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ABSTRACT

Recently there have been claims of model-independent evidence of dynamical dark energy. Herein we consider a
fairly general class of cosmological models with a time-evolving cosmological term of the form
L = + +H C C H C H ,H H0

2( ) ˙˙ where H is the Hubble rate. These models are well motivated from the
theoretical point of view since they can be related to the general form of the effective action of quantum field
theory in curved spacetime. Consistency with matter conservation can be achieved by letting the Newtonian
coupling G change very slowly with the expansion. We solve these dynamical vacuum models and fit them to the
wealth of expansion history and linear structure formation data. The results of our analysis indicate a significantly
better agreement as compared to the concordance ΛCDM model, thus supporting the possibility of a dynamical
cosmic vacuum.

Key words: cosmology: observations – dark energy – large-scale structure of universe – methods: numerical –
methods: statistical

1. INTRODUCTION

The positive evidence that our universe is speeding up owing
to some form of dark energy (DE) pervading all corners of
interstellar space seems to be, nowadays, beyond doubt after
the first measurements of distant supernovae (Riess et al. 1998;
Perlmutter et al. 1999) and the most recent analysis of the
precision cosmological data by the Planck Collaboration (Ade
et al. 2015). The ultimate origin of such a positive acceleration
is unknown, but the simplest possibility would be the presence
of a tiny and positive cosmological constant (CC) in Einstein’s
field equations, L > 0. This framework, the so-called con-
cordance or ΛCDM model, seems to describe quite well the
observations (Ade et al. 2015) but, unfortunately, there is little
theoretical motivation for it. The CC is usually associated with
the energy density carried by the vacuum through the parameter
r p= LL G8( ) (in which G is the Newtonian coupling),
although it is difficult to reconcile its measured value
(r ~L

-10 47 GeV4) with typical expectations in quantum field
theory (QFT) and string theory, which are many orders of
magnitude bigger. Such a situation has been triggered in the
past—only to find it reinforced at present—the old CC problem
and the cosmic coincidence problem (Weinberg 1989; Sahni &
Starobinsky 2000; Padmanabhan 2003; Peebles & Ratra 2003),
both of which lie at the forefront of fundamental physics.

Different theoretical scenarios have been proposed for quite
some time. In this Letter we take seriously the recent
observational hint that the DE could be dynamical as a means
to alleviate some tensions recently observed with the ΛCDM
(Sahni et al. 2014). Specifically, we focus on the dynamical
vacuum models of the form L = + +H C C H C H ,H H0

2( ) ˙˙ in
which =H a a˙ and =H dH dt˙ are the Hubble rate and its
cosmic time derivative, with ¹C 00 a constant. We assume
that at least one of the coefficients CH and CḢ is nonvanishing.
Such models possess a well-defined ΛCDM limit
( C C, 0H Ḣ ) and involve two time derivatives of the scale
factor, and therefore can be consistent with the general
covariance of the effective action of QFT in curved spacetime.
While the general structure of L H( ) can be conceived as an

educated phenomenological ansatz, it can actually be related to
the quantum effects on the effective vacuum action due to the
expanding background, in which the leading effects may
generically be captured from a renormalization group equation
(Solà 2008, 2013, 2015; Shapiro & Solà 2009; Solà & Gómez-
Valent 2015). The dimensionless coefficients CH and CḢ are
actually related to the β-function of the running and are
therefore naturally small. In the presence of matter conserva-
tion, this is possible by letting =G G H( ) be dynamical as well
(Solà 2008, 2013). A generalization of rL H( ) with higher
powers of the Hubble rate, i.e., >H n 2 ,n ( ) has been recently
used to describe inflation (see, e.g., Lima et al. 2013;
Solà 2015).
In the following we solve these dynamical vacuum models

L H( ) and test them in light of recent observational data, and
compare their performance with the concordance ΛCDM
model.

2. BACKGROUND COSMOLOGICAL SOLUTIONS

The field equations for the dynamical vacuum energy density
in the Friedmann–Lemaître–Robertson–Walker (FLRW) metric
in flat space are derived in the standard way and are formally
similar to the ones with strictly constant G and L terms:

p r r r= + + LH G H H3 8 1m r
2 ( )( ) ( ) ( )

p+ = - +LH H G H p H p3 2 8 , 2r
2 ( )˙ ( ) ( ) ( )

where r p= LL H H G H8( ) ( ) ( ( )) is the dynamical vacuum
energy density, r= -L Lp H H ,( ) ( ) and G(H) is the dynamical
gravitational coupling. It is convenient to take into account the
effect of relativistic matter, i.e., r=p 1 3 ,r r( ) together with
dust (pm = 0) from the beginning. We consider the following
two realizations of the dynamical vacuum model:

nL = +G H c H1: 3 30
2( )( ) ( )

n aL = + +⎜ ⎟⎛
⎝

⎞
⎠G H H c H H2: , 3

2

3
, 40

2( )˙ ˙ ( )
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where we have redefined =C c3 ,0 0 n=C 3H , and a=C 2Ḣ for
convenience. Model G1 is, of course, a particular case of
Model G2, but it will be useful to distinguish between them.
We can combine (1) and (2) to obtain the equation of local
covariant conservation of the energy, i.e.  =m

mGT 0.0( )
Explicitly, since we assume matter conservation (meaning
r r+ =H3 0m m˙ and r r+ =H4 0r r˙ ), it leads to a dynamical
interplay between the vacuum and the Newtonian coupling:

r r r r+ + + =L LG G 0. 5m r
˙ ( ) ˙ ( )

Trading the cosmic time for the scale factor a, the previous
equations amount to determine G as a function of a. Using the
matter conservation equations, we arrive at

= -
¢

W + W- -

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥G a G

a E a

a a3 4
, 6

m r
0

2

3 4

( )
( )

( )
( )

where º =G G a 10 ( ) is the present value of G, and
=E a H a H0( ) ( ) is the normalized Hubble rate to its present

value. The prime stands for d da, and r rW =i i c0 0 (with
r p= H G3 8c0 0

2
0) is the currently normalized energy density

with respect to the critical density. Inserting (4) and the above
result for G(a) in Equation (1) and integrating, we obtain:

x
x
x

= +
W

- + +
W
¢W

x- ¢

x
a
¢

-
⎡

⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤

⎦
⎥⎥E a a a1 1 , 7m r

m

2 4
1

( ) ( )

where have introduced

x
n
a

n x
n

a
n=

-
-

º - ¢ =
-

-
º - ¢1

1
1 ,

1

1
4

3

1 . 8eff eff ( )

For small n a , 1∣ ∣ (the expected situation), we can use the
approximations n n a-eff and n n a¢ - 4 3 .eff ( ) Note
that, in order to simplify the presentation, we have removed
terms proportional to W Wr m from Equation (7) that are not
relevant here. We can check, e.g., that in the radiation-
dominated epoch the leading term in the expression (7) is
~W x- ¢a ,r

4 while it is~W x-am
3 in the matter-dominated epoch.

Furthermore, we find that the (full) expression for E a2 ( )
reduces to the ΛCDM form,
+ W - + W -- -a a1 1 1 ,m r

3 4( ) ( ) in the limit n a , 0 (i.e.,
x x¢ , 1). Note also the constraint among the parameters,

n a= W - + W + WL
⎡⎣ ⎤⎦c H ,m r0 0

2 4

3( ) which follows from

matching the vacuum energy density rL H( ) to its present value
rL

0 for =H H0 and using W + W + W =L 1.m r The explicit
scale factor dependence of the Newtonian coupling ensues
upon inserting (7) in (6) and computing the derivative. We
refrain once more from writing out the full expression here, but
one can check that in the limit a 0 (relevant for the Big
Bang Nucleosynthesis epoch) it behaves as

n= + ¢x- ¢ G a G a G a1 4 ln . 90
4 1

0 eff( )( )( ) ( )

Thus, the gravitational coupling evolves logarithmically with
the scale factor and hence changes very slowly. This
logarithmic law was motivated previously by Solà (2008,
2013) within the context of the renormalization group of QFT

in curved spacetime. For n a= = 0 we obtain =G G0
identically, i.e., the current value of the gravitational coupling.
However the situation =G G0 is also attained in the limit
a 0 for n a= 4 3( ) (i.e., x¢ = 1 ;) and indeed we shall adopt

this setting hereafter in order to maximally preserve the BBN
constraint for the G2 model. The effective fitting parameter will
be n n= 4.eff Obviously this setting is impossible for G1, so in
this case we will adopt the average BBN restriction
D <G G 10%∣ ∣ used in the literature (Chiba 2011; Uzan
2011). At the same time we require D <G G 5%∣ ∣ at
recombination ( z 1100) for both G1 and G2 from the
cosmic microwave background (CMB) anisotropy spectrum
(Chiba 2011).
The expression for the dynamical vacuum energy density

can be obtained from Friedmann’s Equation (1), in combina-
tion with the explicit form of G a .( ) We quote here only the
simplified expression valid for the matter-dominated epoch:

r r
x

x= +
W

- -x x
L

-
⎡
⎣⎢

⎤
⎦⎥a a a a1 . 10c

m
0

3 3 3( )( ) ( )

For x  1 we have r r r - W = WL L1c m c0 0( ) and we
retrieve the ΛCDM case with strictly constant rL. The form (10)
is sufficient to obtain an effective DE density r zD ( ) and
effective equation of state (EoS) for the DE at fixed =G G ,0 as
is conventionally used in different places of the literature (see,
e.g., Solà & Stefancic 2006; Shafieloo et al. 2006; Basilakos &
Solà 2014). We find

w
r
r

= -
+

-

L

a
a

a

G a G

G a

1

1
. 11D

m 0
( ) ( )

( )
( )

( )

( )

In Figure 1 (left) we plot wD as a function of the cosmic redshift
= - +z a1 1 for models G1 and G2. Near our time, wD stays

very close to-1 (compatible with the ΛCDM), but at high z it
departs. In the same Figure 1 (right) we plot

r rW =z z z ,D D c( ) ( ) ( ) i.e., the normalized DE density with
respect to the critical density at constant G0. The asymptotes of
wD for each model at >z 4 are due to the vanishing ofW zD ( ) at
the corresponding point (as clearly seen in the figure)—confer
the aforementioned references for similar features.

3. FITTING THE MODELS TO THE
OBSERVATIONAL DATA

Let us now test these models against observations. First of
all, we use the available measurements of the Hubble function
as collected in Ding et al. (2015). These are essentially the data
points of Farooq & Ratra (2013) in the redshift range
 z0 1.75 and the baryonic acoustic oscillation (BAO)

measurement at the largest redshift H(z=2.34) taken after
Delubac et al. (2015) on the basis of BAOs in the Lyα forest of
BOSS DR11 quasars. We define the following c2 function, to
be minimized:

å åc
s

=
-

=

-

= +

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

H H H HOmh , Omh ,
,

12

i

N

j i

N
i j i j

i j
Omh
2

1

1

1

th
2

obs
2

Omh ,

2

2
2

( ) ( )

( )

where N is the number of points H(z) contained in the data set,
ºH H z ,i i( ) and the two-point diagnostic

º - + - +z z h z h z z zOmh , 1 12
2 1

2
2

2
1 2

3
1

3( ) [ ( ) ( )] [( ) ( ) ]

2
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was defined in Sahni et al. (2014), with =h z h E z ,( ) ( ) and
s i jOmh ,2 is the uncertainty associated to the observed value

H HOmh ,i jobs
2 ( ) for a given pair of points ij, viz.

s
s s

=
+

+ - +

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦
h z h z

z z

4

1 1
. 13i j

i h z j h z

i j
Omh ,
2

2 2 2 2

3 3 2

i j

2

( )( )
( ) ( )

( )
( ) ( )

For ΛCDM, the two-point diagnostic boils down to
= Wz z hOmh , ,m

2
2 1

2( ) which is constant for any pair z1, z2.
Using this testing tool and the known observational
information on H(z) at the three redshift values
=z 0, 0.57, and 2.34, the aforementioned authors observed

that the average result is: = Omh 0.122 0.010,2 with very
little variation from any pair of points taken. The obtained
result is significantly smaller than the corresponding Planck
value of the two-point diagnostic, which is constant and
given by = W = hOmh 0.1415 0.0019m

2 2 (Ade
et al. 2015).

A departure of Omh2 from the Planck result should,
according to Sahni et al. (2014), signal that the DE cannot be

described by a rigid CC. For the ΛCDM we obtain
= Omh 0.1250 0.0039,2 and = Omh 0.1402 0.0059,2

by taking all data points and excluding the high-redshift one,
respectively. Since there is a priori no reason to exclude the
high-redshift point (Delubac et al. 2015), whose uncertainty is
one of the lowest in the full data sample, relaxing the tension
with data may require the dynamical nature of the DE. For the
vacuum models G1 and G2 considered here, Equations (3) and
(4), aim at cooperating in this task.
For these models the theoretical value Omhth

2 of the two-
point diagnostic entering (12) can be computed, in the
matter-dominated epoch (relevant for such observable), as
follows:

x
=

W + - +

+ - +

x x

z z
h z z

z z
Omh ,

1 1

1 1
. 14G i j

m i j

i j

2
2 3 3

3 3

( )
( )

( )
( )

( ) ( )

It is evident that for x = 1 we recover the ΛCDM result,
which remains anchored at = W " "z z h z zOmh , , .i j m i j

2 2( ) ( )
However, when we allow some small vacuum dynamics
(meaning ν and/or α different from zero) we obtain a small
departure of ξ from 1 and therefore the DE diagnostic Omh2

deviates from W h .m
2 In this case, Omh2 evolves with cosmic

time (or redshift).
To the above Hubble parameter data we add the recent

supernovae type Ia data (SN Ia), the CMB shift parameter,
the BAO’s, the growth rate for structure formation (see the
next section), and the BBN and CMB anisotropy bounds.
Contour lines for n x= -1eff are shown in Figure 2 for
model G2 at fixed x¢ = 1. The c2 functions associated to SN
Ia distance modulus m z ,( ) the BAO A-parameter, and the
CMB shift parameter can be found in Gómez-Valent et al.
(2015). Therein, one can also find the corresponding
references of the data sets that we have used in the present
analysis.

4. LINEAR STRUCTURE FORMATION

Finally, we take into consideration the data on the linear
structure formation. For the G1 and G2 models the calculation
of d dr r=m m m is significantly more complicated than in the
ΛCDM case and follows from applying linear perturbation
theory to Einstein’s field equations and Bianchi identity (5)

Figure 1. Left: evolution of the effective EoS w z ,D ( ) Equation (11), for the models under consideration: Right: the corresponding evolution of the effective DE density
W zD ( ) normalized to the critical density (see text).

Figure 2. Likelihood contours in the nW ,m eff( ) plane (for the values
 - =2 ln 2.30,max 6.16, 11.81, corresponding to 1σ, 2σ, and s3

confidence levels for the G2 model using the full data analysis indicated in
Table 2. The n = 0eff region (ΛCDM) is disfavored at s~3 .

3
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Table 1
Best-fit Values for G1-type Models

Model DG

G0
∣ ∣ (BBN,CMB), Omh2 Wm Wm(All Data) ν n̄ s8 s8 c dof2 c dof2 AIC AIC

ΛCDM L, Yes -
+0.278 0.004

0.005 0.276 ± 0.004 L L 0.815 0.815 828.84 1010 828.69 1010 830.84 830.69

G1 (10%,5%), Yes 0.278 ± 0.006 0.275 ± 0.004 -
+0.0015 0.0015

0.0017
-
+0.0021 0.0016

0.0014 0.797 0.784 822.82 1009 821.97 1009 826.82 825.97

ΛCDM L, No 0.292 ± 0.008 0.286 ± 0.007 L L 0.815 0.815 583.38 604 582.74 604 585.38 584.74

G1 (10%,5%), No 0.290 ± 0.011 0.281 ± 0.005 -
+0.0008 0.0015

0.0016 0.0015 ± 0.0014 0.795 0.771 577.62 603 575.70 603 581.62 579.70

ΛCDM* L, Yes* 0.297 ± 0.006 0.293 ± 0.006 L L 0.815 0.815 806.68 982 806.17 982 808.68 808.17

G1* (10%,5%), Yes* 0.296 ± 0.009 0.287 ± 0.004 0.0006 ± 0.0015 -
+0.0012 0.0013

0.0014 0.803 0.770 802.66 981 799.15 981 806.66 803.15

Note. The best-fitting values for the G1-type models and their statistical significance (c2-test and Akaike information criterion AIC, see the text). All quantities with a bar involve a fit to the total input data, i.e., the
expansion history (Omh2+BAO+SN Ia), CMB shift parameter, the indicated constraints on the value ofDG G0 at BBN and at recombination, as well as the linear growth data. Those without bars correspond to a fit in
which we use all data but exclude the growth data points from the fitting procedure. “Yes” or “No” indicates whether or not Omh2 enters the fit. The starred scenarios correspond to removing the high-redshift point
z = 2.34 from Omh2 (see the text). The quoted number of degrees of freedom (dof) is equal to the number of data points minus the number of independent fitting parameters. The fitting parameter ν includes all data.
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(Grande et al. 2010, 2011). The final result reads:3

d
d

d

+


- W

+
¢

- W + W - W¢ =

¢¢¢

a

a
a

2
16 9

3

2
8 11 3 0, 15

m
m

m

m
m m m2

2( )
( )

( )

with p rW =a G a a H a8 3 .m m
2( ) ( ) ( ) ( ) Note that the n a,( )

model-dependence is encoded in G(a) and H(a)—see
Equations (6), (7), and (8). To solve the above equation
(numerically) we have to fix the initial conditions for d ,m d¢m,
and d .m We take due account of the fact that for these
models at small a (when non-relativistic matter dominates
over the vacuum) we have d =a a ,m

s( ) where
x n= - = -s 3 2 1 3 .eff If x = 1 (n = 0eff ), then d ~a am ( )

and we recover the ΛCDM behavior. Thus, the initial
conditions set at a high redshift = -z a a1 ,i i i( ) say
zi = 100 (or at any higher value), are as follows. For the
growth factor we have d =a a ,m i i

s( ) and for its derivatives:
d¢ = -a sa ,m i i

s 1( ) d = - -a s s a1 .m i i
s 2( ) ( )

In practice we investigate the agreement with the structure
formation data by comparing the theoretical linear growth
prediction d= - +f z z d dz1 ln m( ) ( ) and the growth rate
index g z( ) with the available growth data—following Gómez-
Valent et al. (2015 and references therein) and Gómez-Valent
& Solà (2015). Recall that γ is defined through

W gf z z ,m
z( ) ( ) ( ) and one typically expects

g = 0 0.56 0.05( ) for ΛCDM-like models (Pouri et al.
2014). A most convenient related quantity is the weighted
growth rate sf z z8( ) ( ) (see Song & Percival 2009), where s z8 ( )
is the rms mass fluctuation amplitude on scales of = -R h88

1

Mpc at redshift z. The latter is computed from

ò
ò

s s
d
d

=
W

W
L L

¥
+

¥
+

L

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥
z

z
k T k W kR dk

k T k W kR dk0

,

,
,

16

m

m

n
m

n
m

8 8,
0

2 2 2
8

0

2 2
,

2
8

1 2
s

s

( ) ( )
( ) ( )

( ) ( )
( )

( )

with W being a top-hat smoothing function (see, e.g., Gómez-
Valent et al. 2015 for details) and WT k,m( ) the transfer
function, which we take from Bardeen et al. (1986). The values
of s sº 08 8 ( ) for the various models are collected in Table 1,
and in Figure 3 we plot sf z z8( ) ( ) and g z( ) for each.
The joint likelihood analysis is performed on the set of

Omh2+BAO+SN Ia+CMB, BBN and linear growth data,
involving one (Wm) or two nW ,m eff( ) independently adjusted
parameters depending on the model. For the ΛCDM we have
one parameter (np = 1) and for G1 and G2 we have np = 2.
Recall that for G2 we have fixed x¢ = 1.

5. DISCUSSION

The main results of this work are synthesized in Tables 1–2
and Figures 1–3. In particular, from Figure 2 we see that the
model parameter neff for G2 is clearly projected onto the
positive region, which encompasses most of the s3 range.
Remarkably, the c2-value of the overall fit is smaller than that
of ΛCDM for both G1 and G2 (see Tables 1–2). To better
assess the distinctive quality of the fits we apply the well
known Akaike Information Criterion (AIC; Akaike 1974;
Burnham & Anderson 2002), which requires the condition

>N n 40ptot (amply satisfied in our case). It is defined, for
Gaussian errors, as follows:

 c= - + = +n nAIC 2 ln 2 2 ,p pmax min
2 where max (resp.

cmin
2 ) is the maximum (resp. minimum) of the likelihood (resp.

c2) function. To test the effectiveness of modelsMi andMj, one
considers the pairwise difference D = -AIC AIC AIC .ij i j( ) ( ) ( )
The larger the value of D º D AIC ,ij ij∣ ( ) ∣ the higher the
evidence against the model with larger value of AIC, with

D 2ij indicating a positive such evidence and D 6ij
denoting significant such evidence.

Figure 3. Left: comparison of the observed data with error bars (in green) and the theoretical evolution of the weighted growth rate of clustering sf z z8( ) ( ) for each
dynamical vacuum model and the ΛCDM. Right: the corresponding evolution of the linear growth index g z .( )

3 The third-order feature of this equation is characteristic of the coupled
systems of matter and DE perturbations for cosmologies with matter
conservation, after eliminating the perturbations in the DE in favor of a single
higher order equation for the matter part (see Gómez-Valent et al. 2015 for
details). For L = const., Equation (15) boils down to the (derivative of the)
second order one of the ΛCDM.
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Table 2
Best-fit Values for G2-type Models

Model DG

G0
∣ ∣ (CMB), Omh2 Wm Wm(all data) neff neff¯ s8 s8 c dof2 c dof2 AIC AIC

ΛCDM L, Yes -
+0.278 0.004

0.005 0.276 ± 0.004 L L 0.815 0.815 828.84 1009 828.69 1009 830.84 830.69

G2 5%, Yes 0.278 ± 0.006 0.277 ± 0.004 -
+0.0038 0.0023

0.0025
-
+0.0043 0.0020

0.0018 0.774 0.773 817.17 1008 817.26 1008 821.17 821.26

ΛCDM L, No 0.292 ± 0.008 0.286 ± 0.007 L L 0.815 0.815 583.38 603 582.74 603 585.38 584.74

G2 5%, No 0.287 ± 0.011 0.283 ± 0.005 -
+0.0025 0.0025

0.0026
-
+0.0030 0.0018

0.0021 0.763 0.767 572.68 602 572.99 602 576.68 576.99

ΛCDM* L, Yes* 0.297 ± 0.006 0.293 ± 0.006 L L 0.815 0.815 806.68 981 806.17 981 808.68 808.17

G2* 5%, Yes* 0.295 ± 0.009 0.289 ± 0.005 -
+0.0015 0.0025

0.0026
-
+0.0028 0.0021

0.0018 0.789 0.765 798.85 980 797.05 980 802.85 801.05

Note. As in Table 1, but for G2 models with x¢ = 1 so as to maximally preserve the BBN bound (see the text). The effective G2 model fitting parameter in this case is n n= 4.eff The constraint on DG G0∣ ∣ from CMB
anisotropies at recombination is explicitly indicated.
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From Tables 1–2 we see that when we compare the fit
quality of models i = G1, G2 with that of j = ΛCDM, in a
situation when we take all the data for the fit optimization, we
find D º DAIC 9.43ij for G2 and 4.72 for G1, suggesting
significant evidence in favor of these models (especially G2)
against the ΛCDM—the evidence ratio (Akaike 1974) being

= DeER 111.62ij for G2 and 10.6 for G1. Also worth
noting is the result of the fit when we exclude the growth data
from the fitting procedure but still add their contribution to the
total c .2 This fit is, of course, less optimized, but allows us to
risk a prediction for the linear growth and hence to test the level
of agreement with these data points (see Figure 3). It turns out
that the corresponding AIC pairwise difference with the ΛCDM
are similar as before (see Tables 1–2). Therefore, the ΛCDM
appears significantly disfavored versus the dynamical vacuum
models, especially in front of G2, according to the AIC. Let us
mention that if we remove all of the H(z) data points from our
analysis the fit quality weakens, but it still gives a better fit than
the ΛCDM (see the third and fourth rows of Tables 1 and 2). If,
however, we keep these data points but remove only the high-
redshift point z = 2.34 (Delubac et al. 2015), the outcome is not
dramatically different from the previous situation (confer the
starred scenarios in Tables 1 and 2), as in both cases the
significance of n ¹ 0eff is still close to s~2 with D > 7ij for
G2 (hence still strongly favored, with >ER 33). In this sense
the high z point may not be so crucial for claiming hints in
favor of dynamical vacuum, as the hints themselves seem to
emerge more as an overall effect of the data. While we are
awaiting for new measurements of the Hubble parameter at
high redshift to better assess their real impact, we have checked
that if we add to our analysis the points z = 2.30 (Busca et al.
2013) and z = 2.36 (Font-Ribera et al. 2014), not included in
either Sahni et al. (2014) or Ding et al. (2015), our conclusions
remain unchanged. Ditto if using the three high z points only.

To summarize, our study singles out a general class of
vacuum models, whose dynamical behavior challenges the
overall fit quality of the rigid L-term inherent to the
concordance ΛCDM model. From the data on expansion,
structure formation, and BBN and CMB observables we
conclude that the ΛCDM model is currently disfavored at the

s~3 level as compared to the best dynamical ones.

We thank the anonymous referee for the thorough report on
our work and for very useful suggestions to improve our
analysis. J.S. has been supported in part by MICINN, CPAN,
and Generalitat de Catalunya; A.G.V. acknowledges support by
APIF grant of the U. Barcelona.
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