining concentration ofMBdyewas determined by
spectrophotometric analysis. All the experiments were performed in a glass beaker of 250ml. Specific quantity of
catalyst powder wasmixedwith 50mL ofMBdye solution. The pHof the solutionwas adjusted using acid base
solution. The solution in the beakerwas sonicated for 10 min and then continuously for 30 min in dark for the
establishment of adsorption-desorption equilibrium. To quantify the degradation, 3mLof sample was collected
at specific time from the reactor,filtered through 0.22mmmicro syringe filters and then, analyzed throughUV
spectrophotometer (CECecil 7200UK). The percent ofMBdye degradationwasmeasured using relation shown
in equation (1).

⎡
⎣⎢

⎤
⎦⎥( ) ( )=

-
´Degradation of MB dye %

C C

C
100 10 i

0

Where, C0 andCi are the initial concentration ofMBdye and the concentration at different time intervals,
respectively. All the samples were irradiated in triplicate and datawas averaged and reported asmean±standard
deviation.

3. Results and discussion

In recent years, thenanotechnologyhas gainedmuchattention since thenanoparticles (NPs)havehuge applications
in everyfieldof life. Thehetero-structuredNPs are of special interest due their higherphotocatalytic activity [42, 43].
In present investigation,Zinc vanadateNPswere synthesized fromvanadiumandzinc salts bymicrowave assisted
precipitationmethod.TheZinc vanadateNPswere characterizedbyXRD,EDX, SEM,UV–visible techniques. The
particleswere round in shape and size of synthesizedmaterialwas 100nm.

TheXRDpattern (0–80°) of synthesized zinc vanadate is shown infigure 2. XRD analysis exhibited the
formation of pure formof Zinc vanadate andwell indexedwith JCPDS card (50–0570). This study seizures the
direct precipitation approach for the synthesis of 3-D spherical Zinc vanadate flower. The synthesized Zinc
vanadate was in pure phase hexagonal form. Peaks obtained at sharp edges reflect the higher crystallinity of the
compoundwithout any impurity peak.

Themorphologywas determinedwith SEMand results are shown figure 3 and 4. The Zinc vanadate wasfirst
formed in small particle (nano range), then these were combined to form aggregates. Themicrowave treated
effect was also significant since themorphologywas changed as the samples were irradiatedwithmicrowave. The
composition of Zinc vanadate was confirmed by EDX analysis and results are shown in figure 5. The EDX
spectrum shows peaks related to Zinc vanadate and no additional peakwas observed, which indicate the adopted
methodwas used sucessfuly for the synthesis of Zinc vanadate. The EDX revealed the presence of V(21.22%),
O(19.85%), Zn(58.93%) and the atomic percentages were 16.28%, 48.49%and 35.23%. These results are in line
with reported study for Zinc vanadate, for example, Timmaji [44] synthesized BiVO4 by solution combustion
synthesis and electrodeposition. Thefirst deposition of Bifilm on a Pt substrate in an acidic BiCl3medium. This
film anodically exposed thosemedium that contain hydrolyzed vanadiumprecursor to produce Bi3+ and
subsequent BiVO4 formation by in situ precipitation. Glycine, citric acid, ureawas used at the same time as the
fuel. The probe ofMethyl orangewas used to test the combustion synthesized (CS) samples and photocatalytic
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attributes.The nanoparticles (AgBiW2O8)were prepared for the first time by solution combustion analysis via
bismuth nitrate sodium tungstate, silver nitrate as precursors for Bi, Ag andWcorrespondingly and urea used as
the fuel. Similarly, Ibrahim, Khan [45] synthesized nanoflakesWO3/BiVO4 hterojuncation prepared by facile
hydrothermalmethod.

Figure 2.XRDanalysisof zinc vanadate withoutmicrowave irradiation.

Figure 3. SEM images of zinc vanadateNPs undermicrowave irradiation.
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3.1. Photocatalytic studies
3.1.1. Effect of exposure time of PCA
The influence of different reaction times on decolorization efficiency ofMBdye is illustrated in figure 6. Thefirst
order linear relationshipwas revealed by the plots of the (C/C0) vs. irradiation time (t), where Cwas the
concentration ofMBdye at the irradiation time (t) andC0was the concentration before irradiation.When time
interval is increased from0 to 80 min the decolorization efficiency of dye also increases from0 to 66%and then
complete degradation occurs at 160 min. The interaction of catalyst withUV light increases which is indicative
of the fact that active sites of the catalyst increasedwhich further enhance the production of highly reactive
species. This confirms that activity of catalyst increases with time. The data revealed that the degradation
efficiency of the dye increasedwith extending irradiation time. Absorbance of the solution at 554 nmwith time
was determined tomonitor theMBdye concentration. The decrease in the concentration ofMBdyewith time
was due to its degradation by catalyst. It can be seen that in about 3 h, almost all theMBdyewas degraded. So,
time of 160 minwas selected for further study. The sameMBdyewas degraded byMahadik, Shinde [46]who
studied the Fe2O3 as a photocatalyst, but they obtained lowdegradation efficiency for longer reaction time. So
the prepared catalyst was very active by degrading theMBdye up to 83% in 160 min, [47] prepared (m-BiVO4)
photocatalytic and antimicrobial activity was studied. Photocatalytic activity ofm-BiVO4 nanostructure was
evaluated by degrading theMBdye, which is awaste of textiles industries.

Figure 4. SEM images of zinc vanadateNPswithoutmicrowave irradiation.
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Figure 5.EDXof zinc vanadate (a) undermicrowave irradiation and (b)withoutmicrowave irradiation.

Figure 6. (a)Graphical presentation of percentage degradation ofMBdye as a function of time, (b)Rate plots showing activity of zinc
vanadate and (c)MBdye degradation at different initial concentrations of dye.
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3.1.2. Effect of catalyst dose
Inorder to evaluate thephotocatalytic degradationof theMBdyeunderUV light, blank experimentwas performed.
Thefirst order linear relationshipwas revealedby theplots of the (C/C0) vs. catalyst dose (figure 7). The rate of
degradationprocess is negligiblewhen experimentwas carried out in the absence of catalyst. It suggests that the
catalystmust beused in combinationwithUV light for thedegradationof dye. Thedegradationof theMBdye
increasedwhenZnV2O8 catalyst dosewas increased.This indicates that thedegradationofMBdye increases in the
presence of photocatalyst. The increase indegradation ratemaybe attributed to theproductionof highly reactive
oxidizing species andhigh generationof free radicals by catalyst in thepresenceofUV lightwhichdegraded thedye to
a large extent [48–53].Under these experimental conditions, and after 10minofUV irradiation, thedegradation
reaches 83%ofMBdye.The concentrationofMBdye in the solutionwas alsomentioned spectrophotometrically by
measuring the absorbanceof the solution at 665nm.After ascertaining the activity shownby the as synthesized
ZnV2O8 the effectiveparameterswere selected for further study.Also, [16] evaluated thephotodegradation efficiency
ofBiVO4andgrapheneoxide (RGO) composite. ThephotocatalystsRGO-BiVO4 showhighdegradation efficiency
versus pureBiVO4photocatalyst under visible light. Specially, composite photocatalyst of the 2wt.%RGO-BiVO4

exhibits thehighestCIPdegradation ratio (68.2%) in 60min,which is over 3 times than that (22.7%)of thepure
BiVO4particles.However, the catalystswhich act as active site andplay a role as protondonors in the
photodegradationprocess of the organic compoundsdue tohigher surface area.

3.1.3. Effect of dye concentration
Solutions of different dye concentrations (10, 20, 30, 40, 50mg l−1)wereprepared.The absorbance spectra of the
solutionsof different concentrationswere carried out and their respective correspondingmaximumabsorbancewere
noted (Figure. 7). All the absorbancedatawere recorded at 665nmwhich is themaximumcorresponding absorbance
wavelengthofMBdye.A graphof absorbance versus different concentrationswas plotted.Graph shows thatwith the
increase indye concentration, the degradationwasdecreased.Also, [54]preparedBiOCl/BiVO4photocatalystwith
heterojunction structure using ahydrothermalmethod.Under visible light irradiations, theheterojunctionhavebeen

Figure 7.UV-visible spectra of dye degradation (a) as afunction of time, (b) as afunction of catalyst dose and (c) at different dye initial
concentration.
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suggested for thedegradationofmethyl orange (MO).Thephotocatalytic efficiency forMOphotodegradationwas
increased versusBiOCl,BiVO4andDegussaP25.This activity has beenobtainedusingheterojunction composite of 13
mol%BiOCl and87mol%BiVO4.The removal ofMOhasbeenmainly initiated by consuming the conduction
band electrons valence-bandholes that play important role inphotocatalytic activity.Wang, Shao [55] also
synthesizednovel BiOCl–C3N4heterojunctions through-liquid-assisted solvent-thermalmethod.UV–visible light
diffusion reflectance spectrometrywas performed.These results show that they are dispersed to formheterojunction
structures to absorb visible light. Themethyl orange (MO)degradation indicatedheterojunctionproportion that
increased the visible light absorption for photocatalytic activity.

4. Conclusions

In present investigation, Zinc vanadateNPswere synthesized fromvanadium and zinc salts bymicrowave
assisted precipitationmethod. The Zinc vanadateNPswere characterized byXRD, EDX, SEM,UV-vis.
techniques. The Zinc vanadate sizewas<100 nmand particles were in aggregates form. TheMBdye degradation
was performed at different conditions of process variables and it was observed thatMBdyewas significantly
degraded using Zinc vanadateNPs underUV light irradiation. The reaction time, catalyst dose and dye initial
concentration showed variable effect on dye degradation. Based on results, it can be concluded that the
microwave irradiation is viable for the synthesis of Zinc vanadateNPs for photocatalytic application. In view of
promising efficiency of Zinc vanadateNPs, it can be used for the degradation of dye and for the remediation of
other industrial pollutants present inwastewater.
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