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Abstract

The commonly observed hysteresis in the transfer characteristics of MoS, transistors is typically
associated with charge traps in the gate insulator. Since in Si technologies such traps can lead to severe
reliability issues, we perform a combined study of both the hysteresis as well as the arguably most
important reliability issue, the bias-temperature instability. We use single-layer MoS, FETs with SiO,
and hBN insulators and demonstrate that both phenomena are indeed due to traps in the gate
insulator with time constants distributed over wide timescales, where the faster ones lead to hysteresis
and the slower ones to bias-temperature instabilities. Our data show that the use of hBN as a gate
insulator considerably reduces the number of accessible slow traps and thus improves the reliability.
However, the reliability of hBN insulators deteriorates with increasing temperature due to the

thermally activated nature of charge trapping.

Introduction

Molybdenum disulfide (MoS,) is currently one of the
most promising transition metal dichalcogenides
considered for future electronic device applications.
Single-layer MoS, has a direct bandgap of around
1.85 eV [1, 2], which allows the main limitation of the
gapless graphene to be overcome. The first practical
realization of a functional single-layer MoS, FET [3] in
2011, together with simulations predicting an excel-
lent performance of MoS, FETs [4], resulted in a
number of other attempts at fabricating related devices
with either SiO, [5-15], AL,O5 [16-19], HfO, [20, 21]
or hBN [22] as a gate insulator. The primary focus of
these papers was on the analysis of on/off current
ratios and mobilities. In addition, several studies on
MoS, FETs for high-frequency applications [23] and
circuit integration [24, 25] have been reported.
Although these considerable advances in overall
technology of MoS, FETs have been achieved, further
integration of these devices requires a detailed study of
their reliability. In particular, device non-idealities
such as hysteresis and especially slow changes in the

transistor characteristics due to bias-temperature
instabilities (BTT) have not yet been considered in
depth [6, 7, 10, 11, 13, 14, 18, 22]. Existing studies are
mostly restricted to a cursory observation of a hyster-
esis in the gate transfer characteristics for different
measurement conditions [6, 7, 13, 18, 22], and
typically report a poor hysteresis stability of the
analyzed devices. While some more recent works
ascribe the hysteresis in MoS, FET's to charge trapping
at the MoS,/SiO, interface [26, 27] or intrinsic impact
of MoS, [28], a more general study based on a reliable
experimental technique accompanied with a qualita-
tive analysis is needed. Furthermore, attempts to
analyze BTI in MoS, FETs are rare [10, 11, 14],
although BTTis arguably the most important reliability
issue in Si technologies [29]. In Si technologies it is
often assumed that BTTis due to slowly charging oxide
defects as well as the creation of interface states which
result in a threshold voltage shift over time [30-34].
Available studies are limited to MoS,/SiO, FETs and
report considerable threshold voltage shifts without
providing a detailed analysis of BTI degradation/
recovery dynamics. Furthermore, no analysis of BTI

©2016 IOP Publishing Ltd
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has been reported for MoS, FETs with hBN gate
insulators, the arguably most promising material
system.

Here we perform a combined study of both the
hysteresis and BTI in single-layer MoS, FETs with
SiO,, hBN/SiO, and/or hBN insulators, and capture
the correlation between these phenomena. Also, we
quantify the observed BTI degradation/recovery
dynamics using the universal relaxation model [35]
which has been previously developed for Si
technologies.

Devices

Our devices are single-layer MoS, FET's with SiO, and
hBN as a gate insulator [36]. The channel length is
around 1pm, while the width for different FETs varies
between 4 and 8 pim. The schematic configuration and
output and transfer characteristics of our MoS, FETs,
which look similar to those reported previously[7, 22],
can be found in the SI (figures S1 and S2, respectively).

Results and discussions

We start our study from the qualitative description of
the hysteresis and BTI dynamics which are expected in
MoS, FETs. Based on the results of previous studies
for Si technologies [34, 37], we assume initially that
both issues are due to the charging/discharging of
oxide traps which are situated within a few nanometers
from the interface and thus can follow the change in
the applied voltage by tunneling exchange with the
channel. While some of these traps are introduced by
immature processing conditions of the device and can
be removed by process optimization, the others
present a natural consequence of pairing certain
insulator and channel materials and thus remain
unavoidable. As shown in figure 1, we assume that the
resulting hysteresis width AVjy extracted from the
I3—V; characteristics around the threshold voltage
should be strongly dependent on the sweep frequency
f= 1/t with t, being the total time required for
the whole hysteresis sweep. Furthermore, since the
charging/discharging dynamics of oxide traps is
determined by the wide distributions of their capture
and emission times 7. and 7., AVy is expected to
exhibit a maximum at a certain frequency, f = f_
(figure 1(a)). This behavior can be explained as follows:
if the sweep is too slow and f < f_ (figure 1(b)),
those defects which were originally charged in equili-
brium discharge during the sweep from Vgpiy to Vymax
(V* sweep). However, since most of these defects stay
below the Fermi level for gate voltages between
Vg ~ V; , which is close to Vi, and Vgmay, they
remain discharged during the sweep from V., to
Vemin (V~ sweep). Hence, the hysteresis around
V, = V;< will be small. Conversely, for faster V*
sweeps with f ~ f (figure 1(c)) a number of defects
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atV, = Vg>l< will remain charged. Since most of them
will have time to discharge by reaching V; = Vg*
during the V~ sweep, one should expect a large
hysteresis. Finally, for extremely fast sweeps with
f > f, (figure 1(d)) most defects will retain their
equilibrium occupancy, which will again lead to a
small hysteresis. Obviously, the exact position and
width of the maximum will depend on the distribution
of . and 7.. As the time constants are thermally
activated, a shift of fwith temperature is expected.
These considerations already reveal the link to relia-
bility issues, as for slow sweeps the transfer character-
istics become severly distorted.

In figure 2 we show that the dynamics of BTI in
MoS, FETs can be explained by assuming charging/
discharging of the same defects as those responsible
for the hysteresis. Namely, during stress with
V, > Vi (figure 2(a)), which corresponds to positive
BTI (PBTI), the Fermi level is shifted toward the con-
duction band. This leads to discharging of defects
which were charged in equilibrium. As a result, the
threshold voltage is shifted toward more positive
values. However, when the stress is removed the
defects above the Fermi level become charged, which
leads to the recovery of the 13—V, characteristic. Con-
versely, during negative BTI (NBTI) stress with
V, < Vi (figure 2(b)) the Fermi level is close to the
valence band. Hence, the number of charged defects
increases, which makes Vj;, more negative. Finally, dis-
charging of these defects after the end of the stress
leads to recovery of NBTI degradation. Again, the time
constants 7. and 7. and the defect concentration Ny
are the main quantities which determine the magni-
tude and recovery rate of the degradation.

In order to verify the issues discussed above, we
have performed qualitative simulations of the hyster-
esis behavior for different sweep frequencies using our
TCAD simulator Minimos-NT [38], which has been
previously applied to assess the reliability of modern
nanoscale Si MOSFETs [34]. To account for charge
trapping, the four-state non-radiative multiphonon
model [29] which has been developed to explain the
intricate bias and temperature dependence of single
traps in SiO, [37] is used. The AVi(f) dependences
extracted from the I3—Vj characteristics simulated for
an MoS,/SiO, device with a number of interface and
oxide traps are shown in figure 3. In agreement with
our qualitative predictions, we observe a clear max-
imum of AV} at moderate frequencies. At higher tem-
peratures this maximum is shifted toward higher f,
which is also intuitive, since the time constants
become smaller. At the same time, for narrower sweep
ranges the hysteresis is less pronounced, since a nar-
rower active energy region reduces the number of
traps which are able to contribute to the hysteresis.
Finally, the results clearly show that the hysteresis is
fully consistent with trapping/detrapping at oxide
traps, which also contribute to BTI. As for the interface
traps, since they are very fast, they come into play only

2



10P Publishing

2D Mater. 3 (2016) 035004 Y Y lllarionov et al
gmin |émax
=
2
=
i)
g >
) T
2 = e
>
I
(a) Sweep Frequency Gate Voltage
V"' Sweep V Sweep .
Equilibrium /% = =|/*
d V=vr o Ve Y
it
c
WE £
>~ =
" (&)
£
©
1
(a]
+ Gate Voltage
=)
c
)
e
S 3
y o
“ £
©
[
o
. Gate Voltage
» -
c
o
=
=
WE o
N £
NS o
(=]

Gate Voltage

Figure 1. (a) Left: schematic dependence of the hysteresis width versus 14—V, sweep frequency in MoS, FETs. Right: schematic plot
showing the bias dependence of the distributed capture and emission times, 7. and 7.. (b) Atlow fsome of the traps which are charged
at the initial equilibrium have enough time to emit a hole if their energy level moves below Egat V; = V;< during the V* sweep.
Furthermore, at V; = Vgmax almost all defects become neutralized. Since within V: < Vg < Vgmax most of the defects are below Eg
and 7. > T, onlyvery few defects will be charged at V; = Vg* during the V™~ sweep. Hence, the hysteresisat V; = Vg* is small. (c)
At moderate fmany defects will not have enough time to emit a hole by reaching V; = Vg* during the V* sweep. But as V, increases
further, 7. of these defects decreases and in addition they have more time to emit. Hence, at V; = Vg, many defects will become
neutral. However, since 7 is large, most traps will remain neutral at V; = Vg* during the V-~ sweep. Thus, a large hysteresis will be
observed. (d) At very high fmost traps, except those with extremely small 7, will neither emit nor capture a hole because the time
constants are large compared to the period 1/f. As a consequence, the hysteresis remains small.

atvery high frequencies and introduce some instability
below Vj, for typical trap levels. As discussed in the SI,
the impact of interface states on the transfer character-
istics can be simulated by assuming f~ 100 Hz,
which is much larger than the typical sweep fre-
quencies at which the oxide trap hysteresis appears.
Furthermore, the results can be reasonably matched to
the experimental data measured for our MoS,/SiO,

FETs using extremely fast sweeps (see figure S3 in
the SI).

Based on the qualitative background discussed
above, we proceed with the experimental part of our
study. In order to avoid the detrimental impact of the
environment [7], all our measurements were per-
formed in vacuum (5 x 10~°-10° Torr). The hyster-
esis was investigated by measuring the I[3—V,
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Figure 2. Dynamics of PBTI (a) and NBTI (b) in MoS, FETs. During PBTI stress those defects which are charged at the initial
equilibrium can emit holes if their energy level is moved below Ep. This leads to a shift of the threshold voltage towards more positive
values. After the end of the stress the defects situated above the Fermi level can capture holes, i.e. return to their equilibrium states.
Thus, the I4—Vj characteristic recovers. Conversely, during NBTT stress the Fermi level is close to the valence band of the oxide.
Hence, those defects which have been neutral in equilibrium, now capture holes and the 14—V, characteristics are shifted in the
opposite direction compared to PBTI. After the stress, emission of holes by those defects which have become charged leads to
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Figure 3. The A Vjy(f) dependences extracted from our qualitative Minimos-NT simulations. In agreement with our theoretical
considerations, a maximum of AVj is clearly visible. (a) At higher temperatures this maximum is shifted toward higher f, which is
because 7. and 7, become smaller. (b) For narrower sweep ranges the hysteresis width becomes smaller, since the active energy region
is narrower and the number of traps which are able to charge and discharge is smaller.
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characteristics using V3 = 0.1V and different sweep
rates S. In order to capture the full frequency range of
the traps responsible for the hysteresis, S = Vitep/Ztep
was varied between 0.04 and 8000 Vs~ by adjusting
the step voltage Vi, and the sampling time #yep. It is
expected that the use of a smaller V., increases the
number of accessible traps inside the insulators while
an increase in ty,, will allow slower traps to contribute
to the hysteresis as well. BTT in our MoS, devices was
studied using an experimental technique previously

employed for graphene FETs [39]. Namely, sub-
sequent stress/recovery cycles with either increasing
stress time t, or gate voltage Vi were used. By measur-
ing the full I;—V; characteristics of our devices at each
recovery stage, we were able to extract the threshold
voltage shift AV, at a fixed drain current, and express
the BTI recovery in terms of AVy, versus the relaxa-
tion time t,.

An initial check of our MoS,/SiO, devices after
several daysinavacuumat T = 25°C shows that the
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Figure 5. (a) The frequency dependence of A Vjy measured for MoS,/SiO, FETs using the gate voltage sweep ranges —20 to 20 V (top)
and —20to 0 V (bottom). The three datasets correspond to the results obtained before, during and after 6 days of baking at

T = 85 °C.Initially, the hysteresis is dominated by slower traps. During baking, some of these traps become annealed, while those
which remain become faster. (b) The frequency dependence of AV} measured for MoS,/hBN/SiO, FETs using the sweep ranges

—4 to 4V (top)and 0 to 4 V (bottom). In agreement with our qualitative predictions, we observe a maximum of AVj;. At

T = 85 °C the maximum is shifted toward higher f. (c) The corresponding results for MoS,/hBN FETs. Contrary to the previous two
devices, the fraction of slower traps is negligible, while the hysteresis is dominated by ultra-fast traps. Hence, the maximum of AV is
most likely at even higher frequencies outside our measurements range.

I3—V; characteristics exhibit some hysteresis. While
being reproducible at a constant sweep rate, similarly
to [7], this hysteresis becomes larger when § is
decreased (figure 4(a)). When the temperature is
increased to 85°C, the drain current increases
(figure 4(b)). At the same time, the hysteresis width
AVy measured using a very small S significantly
decreases. However, when after six days at 85°C the
temperature was changed back to 25°C, neither drain
current nor hysteresis width returned back to their
initial values. Thus, after baking, the device exhibits
better performance in terms of both Iy and AVy. This
implies that in our MoS,/SiO, FETs, baking anneals a
considerable fraction of slower traps (see more details
in the SI, figure S4). We speculate that these slower
traps are associated with water molecules [7], which

are desorbed from the uncovered MoS, surface at
higher temperatures.

We proceed with a more detailed analysis of the
hysteresis by measuring the 13—V characteristics using
different tyep, Viep and gate voltage sweep intervals
Vemin t0 Vgmax. In order to allow for a qualitative inter-
pretation of our results and their comparison for dif-
ferent gate insulators, we operate with the sweep
frequency f= 1/ty, where the sweep time
taw = N tqp and the number of points N =2
((Vgmax — Vigmin)/ Varep + 1. In figure 5 we show that
for all three insulators the hysteresis widths measured
using different Vi, and fy, form a universal fre-
quency dependence of AVy, while the typical charge
trap density shifts ANy = AVyCox/q are compar-
able to those reported in [19]. Figure 5(a) shows the
AVy(f) dependences measured for MoS,/SiO, FET's
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atT = 85°Candalsoat T = 25 °C before and after
the T = 85°C measurements. In all cases AVy
becomes larger for lower frequencies, which confirms
that the hysteresis in these devices is dominated by
slower traps with f < 0.01 Hz. Hence, within our
measurement range we observe only the right part of
the AVh(f) maximum, as predicted by theory
(figure 3). At the same time, the contribution of faster
traps (0.01Hz < f < 1Hz) becomes more pro-
nounced at T = 85 °C. This also agrees with the
theoretical prediction, showing that the AVy(f) max-
imum at higher temperatures is shifted toward higher
frequencies. Conversely, AV associated with slower
traps is considerably reduced during and after baking
at T = 85 °C, which means that a number of traps
have been annealed. Hence, we stipulate that in our
MoS,/SiO, FETs the hysteresis is not only due to
oxide traps, but also due to defects situated on top of
the non-covered MoS, surface (e.g. water molecules),
which have not been accounted for in our simulations
(see figure S5 in the SI). In figure 5(b) we provide the
corresponding results for MoS,/hBN/SiO, FETs.
Contrary to MoS,/SiO, devices, here we observe a
clear maximum of AVi(f), which again fully agrees
with our qualitative predictions. Also, the presence of
the whole maximum means that the typical time con-
stants of the defects in MoS,/hBN/SiO, devices are
smaller compared to their MoS,/SiO, counterparts.
Furthermore, at T = 85°C the maximum is shifted
toward higher frequencies, which has been confirmed
using different sweep ranges. As such, we conclude
that all traps which contribute to the hysteresis in
MoS,/hBN/SiO, FETs are thermally activated, which
fully agrees with theory. The results for MoS,/hBN
FETs are shown in figure 5(c). Contrary to the pre-
vious two cases, the hysteresis in MoS,/hBN FETs is
dominated by ultra-fast traps (f > 1Hz), while the
contribution of slower traps is negligible. Hence, the
typical time constants of the defects for these devices
are the smallest. At the same time, an increase of AV
for higher f means that only the left part of the max-
imum can be captured within our measurement
range. Interestingly, for all three cases the same trends
are observed independently of the gate voltage sweep
range, and in agreement with our simulations
(figure 3(b)) and [13] AV} becomes smaller for nar-
rower sweep ranges.

A comparison of our findings for different gate
insulators allows us to conclude that for MoS,/SiO,
FETs the hysteresis is mostly dominated by slower
traps. Hence, only the right part of the A Vf; maximum
lies within our measurement range. Conversely, the
defects in MoS,/hBN/SiO, devices have smaller time
constants, which allows us to observe the maximum of
AVy. Finally, for MoS,/hBN devices we observe only
the left edge of the maximum, since the hysteresis is
purely related to ultra-fast traps (the transfer char-
acteristics for MoS,/hBN/SiO, and MoS,/hBN devi-
ces can be found in the SI, figure S6). Interestingly, in
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all three cases the time constants of the involved traps
become smaller at higher temperature, as expected by
theory. At the same time, our devices exhibit a better
hysteresis stability compared to results reported by
other groups (for more details see figure S7 and related
discussion in the SI).

We proceed with an analysis of the degradation/
recovery dynamics of NBTI and PBTI for our MoS,/
SiO, and MoS,/hBN FETs. As stated before, as hyster-
esis and BTT are due to the same defects, the features
observed in the hysteresis should be consistent with
the BTI results, bearing in mind that BTI in our slow
measurements is dominantly due to slow oxide traps.
First we have found that the BTI degradation in our
MoS, FETs is strongly dependent on the magnitude of
applied bias stress. Similarly to Si technologies [34], for
larger V; the degradation is stronger and more reco-
verable (see figure S8 in the SI). In figure 6 we show the
results obtained for our MoS,/SiO, FETs using sub-
sequent PBTI stress/recovery cycles with increasing ;.
In order to compare the BTI degradation/recovery
dynamics with Si technologies, we use the universal
relaxation model [35]. This model assumes the nor-
malized recovery AVy (t,)/AVy (@t = 0) to follow
r(€) = 1/(1 + BEP) with the normalized relaxation
time £ = t,/t, and empirical fitting parameters B and
0. All recovery traces for our MoS,/SiO, devices can
be fitted reasonably well (figure 6(b)), since the nor-
malized recovery is universal (figure 6(c)). Just like in
Si technologies, stronger degradation and faster recov-
ery are observed at higher T, which is due to the ther-
mally activated nature of charge trapping [29]. This
agrees with our hysteresis measurements and qualita-
tive simulations, which show that at higher T traps
become faster (see figures 3 and 5). However, MoS,
FETs are known to exhibit both PBTI and NBTI on the
same device [11, 14]. While the dynamics of NBTI are
similar to those of PBTI, the observed shifts are larger
(the results are given in the SI figure S9). The latter
means that at the initial equilibrium state the con-
centration of charged defects is smaller than that of
neutral defects. Hence, as was shown in figure 2, trap-
ping of holes at negative V; is more favorable than
their emission at positive V; with the same absolute
value.

In figure 7 we provide the results for PBTI and
NBTI measured for our MoS,/hBN FETs. While these
devices exhibit a negligible degradation at
T = 25°C, at T = 85°C both PBTI and NBTI
shifts become more pronounced and agree with the
universal model. Also, the use of this model allows us
to extrapolate initial shifts AVy (t, = 0) for both
MoS,/SiO, and MoS,/hBN FETs and further verify
the thermally activated nature of charge trapping (see
the results in the SI figure S10). Interestingly, the
MoS,/hBN device remains considerably more stable
than its MoS,/SiO, counterpartevenat T = 165 °C,
although the BTI shifts are further increased (see
figures S11-S13 in the SI). At the same time, NBTI in

6



10P Publishing

2D Mater. 3(2016) 035004

Y Y lllarionov et al

lines: fitting

N

SN
T

Threshold Voltage Shift [V]

>P

[ T G
@ ©

o
)

- fitting

u ts=0.5ks
04} m [s=1ks
m  [=5ks
0.2 m £=10ks
7=25°C

0.0

Universal Relaxation Function r(&) =

Normalized Relaxation Time ¢

—~
2
N—

10? . . . . .
MoS,/SiO, device 7=85°C
< .| =25
£.10" | (baked) 1 -
£ PBT 101
: | | L0 |
0
(&) £.10
S0l ] 10"y ]
a 0...10ks ¢=0..10ks 107
" =0...10ks -10-5 0 5101520
107 . . . . . . Vg VI .
-10 -5 0 5 10 15 20-10 -5 0 5 10 15 20
(a) Gate Voltage [V] Gate Voltage [V]
B v vy v v s e s e e
f$=0.5kS 7=25°C
4} —t=1ks ]
—— £=5ks
3t—— £=10ks symbols: experiment -

$10° 10" 102 10° 10®> 10* 10° 10
Relaxation Time [s]

10™10®10° 10" 10 10° 10® 10* 10° 10%10™™0® 10° 10* 10% 10° 10* 10* 10° 10°

Figure 6. (a) Degradation of the gate transfer characteristics of the MoS,/SiO, FET after subsequent PBTI stresses with V; = 20 V
andincreasing r;at T = 25 °C(leftyand T = 85 °C (right). (b) The resulting A Vi, recovery traces can be fitted using the universal
relaxation model [35]. (c) The normalized recovery traces follow the universal relaxation relation. Similarly to Si technologies, at
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MoS,/hBN devices is stronger than PBTI, which is
similar to MoS,/SiO, FETs.

Figure 8(a) shows that the parameters B and (
which have been used for fitting of the PBTT and NBTI
recovery traces of our MoS, FETSs are very similar to
those previously used for Si technologies and graphene
FETs. This indicates a similarity in the physical pro-
cesses underlying the BTT dynamics. In figure 8(b) we
compare the normalized AVy, measured within this
work with the results from [11, 14]. Clearly, our
MoS,/SiO, FETSs show better stability with respect to
PBTI stress, while the V4, shifts caused by NBTT are
comparable to previous literature reports. The smal-
lest PBTT shifts are likely because of the higher quality

of the MoS,/SiO, interface, which has been achieved
by careful processing and annealing of our devices in
vacuum. At the same time, hBN devices exhibit the
best BTT reliability. This is in agreement with our hys-
teresis results, showing that the amount of accesible
slow traps in MoS,/hBN FETs is considerably smaller
than in SiO,.

Conclusions

In summary, we have performed a comprehensive
study of the hysteresis and the slow drifts due to the
bias-temperature instability in MoS, FETs and found
that both issues are dominated by thermally activated

7
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charging/discharging of oxide traps. Also, if the MoS,
channel is not covered, the trapping sites situated on
top of it can contribute to the hysteresis as well. While
our MoS, FETs with SiO, and hBN exhibit a smaller
hysteresis and better BTT stability than similar devices
reported by other groups, hBN as a gate insulator
reduces the impact of slow traps and improves the BTI
reliability. Furthermore, we found that the main
reliability issue in the most promising MoS,/hBN
FETs is associated with ultra-fast traps, although at
higher T the BTI reliability of hBN is reduced due to
thermally activated charge trapping. Also, we have
demonstrated that the BTI recovery traces measured
for all our MoS, FETs follow the universal relaxation

relation previously developed for Si technologies.
Together with our previous results for graphene FET's
[39], this underlines that the BTI degradation/recov-
ery dynamics in next-generation 2D FETs are similar
to their counterparts in Si technologies.

Methods

Device fabrication

The MoS,/Si0, devices were fabricated on double side
polished and thermally oxidized Si substrates with a
resistivity of 1-5 2 cm and SiO, thickness of 90 nm.
MoS, flakes were mechanically exfoliated from a
natural bulk crystal on top of a SiO, layer using the
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method of [40]. After that, the flakes with the best
quality were selected using an optical microscope and
their final thickness was determined by Raman
spectroscopy to identify single-layer MoS, (i.e. around
6.5 A). Then Ti/Au electrodes were created by elec-
tron beam lithography and metal evaporation techni-
ques (e.g. [7]). In the case of MoS,/hBN devices, a
22 nm thick Ti/Au back gate pad was evaporated on
top of a 90 nm thick SiO, layer. Next, the hBN/MoS,/
hBN stack produced using the stacking method
[41, 42] was placed on top of the Ti/Au pad. The
essential ingredients of this stack are mechanically
exfoliated single-layer MoS, flakes and two 90 nm
thick hBN layers, also obtained from bulk hBN crystals
using mechanical exfoliation. While single-layer MoS,
flakes were identified using Raman spectroscopy, the
thickness and quality of hBN flakes were controlled
using atomic-force microscopy. Also, those hBN flakes
which were used as the uppermost layer were pre-
structured by electron beam lithography and reactive
ion etching in order to create the slots for source and
drain contacts. Finally, our MoS, FETs have been
annealed in vacuum (<5 x 10~ ° Torr, T = 120 °C)
during 12 hr.

Experimental technique

All our measurements have been performed using a
Keithley-2636A in a chamber of a Lakeshore vacuum
probestation (5 x 107°~107> Torr). For a detailed
analysis of the hysteresis behavior, we measured the
transfer characteristics of our MoS,/SiO, FETs in both
sweep directions using the sweep ranges —20 to 20 V
and 0 to 20 V; for the MoS,/SiO,/hBN and MoS,/
hBN devices the sweep ranges —4 to 4V and 0to 4V
have been used. At the same time, the sweep rate
S = Viep/tsep has been varied from 0.04 to
8000 Vs~ by changing the sampling time ., and the
step voltage Vip. For each of the measured 13-V,
characteristics we extracted the hysteresis width A Vi

around the threshold voltage. Next, the dependences
of A Vi on the measurement frequency f= 1/
(N tyep) with the number of voltage step points
N = 2((Vgmax — Vigmin)/ Varep + 1) have been analyzed
at different temperatures.

The BTI degradation/recovery dynamics have
been studied using subsequent stress/recovery rounds
with increasing stress times at T = 25 °C, T = 85 °C
and T = 165 °C (for MoS,/hBN device). The full
I3—Vy characteristics have been measured at each
degradation/recovery stage. This typically introduces
ameasurement delay of about 3 s.
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