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Abstract:  

The surface topography of diamond coatings strongly affects surface properties such as adhesion, 

friction, wear, and biocompatibility. However, the understanding of multi-scale topography, and 

its effect on properties, has been hindered by conventional measurement methods, which capture 

only a single length scale. Here, four different polycrystalline diamond coatings are characterized 

using transmission electron microscopy to assess the roughness down to the sub-nanometer scale. 

Then these measurements are combined, using the power spectral density (PSD), with 

conventional methods (stylus profilometry and atomic force microscopy) to characterize all scales 

of topography. The results demonstrate the critical importance of measuring topography across all 

length scales, especially because their PSDs cross over one another, such that a surface that is 

rougher at a larger scale may be smoother at a smaller scale and vice versa. Furthermore, these 

measurements reveal the connection between multi-scale topography and grain size, with 

characteristic scaling behavior at and slightly below the mean grain size, and self-affine fractal-

like roughness at other length scales. At small (subgrain) scales, unpolished surfaces exhibit a 

common form of residual roughness that is self-affine in nature but difficult to detect with 

conventional methods. This approach of capturing topography from the atomic- to the macro-scale 

is termed comprehensive topography characterization, and all of the topography data from these 

surfaces has been made available for further analysis by experimentalists and theoreticians. 

Scientifically, this investigation has identified four characteristic regions of topography scaling in 

polycrystal diamond materials. 

 

Keywords: Surface topography; Surface roughness; Power spectral density (PSD); Transmission 

electron microscopy (TEM); Diamond coatings.  
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1. Introduction 

 

Surface topography controls surface properties of carbon coatings. For example, prior 

measurements of diamond-like carbon (DLC) coatings show that tribological behavior [1] and 

adhesion [2] are strongly affected by surface texture, all the way down to the nanoscale. The 

surface topography of diamond coatings [3] affects their performance, including their friction [4], 

wear [5], adhesion [6,7], and biocompatibility [8]. Diamond is an important material that is used 

in many industrial applications [9] such as for mechanical seals [10], MEMS devices [11], 

biomedical applications [12], seals and bearings [13], and nuclear fusion [14] because it has low 

friction and wear [15,16], and because it is robust and chemically inert so that it can be operated 

in corrosive environments.  

 

Numerical models have been proposed to describe the effect of surface roughness on contact and 

adhesion [17]. Initially, the classic Greenwood-Williamson [18] and Fuller-Tabor [19] models 

described contact area and adhesion based on the average height of the roughness (Fig. 1a). 

Recently, the multi-scale nature of roughness has been included in the modeling of surface 

properties [20–29]. In particular, it has been shown that a critical quantity controlling contact area, 

adhesion, friction, and wear is the root-mean-square slope of the surface h’rms and that this quantity, 

for a surface with multi-scale roughness, is strongly influenced by small-scale features [22,30]. 

Therefore, understanding and prediction of the topography-dependent surface properties of carbon 

coatings requires multi-scale characterization of roughness, down to the atomic scale.  
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Figure 1: Prior work has been done to study roughness and its effect on contact properties. Fuller and 

Tabor [19] showed that roughness is related to adhesion (a). However, in practice, artifacts from the imaging 

technique can strongly influence the measurement of surface roughness, as demonstrated by the power 

spectral density (see main text) of topography, shown here for an ultrananocrystalline diamond surface (b). 

Small-scale topography can be more accurately captured using cross-section electron microscopy (c), as 

shown here for the same material from panel (b). Panel (a) is reproduced from Ref. [19], copyright 1975, 

Royal Society, with addition of arrow and text “Decreasing modulus”. Panel (b) is reproduced from Ref. 

[31], Copyright 2017, IEEE. 

 

Because conventional methods for topography measurement cannot capture these small scales, 

then researchers must choose either to ignore the small-scale topography, or to extrapolate it from 

the single-scale measurements. Because many real-world surfaces exhibit hierarchical topography 

[32–36], this extrapolation is often done by assuming that the material is self-similar or self-affine. 

Self-similarity implies that the topography is statistically indistinguishable at all magnifications ; 

in other words, if the lateral length scale L is rescaled to L, then the measured height h is rescaled 

to h. Self-affinity is related, but characterized by the Hurst exponent H; where rescaling the length 

to L and the height to Hh yields statistically indistinguishable surfaces. Mathematically, the root-

mean-square slope h’rms of a self-affine, randomly-rough surface depends strongly on the smallest 
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scales at which the roughness exists [22,30]. For real surfaces, it is often assumed that surfaces are 

self-affine down to the atomic scale, but this assumption is largely untested. 

 

Instead of ignoring or extrapolating for small-scale topography, new approaches are required for 

characterizing topography across all length scales. While stylus profilometry and atomic force 

microscopy (AFM) are indispensable tools in characterizing surface topography, these tip-based 

techniques are unable to provide the small-scale topography of rough surfaces because the radius 

of the scanning tip introduces artifacts [37]. This limits the range of reliability of the roughness 

measurements [30] (Fig. 1b). Optical techniques, such as scanning white-light interferometry or 

laser confocal microscopy, suffer from diffraction-limited lateral resolution and optical-transfer-

function artifacts, and are thus similarly incapable of measuring the smallest-scale topography 

[38]. The result of this is that conventional measurements of surface topography are incomplete, 

and computed surface metrics (such as h’rms) are unreliable, depending explicitly on the lateral 

resolution of the measurement. Even very advanced methods of analyzing surface topography, 

such as those in Ref. [39], are limited in their effectiveness by the range of size-scales in the 

underlying topography measurement. Instead, cross-section electron microscopy provides a 

reliable method to characterize surface topography down to the Ångström-scale [40] (Fig. 1c). 

Further, the small-scale topography can be stitched together with the medium- and large-scale 

topography using the power spectral density (PSD), to provide a comprehensive statistical 

description of surface topography at all size scales [32]. The PSD is a mathematical tool which 

separates the contribution to roughness from different length scales 𝜆 , and it is commonly 

represented as a function of wavevector 𝑞 = 2𝜋/𝜆.  
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This method of combining many different measurements, from the atomic to the macroscale, is 

termed comprehensive topography characterization and was applied here to investigate the surface 

roughness of four different varieties of diamond coatings, namely ultrananocrystalline diamond 

(UNCD), polished UNCD (pUNCD), nanocrystalline diamond (NCD), and microcrystalline 

diamond (MCD).  

 

2. Methods 

 

Thin films of the diamond materials were deposited (Advanced Diamond Technologies, 

Romeoville, IL) using a tungsten hot-filament chemical vapor deposition (HF-CVD) system with 

parameters as described in Ref. [41]. All materials were deposited to a thickness of 2 μm on 

polished silicon wafers after the wafers were sonicated with slurries containing suspended 

diamond nanoparticles. The deposition parameters are listed in Table 1. 

 

Table 1: Deposition parameters for various forms of polycrystalline diamond 

Diamond 

type 

CH4/H2 Ratio Pressure 

(Torr) 

Filament 

temperature 

(˚C) 

Filament 

power (KW) 

Polished 

MCD 1.5% 25 2460 15.4 N 

NCD 2.9% 10 2505 15.0 N 

UNCD 4.7% 5 2550 15.1 N 

pUNCD 4.7% 5 2550 15.1 Y 
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The smallest-scale topography measurements were made using transmission electron microscopy, 

following the techniques described in Ref. [40]. For the UNCD, NCD, and MCD, the “wedge 

deposition technique” was used, whereas for pUNCD, the “surface-preserving cross-section 

technique” was used. These techniques are described in detail in Ref. [40]. Briefly, the wedge 

deposition technique involves depositing the diamond film directly onto TEM-ready silicon thin-

wedge substrates. The surface-preserving cross-section technique utilizes conventional methods 

for the preparation of TEM cross-sections (sectioning, grinding, polishing, dimple-grinding, and 

ion etching) with process modifications to ensure that the original surface is preserved. The 

samples were imaged using a TEM (JEOL JEM 2100F, Tokyo, Japan) operated at 200 keV. The 

images were taken using magnification levels from 5000x to 600,000x.  

 

The profiles were extracted from the TEM images by using custom Matlab scripts to trace the 

outermost boundary of the material. Before tracing, the images were rotated such that the boundary 

was approximately horizontal. The vast majority of the measured surfaces were functions, i.e. for 

every point on the x-axis, there was exactly one point on the y-axis; in other words, the measured 

topographies were not reentrant. However, there were some cases where two adjacent points were 

captured with identical or decreasing horizontal position (locally reentrant). For these cases, the 

latter point was removed to restore non-reentrant behavior so that the topography can be described 

by a function as required by the calculation of the PSD. They were only observed in 12 out of 160 

TEM profiles, and even then, only in a small number of points per profile, therefore the process of 

removing such points should not affect the accuracy of the analysis. Further, these locally reentrant 

points are attributed to imperfect rotation of the TEM profiles, rather than to truly reentrant features 

on the surface.  
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The medium-scale topography was measured using an atomic force microscope (Dimension V, 

Bruker, Billerica, MA) in tapping mode with diamond-like carbon-coated probes (Tap DLC300, 

Mikromasch, Watsonville, CA). For all substrates, square measurements were taken with the 

following lateral sizes: 3 scans each at 100 nm, 500 nm, and 5 µm; 1 scan each at 250 nm and 

1 µm. The scanning speed was maintained at 1 μm/s for all scans. Each scan had 512 lines, with 

512 data points per line, corresponding to pixel sizes in the range of 0.2 to 98 nm. The wear of the 

AFM tip was minimized using the best practices described in Ref. [42]. Specifically, the values of 

free-air amplitude and amplitude ratio, which is the ratio of the amplitude of AFM probe tip 

vibration when performing a scan to the amplitude when vibrating in free air, were kept in the 

range of 37 – 49 nm and 0.15 – 0.3, respectively. Though AFM provides a two-dimensional 

description of the surface topography, the data were analyzed as a series of line scans. This practice 

maintained consistency with the other techniques, which yield one-dimensional measurements, 

and also eliminated artifacts due to instrumental drift in slow-scan axis.  

 

The largest scales of topography were measured using a stylus profilometer (Alpha Step IQ, KLA 

Tencor, Milpitas, CA) with a 5-μm diamond tip. Measurements were collected at a scanning speed 

of 10 μm/s, with data points every 100 nm. A total of 8 measurements were taken on each substrate, 

with 2 measurements each at scan sizes of 0.5, 1, 2, 5 mm. All measurements were corrected using 

a parabolic fit to remove the tilt of the sample and the bowing artifact from the tool. For the UNCD 

and pUNCD, the larger scan sizes exhibited consistent non-parabolic trends due to instrument 

artifacts. These artifacts were corrected by taking reference scans on polished silicon wafers and 

subtracting the averaged reference profiles from the measurements.  
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Finally, the PSD was used to combine all measurements from a single surface into one averaged 

curve that describes the topography of that surface. The PSD is the Fourier transform of the 

autocorrelation function of a line scan with height ℎ(𝑥), which is mathematically equivalent to the 

square of the amplitude of ℎ̃(𝑞); i.e., 𝐶(𝑞) = 𝐿−1|ℎ̃(𝑞)|
2
, 𝑞 is the wavevector and 𝐿 is the length 

of the scan. All data were collected and analyzed as 1D line scans, enabling the calculation of the 

one-dimensional PSD, denoted here as C (designated 𝐶1𝐷 in Refs. [30,32]). These calculations 

follow the standards established in Ref. [30] for computing and reporting PSDs.  

 

3. Results  

All topography data collected from this investigation is freely available for download and analysis 

[43–46]. 

3.1 Multi-scale topography measurement 

Representative images of all three techniques are shown for the four materials in Fig. 2. The stylus 

profilometry data are shown with decreasing the scan size in Fig. 2a. It is clear that the roughness 

on the MCD has the largest amplitude (RMS height) while the pUNCD surface shows the smallest. 

Going from larger scans (Fig. 2a1) to smaller scans (Fig. 2a3), the amplitude of measured 

topography decreases for all four diamond species. For example, while a 5-mm scan of MCD spans 

a vertical range of 646 nm, a 0.5-mm scan of the same surface spans just 391 nm. In order to 

interpret the stylus data correctly, an estimate of the tip radius is needed because the tip introduces 

artifacts at and below this size scale. Figure 2a4 shows a scanning electron microscopy (SEM) 

image of the stylus tip. Fitting a circle to the tip yields a radius of R = 5.1 μm. The exact point 

where tip artifacts become dominant [38] will be estimated using the PSD in the following section. 

Page 9 of 38 AUTHOR SUBMITTED MANUSCRIPT - STMP-101081.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

The AFM measurements are shown as topography maps of increasing resolution in Fig. 2b-e. The 

NCD and MCD clearly show grain structure and faceting at scan sizes of 5 m and 1 m (Fig. 2d1-

2 and 2e1-2). The UNCD sample (Fig. 2c1-2) also shows strong texture, but the size indicates that 

these are multi-grain clusters. The pUNCD shows topographic features, but no grain structure. At 

the highest resolution (Fig. 2b3-e3), all features look relatively smooth. The smoothness of the 

features is likely related to tip artifacts (caused by convolution between tip curvature and 

topography). Figures 2b4-e4 show TEM images of the AFM tips after they were used to image the 

surfaces. The tip radii were measured as R = 17 nm for pUNCD, R = 36, 47 and 31 nm for UNCD, 

NCD and MCD respectively using the same procedure used for the stylus tip. As with the stylus 

tip, a circle was fitted to the tip profile for the extraction of the radius (Fig. 2b4, c4, d4, and e4). In 

cases where the tip apex did not appear perfectly circular, a best-fit circle was fitted to the region 

of the tip that makes contact with the substrate.   

 

Finally, the surfaces were analyzed using side-view TEM (Fig. 2f-i). Once again, the pUNCD 

surfaces had the lowest amplitude of topography and the MCD had the highest. The NCD and 

MCD materials showed clear faceting from the individual crystallites. At the scales accessible by 

the TEM, the UNCD surface also shows faceting (see Fig. 2g2, and g3). However, the smooth 

pUNCD surface shows no indication of faceting but rather a smoothly varying surface topography. 

Surprisingly, despite significant differences in topography at larger scales, the smallest-scale 

topography is nearly identical between the microcrystalline diamond, the nanocrystalline diamond, 

and the ultrananocrystalline diamond.  This finding is further discussed in the next paragraph. 
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Figure 2: Comprehensive topography characterization is achieved by performing more than 50 

multi-resolution measurements on each material using stylus profilometry (top section), AFM 
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(middle section) and side-view TEM (bottom section). Representative data from each technique at 

various magnifications are presented for all four materials. For stylus and AFM, the radius of the scanning 

tip shown in panels (a4), (b4), (c4), (d4) and (e4) is measured using electron microscopy.  

To further investigate the similarities in roughness at the smallest scales, representative images of 

the three unpolished surfaces are shown in greater detail in Fig. 3. In all cases, significant 

roughness is visible on the scale of Angstroms to nanometers. This small-scale topography is 

visible even on a single facet of a single grain of the NCD and MCD materials. The atomic lattice 

of the diamond is clearly visible in the TEM whenever a grain is aligned with a zone axis lying 

near to the imaging axis. In these cases, the lattice is observed in many areas to extend to within 1 

nm of the surface. Therefore, it is not simply a rough and potentially amorphous surface layer that 

is sitting on a flat diamond facet, rather the diamond crystal itself exhibits significant roughness at 

the small scale.  

 

 

Figure 3: Significant small-scale roughness is observed on all of the as-deposited diamond materials. 

The unpolished UNCD (left), NCD (middle), and MCD (right) demonstrate similar roughness at the 

Angstrom-to-single-digit-nanometer scale, which is superimposed on larger-scale topography that varies 

significantly between materials (insets). This small-scale topography is not detectable with conventional 

topography measurements.  
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3.2 Computing topography metrics, in real-space and in frequency-space 

Now, a more quantitative analysis of the topography data is presented, and scalar roughness 

parameters are computed for the various surfaces. First, the  root-mean-square (RMS) height ℎ𝑟𝑚𝑠, 

RMS slope ℎ𝑟𝑚𝑠
′ , and RMS curvature ℎ𝑟𝑚𝑠

′′  are computed in real-space from each line scan by 

numerically integrating the squared height data (or its derivatives) over the scan length 𝐿 [32]: 

 

ℎ𝑟𝑚𝑠
2 =

1

𝐿
∫ ℎ2(𝑥)
𝐿

0
 𝑑𝑥,       ℎ𝑟𝑚𝑠

′2 =
1

𝐿
∫ (

𝑑ℎ

𝑑𝑥
)
2𝐿

0
𝑑𝑥,       ℎ𝑟𝑚𝑠

′′2 =
1

𝐿
∫ (

𝑑2ℎ

𝑑𝑥2
)
2𝐿

0
𝑑𝑥      (1)  

 

using the trapezoidal rule (Eq. 4 of Ref. [32]). Figure 4 shows the computed roughness parameters 

as a function of scan size 𝐿 (for RMS height, which depends on the larger-scale features) and 

measurement resolution 𝑙 (for RMS slope and curvature, which depend on smaller-scale features). 

Note that for TEM data, the “measurement resolution” is different from the size of a pixel in the 

camera (“pixel size”) (which can be sub-atomic at the highest magnifications). Measurement 

resolution 𝑙 is determined from the point spacing of the extracted profiles, as shown in Fig. 2. 

Computing RMS height as a function of size is equivalent to an analysis of the surfaces’ self-affine 

properties using a variable bandwidth method [47]. 
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Figure 4: Scalar roughness parameters show systematic variation with length scale. The RMS height 

(a) is presented as a function of scan size 𝐿; while the RMS slope (b) and RMS curvature (c) are shown as 

a function of resolution 𝑙 (see main text). The solid lines in (a) show the best-fit power-law exponent H to 

the data at small scan sizes. This yields a measurement of the Hurst exponent from the variable-bandwidth 

model [47], corresponding to 𝐻VBM = 0.73 and 0.74 for pUNCD and UNCD, respectively and 𝐻VBM 

=0.93 and 1.02 for NCD and MCD, respectively. The dashed lines in (b) and (c) show the power-law 

dependency expected from the fits of panel (a), 𝐻 − 1, and 𝐻 − 2, respectively (see main text). 

 

Figure 4a shows that ℎ𝑟𝑚𝑠 increases with 𝐿 for all the surfaces studied here at small 𝐿, i.e. less 

than 1 m. There is a crossover to constant (independent of 𝐿) ℎ𝑟𝑚𝑠 at a scan size of 1-10 m. All 

of the surfaces studied here show this transition, which corresponds to the thickness of these 

coatings (2 m). The amplitude of the pUNCD surface is much smaller than the other three 

surfaces. NCD and MCD roll off to the same constant value. The values in Fig. 4a at large 𝐿 

correspond to the observation of the amplitude in stylus profilometry shown in Fig. 2, with pUNCD 

being the “smoothest” and MCD being the “roughest” surface at large scales. 

 

From the analysis of ideal self-affine surfaces [22,30,32], it can be shown that ℎrms ∝ 𝐿
𝐻 while 

ℎrms
′ ∝ 𝑙𝐻−1  and ℎrms

′′ ∝ 𝑙𝐻−2 . Therefore, in Fig. 4a, the small-scale data has been fit with a 

power-law function (solid lines), and the extracted values are used to determine the expected trends 

in Fig. 4b, 4c (dashed lines). As argued above and first described in Ref. [36,48], it is apparent 

from Fig. 4 that no single value of RMS height, RMS slope, and RMS curvature can be defined, 

because these parameters depend on 𝐿 or 𝑙. This demonstrates a key difficulty that impedes efforts 

to link surface function to a single scalar roughness parameter; these common roughness 
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parameters (including RMS roughness) are scanning-length dependent and do not describe an 

intrinsic property of the material. 

 

An alternative to analyzing the real-space measurements individually (as done in Fig. 4), these 

many measurements can all be combined in frequency space to create a single PSD, denoted 𝐶(𝑞), 

that yields a complete statistical description of topography for each surface, as shown in Fig. 5. 

This analysis was carried as follows: first, the PSD of each measurement was computed, following 

the procedures laid out in Refs. [30,32]. Second, a reliability cutoff [30,32] due to tip artifacts was 

calculated for each PSD based on the measured tip radius (Fig. 2), and all data below this size scale 

was deemed unreliable and removed [32]. Third, all of the reliable portions of the many individual 

PSDs were combined by computing the arithmetic average of all measurements in logarithmically-

spaced bins. The result is a single whole-surface PSD that describes the material across all length 

scales. There are no fitting parameters in this analysis; rather the PSD serves to separate the 

different size scales of topography, and the various techniques agree within experimental 

uncertainty. The only exception is for pUNCD, where the small-size stylus data lies below the 

AFM and TEM data, causing a dip around q=107 m-1. This is believed to be an instrumental artifact, 

rather than resulting from the real topography. Overall, the value of these comprehensive PSDs is 

that they can be used in analytical and numerical models (such as Refs. [22,25–27,49–52]) to 

understand and predict surface properties (e.g. Ref. [17]). 
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Figure 5: Topography measurements across eight orders of magnitude in length scale are combined 

into a single description of each surface. Averaged power spectral densities (a) are shown for the four 

surfaces, each with more than 50 multi-resolution topography measurements, with blue for polished UNCD, 
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red for UNCD, black for NCD, and green for MCD. Raw data (b-e) comprises the individual PSDs that are 

calculated from each topography measurement; their computed average is shown with a black line. In panels 

b-e, a different color scheme is used – with black representing stylus profilometry data, blue for AFM, and 

red for TEM. Red dashed lines are fit to the “roll-off” region and blue dashed lines are fit to “self-affine” 

region (see main text). In panels d and e, 𝑞−4  scaling is shown in the range of 𝑞 = 2.8 × 107  m-1 to 

1.7 × 108 m-1. In panels c, d, and e the vertical dashed black lines represent the mean spacing of kinks (i.e., 

edges between facets, see Sect. 4.2). 

 

To compute scale-invariant scalar roughness parameters, the full stitched-together PSD was used 

to compute RMS height, RMS slope, and RMS curvature as: 

(ℎrms)
2 =

1

𝜋
∫ 𝐶(𝑞)𝑑𝑞
∞

0
,  (ℎrms

′ )2 =
1

𝜋
∫ 𝑞2
∞

0
𝐶(𝑞)𝑑𝑞,  (ℎrms

′′ )2 =
1

𝜋
∫ 𝑞4
∞

0
𝐶(𝑞)𝑑𝑞    (2)  

 

Table 2 shows the computed parameters. While MCD is the roughest in terms of RMS height, the 

unpolished UNCD is the steepest in terms of RMS slope. However, while Table 2 shows the 

mathematically correct or “true” values of RMS parameters for a surface, any individual 

application or surface property may depend only on a certain range of length-scales. In that case, 

scale-dependent parameters would be recomputed by integrating only across the relevant size 

scales.  
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Table 2: One-dimensional RMS parameters for nanodiamond substrates computed from the 

averaged PSD for the surface 

 Polished UNCD UNCD NCD MCD 

RMS height 4.2 ± 0.8 nm 17.4 ± 1.3 nm 97.2 ± 11.7 nm 101.2 ± 8.0 nm 

RMS slope 0.31 ± 0.03 1.17 ± 0.28 0.92 ± 0.10 0.85 ± 0.10 

RMS curvature 1.99 ± 0.35 nm -1 6.32 ± 1.20 nm-1 5.91 ± 1.83 nm-1 5.04 ± 1.45 nm-1 

 

4. Discussion   

 

4.1 Evaluating the fractal nature of diamond coatings, and the meaning of Hurst 

exponents 

As discussed, it is commonly assumed that materials can be described in the context of self-affine 

fractals, which will manifest as power-law scaling and hence a straight line on the PSD shown on 

a double logarithmic plot. The present analysis allows us to evaluate the accuracy of common 

approaches to compute the Hurst exponents for these materials.  

 

The Hurst exponent (which can be related to the fractal dimension, as described in Ref. [53]), can 

be calculated from the PSD, which is commonly separated (somewhat arbitrarily) into the “self-

affine” region, where the topography appears to be described by a power law relationship of 𝐶 ∝

𝑞𝛽  where 𝛽 is the power-law exponent, and the “roll-off” region, where the PSD appears to be 

flatter. The Hurst exponent 𝐻 is typically extracted from the self-affine region as 𝐻 = (𝛽 − 1)/2 

[53,54]. Using this procedure, and the region of the curves between 𝑞 = 6.3 × 106  m-1 and 
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1.8 × 1010  m-1, the resulting value was 𝐻 = 0.62 ± 0.09  and 0.77 ± 0.06  for pUNCD and 

UNCD respectively; and 𝐻 = 0.89 ± 0.04 and 0.87 ± 0.03 for NCD and MCD respectively. 

 

There are two alternative methods of extracting the Hurst exponent: from the real-space data using 

the variable bandwidth  method (VBM) [55]; and from the roll-off region by assuming that the full 

PSD is described by Fractional Gaussian Noise (FGN) [53], a hypothesis put forth by some of us 

in Ref. [30]. The VBM is nothing more than an analysis of the functional dependence of RMS 

height ℎrms as a function of scan size 𝐿 (that scales as ℎrms(𝐿) ∝ 𝐿
𝐻 for self-affine surfaces), as 

shown in Fig. 4a. Note that even for an individual scan, the RMS height could be computed over 

a subsection of that scan (yielding an estimate of the Hurst exponent for a single realization of the 

topography [33,47,55]) but here full-size scans were used for calculation. As shown in Fig. 4a, 

RMS height ℎrms(𝐿) can be accurately fit with a power-law form over the range from the largest 

size (𝐿 = 5 mm) down to approximately 𝐿 = 1-10 μm, which corresponds approximately to the 

thickness of the coating (2 μm). Over this region, the Hurst exponent was 𝐻VBM = 0.73 ± 0.18 for 

pUNCD; 𝐻VBM = 0.74 ± 0.05 for UNCD; 𝐻VBM =0.93 ± 0.09 for NCD and 𝐻VBM = 1.02 ± 0.10 

for MCD at small 𝐿. The Hurst exponents from this method (𝐻VBM) yield similar results to the 

above Hurst exponents (𝐻) that are extracted from the more common method of fitting the “self-

affine” region of the PSD. The VBM is a useful technique because it is simpler to perform—

requiring only a straightforward calculation of the root-mean-square height, calculated in real-

space, from a series of multi-resolution measurements. Additionally, it can be readily performed 

on reentrant surfaces, while the calculation of the PSD requires surfaces to be functions (one height 

value for each lateral position).  
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The second alternative method for computing the Hurst exponent uses the “roll-off” region and 

the fractional Gaussian noise (FGN) approach. Here, the Hurst exponent is given by 𝐻FGN =

(𝛼 + 1)/2 [32,53], where 𝛼 is the scaling exponent 𝐶(𝑞) ∝ 𝑞𝛼 at low 𝑞. This results in 𝐻FGN =

1.10 ± 0.04 for pUNCD; 𝐻FGN = 0.82 ± 0.04 for UNCD; and 𝐻FG𝑁 = 0.62 ± 0.04 and 0.70 ± 

0.05 for NCD and MCD, respectively. A prior paper by the present authors (Ref. [32]) speculated 

that there may be a connection between 𝐻FGN and 𝐻 (from the self-affine region). This observation 

would be extremely useful as it suggests that the small-scale behavior could be predicted from 

large-scale measurements. Unfortunately, when these four different surfaces are compared, there 

is no clear relationship that emerges.  

 

Even in the traditional “self-affine” portion of the PSD, a range of values can be extracted for 

Hurst exponent for a single surface depending on the window used for fitting 𝐻. This is particularly 

true for MCD and NCD where Hurst exponents can be calculated by dividing the “self-affine” 

region into two parts. For 𝑞 in the range of 2.8 × 107 to 1.7 × 108 m-1, the extracted values are 

𝐻𝑙𝑎𝑟𝑔𝑒𝑟𝜆  = 1.27 ± 0.27 and 1.32 ± 0.09 for NCD and MCD, respectively; for q in the range of 

1.7 × 108 to 1.8 × 1010 m-1, the extracted Hurst exponents are 𝐻𝑠𝑚𝑎𝑙𝑙𝑒𝑟𝜆 = 0.75 ± 0.04 and 0.78 

± 0.05 for NCD and MCD, respectively. Indeed, the roughness in these two portions of the curve 

seems to be qualitatively different, with the upper portion having a scaling behavior near 𝐶 ∝ 𝑞−4, 

corresponding to 𝐻 = 1.5. The origin of these differences in scaling behavior between different 

length scales is discussed in detail in the next section.  

 

Because there can be so much variability in the measurement of a single surface, the whole practice 

of assuming self-affinity and assigning a single Hurst exponent to describe a surface must be done 
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with caution. It is mathematically convenient to assume self-affinity as this simplifies numerical 

and analytical models, and it is common practice in experiments to use assumptions of self-affinity 

to extrapolate to small scales where the topography is not easily measured. However, at least for 

the diamond materials investigated here, the best-fit value for H depends on the region over which 

it is measured, and it is strongly influenced by other factors such as grain size (see next section). 

Instead, where possible, it is preferable to measure surface topography across all size scales and to 

use the whole-surface PSD as the primary descriptor for the surface, rather than any scalar 

parameter.  

 

4.2 The effect of grain size on topography 

As discussed in the previous section, the larger-grain-size materials (NCD and MCD) demonstrate 

a region where the PSD scaling is similar to 𝑞−4 in the larger-wavelength portion of the “self-

affine” region (see solid black lines in Fig. 5d and e). This scaling is characteristic of “kinks” in 

the real-space line scan, such as sharp peaks or valleys. Note that such kinks can arise in 

topography as an artifact of the nonvanishing tip radius [30,37], so one must first rule out this as 

the cause. However, in the present work, this 𝑞−4 scaling is clearly observed both in the reliable 

portion of the AFM measurement and in the TEM measurement, both of which are free from tip-

based artifacts. Therefore, this 𝑞−4 scaling in the PSDs of the MCD and NCD is a feature of the 

measured topography, rather than emerging from an artifact. This behavior of the PSD corresponds 

to kinks in the surface topography that are directly observable in the TEM imaging, as shown in 

Fig. 2 and Fig. 3.  
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Our hypothesis to describe this local 𝑞−4 scaling is that it is characteristic of topography at, and 

slightly below, the grain size of the material (i.e., for 𝑞 ≳ 2𝜋/𝑙𝑔, where 𝑙𝑔 is the mean grain size). 

At these scales, features are dominated by the crystal facets and kinks between them: adjacent 

grains with different orientations will create concave kinks where the grains meet, while edges 

between crystal facets will create convex kinks. It is therefore assumed that typical topography 

line scans will pass through approximately two kinks (one concave and one convex) per grain.  At 

sizes much below the grain size, the topography of MCD and NCD reverts to random, self-affine 

behavior, showing roughness very similar to UNCD (see Fig. 3), where the PSD scales as 𝑞−1−2𝐻 

(see blue dashed lines in Fig. 5 b-e). This finding agrees with prior work [56] on fracture surfaces 

in sandstone. In that work, stylus profilometry measurements showed a transition around the grain 

size; however sub-grain features were mostly inaccessible there due to the aforementioned tip 

artifacts. Computer-generated profiles were used to verify that facets can cause 𝑞−4-scaling at a 

wavevector related to the kink spacing. The mathematical basis for this hypothesis linking kink 

spacing to 𝑞−4 scaling in the PSD is given in Appendix A. 

 

In order to demonstrate how the PSD is affected by the superposition of facets from a characteristic 

grain size and random roughness below that size, artificial one-dimensional surfaces were created 

that were composed of: a superposition of triangular peaks (Fig. 6a1); self-affine random roughness 

(Fig. 6a2); and the summation of those two into a single surface (Fig. 6a3). The piecewise linear 

surface (Fig. 6a1) has kinks with uncorrelated heights drawn from a Gaussian distribution and 

lateral distances between kinks drawn from a Rayleigh distribution. The surface is scaled in order 

to have an RMS slope of 1 and an average kink spacing 𝑙𝑘. The small-scale self-affine random 
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roughness (Fig. 6a2) is generated using a Fourier-filtering algorithm [30,57] with a Hurst exponent 

𝐻 = 0.8 and RMS-slope of 1.2.  

 

 

Figure 6: Computer-generated profiles support the experimental finding of characteristic regions of 

topography scaling for polycrystalline surfaces. Panel (a) shows a representative section of the three 

types of computer-generated profiles investigated: a faceted profile with random, uncorrelated kink heights 

and spaces (a1), a self-affine random roughness (a2); and the sum of these profiles (a3). Their PSDs, averaged 

over logarithmically-spaced bins, are shown in (b). Three characteristic scaling regions (see main text) of 

the PSD for the summed surface are indicated by background color and labels above the graph. Panel (c) 

shows a surface created by summing a faceted profile with correlated heights and the small scale self-affine 
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random roughness (same as a2). The resulting PSD (d) shows four characteristic scaling regions. The RMS 

slope of the faceted profiles ℎ𝑟𝑚𝑠
′  has been used to normalize all PSDs and profiles.  

 

When the PSDs (Fig. 6b) are computed from these surfaces, the kinked-surface PSD is flat below 

𝑞𝑘 =
𝜋

2𝑙𝑘
 and scales as 𝑞−4 above 𝑞𝑘, while the random-surface PSD shows self-affine scaling, in 

this case corresponding to a Hurst exponent 𝐻 of 0.8. (The choice of the particular value 𝑞𝑘 =
𝜋

2𝑙𝑘
 

is motivated from the mathematical consideration in Appendix A). Importantly, the summed-

surface PSD follows the kinked-surface PSD and displays 𝑞−4 scaling at larger scales, and then 

transitions to self-affine scaling of 𝐻 = 0.8 at smaller scales. To ensure that these results were not 

unique to the particular way that the kinked surface was generated, this analysis was repeated using 

kinked surfaces with uniform and exponential distributions of kink spacings, as well as a surface 

with slopes alternating between −1 and 1. These analyses are shown in the Supplemental Section 

1, but the results are similar, differing only in the sharpness of transitions. The key finding from 

this analysis is that the kink spacing, which corresponds approximately to the grain size, introduces 

a signature in the scaling of the topography that causes deviations from the commonly assumed 

fractal-like self-affine scaling.  

 

The PSD of the summed surface (Fig. 6b) reproduces the three regions that are visible in the PSDs 

of MCD and NCD: flat behavior at small 𝑞 (large sizes); scaling like 𝑞−4 at intermediate values; 

and self-affine scaling (𝐻~0.8) at large 𝑞 (small sizes). However, this does not yet explain the 

self-affine scaling behavior that is observed above the grain size in polished and unpolished 

UNCD. To account for this, another synthetic surface was created that is similar to the first, but 

this time with spatially correlated kink heights (Fig. 6c). The spatial correlation of the kink heights 
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is enforced using the method of Ref. [56] as follows: a self-affine random surface was generated 

using the Fourier-filtering algorithm; then facets were computed by interpolating linearly between 

random points (the kinks); finally this faceted surface was summed with the same self-affine 

random roughness as before (Fig. 6a2). While this does not substantially alter the behavior at small 

wavelengths, this adds in an additional self-affine region above the grain size (Fig. 6d).  

 

To verify this proposed link between q-4 scaling of the PSD and the kink spacing of the material, 

an analysis of kink spacing and grain size was performed on the real materials using the AFM and 

TEM measurements. For the MCD and NCD, concave kinks between grains were readily visible, 

and therefore were quantified using feature sampling, as is used in metallographic analysis [58] 

(Supplemental Section 2.1). The mean lineal intercept between concave kinks, which is of the 

same order as the grain diameter [58], was measured as 839 ± 68 nm for MCD and 647 ± 42 nm 

for NCD. Because the mean kink spacing used in the mathematical analysis involves both convex 

and concave kinks, it was computed as half of this value, i.e. 419 ± 34 nm for MCD and 323 ± 21 

nm for NCD. These values can be converted to frequency-space using 𝑞𝑘 =
𝜋

2𝑙𝑘
, as discussed 

above, and the values calculated are 𝑞𝑘 = 3.7 × 10
6 m-1 for MCD and 𝑞𝑘 = 4.9 × 10

6 m-1 for 

NCD. The same approach could not be applied to UNCD where the kink spacing was at or below 

the reliability cut-off due to tip artifacts. Therefore, the mean kink spacing for UNCD was 

estimated as half of the grain size, which was computed by averaging a sample of 20 different 

grains observed in the TEM (see Supplemental Section 2.2). The mean grain size of the UNCD 

was determined to be 14 ± 3 nm, which corresponds to a kink spacing for UNCD of 7 ± 2 nm and 

𝑞𝑘 =  2.2 × 10
8 m-1. The mean kink spacing of these three materials is indicated as vertical bars 

in Fig. 5c-e. Indeed, the MCD and NCD demonstrate that the scaling transitions to 𝐶~𝑞−4 right 
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around the mean kink spacing. For UNCD, the mean kink spacing is too small to observe a clear 

𝑞−4 scaling regime; however, the self-affine scaling behavior is confirmed for sizes much larger 

than the characteristic grain size. The remainder of the paper will frame results in terms of grain 

size (again, approximately twice the value of kink spacing), since grain size is more widely 

measured and reported for polycrystalline materials.  

 

In summary, based on the experimental measurements of these four polycrystal diamond surfaces, 

and based on the computed PSDs of artificially generated surfaces, four characteristic regimes of 

topography scaling have been identified. (1) At the smallest size scales (if significantly smaller 

than the grain size) power-law scaling may be observed that is characteristic of self-affine random 

roughness, e.g., 𝐶~𝑞−1−2𝐻, corresponding to H in the range of 0.6 − 0.9. (2) At size scales similar 

to and slightly smaller than the average grain size, the PSD displays characteristic scaling of 

𝐶~𝑞−4 due to grain facets and kinks. (3) At sizes larger than the grain size, but smaller than the 

film thickness, there is another region of power-law scaling corresponding to random roughness 

(𝐶~𝑞−1−2𝐻). (4) Finally, at sizes larger than the film thickness, the PSD flattens out, with scaling 

in the range of 𝑞0  to 𝑞−1 . These four regions of topography scaling accurately describe the 

polycrystal diamond surfaces and computer-generated surfaces investigated here. These four 

regions and their boundaries may be broadly generalizable to other materials, but further 

investigation is required. For instance, the boundary between regions (3) and (4) corresponded to 

the thickness of the diamond coatings in these measurements, but this thickness was not varied to 

explicitly investigate this connection. The future application of comprehensive topography 

characterization on other materials will elucidate the applicability of these four regions to other 

polycrystalline materials.  
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5. Conclusions 

 

First, these results further establish a multi-resolution approach that is designated “comprehensive 

topography characterization,” which combines multiple different techniques at multiple 

magnifications for the same surface. Then the power spectral density can be used to combine all 

measurements into one statistical description of the surface. Because typical roughness metrics are 

inherently scale-dependent and incomplete, this paper provides a method to understand roughness 

at all scales, including the specific scale over which it may be relevant in a given device. 

Particularly the measurement of small-scale roughness may be extremely important to predict and 

tailor surface properties such as adhesion, friction and wear. Furthermore, all topography 

measurements from this publication have been made publically available, [43–46] so that other 

experimentalists may compare results and so that computational modelers may use it in models to 

predict properties of diamond materials. The purpose of this data and the underlying approach is 

to advance the field towards the goal of fundamental, predictive understanding of the performance 

of rough surfaces. 

 

Second, these results show that the surface roughness of polycrystalline diamond materials varies 

significantly with scale, with surfaces that are smoother when measured at the large-scale showing 

roughness that is identical or even higher when measured at the smaller scales. Furthermore, while 

self-affine scaling (𝐻~0.6 − 0.9) is observed over some length-scales, the grain size introduces a 

signature into the power spectral density, showing 𝑞−4 scaling behavior at and slightly below the 

grain size. All unpolished surfaces show identical self-affine scaling at the smallest scale. This is 
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a signature of small-scale roughness that is superimposed on the crystalline facets and is not 

observable with conventional (AFM, stylus) analysis techniques. Altogether, four characteristic 

regions of topography scaling were observed, and are expected to be applicable to all unpolished 

polycrystalline diamond materials.  
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Appendix: A mathematical basis for the q-4 scaling of the PSD slightly below 

the grain size 

 

The analysis begins with a triangular peak 𝑦𝑝(𝑥):  

 

𝑦𝑝(𝑥) =

{
 

 
ℎ 

𝑥−𝑥𝑙

𝑥𝑐− 𝑥𝑙
 , 𝑥𝑙 ≤  𝑥 < 𝑥𝑐

ℎ (1 −
𝑥−𝑥𝑐

𝑥𝑟− 𝑥𝑐
),   𝑥𝑐 ≤  𝑥 ≤ 𝑥𝑟

0,     𝑒𝑙𝑠𝑒

                                                                                  (A1) 

 

The Fourier transformation of the peak profile 𝑦𝑝(𝑥) is:  

 

�̃�𝑝(q) =  
ℎ

𝑞2
 𝑒−𝑖𝑞𝑥𝑐 (

1−e−𝑖𝑞(𝑥𝑟− 𝑥𝑐 ) 

𝑥𝑟−𝑥𝑐
+

1−e𝑖𝑞(𝑥𝑐− 𝑥𝑙 ) 

𝑥𝑐−𝑥𝑙
)                                                                     (A2) 

 

For large 𝑞, the PSD of the peak 𝐶(𝑞) ∝ |�̃�(𝑞)|2 oscillates with an amplitude decaying as 𝑞−4. 

For 𝑞 ≪ min(
𝜋

2(𝑥𝑟−𝑥𝑐)
 ,

𝜋

2(𝑥𝑐−𝑥𝑙)
 ), �̃�𝑝(𝑞) ≃

ℎ

2
(𝑥𝑟 − 𝑥𝑙) 𝑒

−𝑖𝑞𝑥𝑐 , so the PSD is flat. 

 

A piecewise linear function 𝑦(𝑥) with kinks at (𝑥𝑘, ℎ𝑘) can be written as a superposition of these 

peaks. Its Fourier transform is: 

 

�̃�(𝑞) =  ∑
ℎ𝑘

𝑞2
 𝑒−𝑖𝑞𝑥𝑘 (

1−e−𝑖𝑞(𝑥𝑘+1− 𝑥𝑘 )

𝑥𝑘+1 −𝑥𝑘
+
1−e𝑖𝑞(𝑥𝑘− 𝑥𝑘−1 ) 

𝑥𝑘−𝑥𝑘−1
)𝑛−1 

𝑘=0                                                      (A3) 

 

ℎ𝑛 = ℎ0 ensures continuity at the periodic boundary.  
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The PSD of the piecewise linear function has the same features as the PSD of the triangular peak: 

for large enough values of 𝑞,  𝐶(𝑞) ∝ 𝑞−4 ; for 𝑞 ≪ min
𝑘

𝜋

2 (𝑥𝑘+1−𝑥𝑘)
 , �̃�(𝑞) ≃

∑
ℎ𝑘(𝑥𝑘+1 − 𝑥𝑘)

2
 𝑒−𝑖𝑞𝑥𝑘𝑛−1 

𝑘=0  and the PSD is flat. Fig 6b shows that for the profiles considered, the 

PSD changes between flat and ∝ 𝑞−4 around 𝑞𝑘 =
𝜋

2𝑙𝑘
, with 𝑙𝑘  the mean kink spacing, rather than 

the maximum kink spacing. Similarly, the PSD in Fig. 6d changes between the super-grain self-

affine scaling and ∝ 𝑞−4 around the same wavevector 𝑞𝑘 =
𝜋

2𝑙𝑘
. This is close to the value 𝑞𝑘 ≃

𝜋

3𝑙𝑘
 determined in [56] for the same Hurst exponent of the super-grain self-affine regime, 𝐻 = 0.8.  

 

The different exponents of the PSD of faceted versus self-affine surfaces correspond to different 

behaviors of the scale-dependent RMS slope with increasing resolution. The scale-dependent RMS 

slope can be computed from the PSD 𝐶(𝑞) = 𝑞𝛼  using equation (2): ℎ𝑟𝑚𝑠
′ (𝑞𝑚𝑎𝑥) =

(∫ 𝑑𝑞𝑞2𝑞𝛼  
𝑞𝑚𝑎𝑥
𝑞𝑚𝑖𝑛

)

1

2
. As 𝑞𝑚𝑎𝑥 → ∞ ,  ℎ𝑟𝑚𝑠

′ (𝑞𝑚𝑎𝑥)  converges to a finite value for 𝛼 < −3 , but 

diverges for 𝛼 ≥ −3, the former case corresponding to a faceted surface and the latter to a self-

affine random surface with 𝐻 ≤ 1. Since the slope between two kinks is constant by definition, 

the RMS slope of a faceted profile is finite and reaches its limit value once the smallest resolved 

length is below the kink spacing. In contrast to that, the RMS slope of an ideal self-affine random 

surface with 𝐻 ≤ 1 increases indefinitely with resolution, as smaller-scale features with increasing 

slope are resolved. 
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