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ABSTRACT

Mixing length theory is the predominant treatment of convection in stellar models today. Usually described by a
single free parameter, α, the common practice is to calibrate it using the properties of the Sun, and apply it to all
other stellar models as well. Asteroseismic data from Kepler and CoRoT provide precise properties of other stars
which can be used to determine α as well, and a recent study of stars in the Kepler field of view found α to vary with
metallicity. Interpreting α obtained from calibrated stellar models, however, is complicated by the fact that the value
for α depends on the surface boundary condition of the stellar model, or T–τ relation. Calibrated models that use
typical T–τ relations, which are static and insensitive to chemical composition, do not include the complete effect
of metallicity on α. We use three-dimensional radiation-hydrodynamic simulations to extract metallicity-dependent
T–τ relations and use them in calibrated stellar models. We find the previously reported α–metallicity trend to be
robust, and not significantly affected by the surface boundary condition of the stellar models.
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1. INTRODUCTION

The Mixing length theory (MLT; Böhm-Vitense 1958) re-
mains one of the most popular treatments for stellar convection,
and typically describes convective eddy sizes with a single pa-
rameter, α, which is arbitrarily set by the modeler. Generally,
α is kept fixed at a value that is determined by calibrating a
solar model to the properties of the Sun, however, this has no
a priori justification. With space-based photometric data from
CoRoT (Michel et al. 2008) and Kepler (Borucki et al. 2010),
it is now possible to precisely constrain the properties of other
stars, which allows α to be determined in a similar manner.
Determining α is possible with tight constraints on the stellar
mass and radius, however, it still depends on a variety of input
microphysics and boundary conditions.

It is increasingly apparent that the usual approach of using a
constant solar-calibrated value for α is not appropriate for stars
that differ from the Sun, either in composition, mass, or stage
of evolution. As an example, asteroseismic studies of α Cen
(e.g., Demarque et al. 1986; Fernandes et al. 1995; Miglio &
Montalban 2005) require a non-solar value of the mixing length
parameter to reproduce the stellar radius. Stars from CoRoT and
Kepler also require non-solar mixing length values to model
the oscillation spectra (e.g., Metcalfe et al. 2010; Deheuvels &
Michel 2011; Mathur et al. 2012).

More recently, Bonaca et al. (2012) found a systematic
metallicity dependence of α with calibrated stellar models of
stars in the Kepler field of view. It is challenging to interpret
the meaning of α in calibrated stellar models, since it is
intertwined with the atmospheric boundary condition and other
input microphysics. The purpose of this study is to test whether
the trends reported by Bonaca et al. are sensitive to the treatment
of the surface boundary condition, which is expected to vary
with metallicity. Note that in the present work, we do not
provide a calibration of the mixing length parameter, but rather
we investigate how a metallicity-dependent surface boundary
condition would affect such a calibration.

Adjusting the value of α determines the specific entropy of the
convection zone, which in turn sets the stellar radius. In effect,

α is a free parameter that defines the radius of the stellar model.
The effect of the MLT on the stellar model is most important
near the surface, where the specific entropy of the convection
zone is set. This so-called superadiabatic layer (SAL) is several
scale heights above and below the stellar photosphere, defined in
stellar models as where T = Teff . Stellar models usually separate
the atmosphere (defined as the layers above the Teff surface)
from the stellar envelope, and provide an atmospheric structure
from a T–τ relation which is integrated inward from a very
small optical depth. This relation, along with the assumption of
hydrostatic equilibrium, defines the structure of the outermost
layers of the stellar model.

In the Bonaca et al. study, all of the models were computed
with a fixed T–τ relation, which is the usual approach. However,
since the surface boundary condition is determined in part by
the nature of the near-surface stellar convection, the relationship
between the value of the mixing length parameter and metallicity
may be affected by the arbitrary choice of T–τ relation. In the
following sections we describe several tests conducted using
stellar models computed with a variety of surface boundary
conditions; these range from the usual prescribed static T–τ
relations to using atmospheric stratifications extracted from
three-dimensional simulations.

2. T–τ RELATIONS IN THIS WORK

The typical approach to treating the surface boundary in stel-
lar models is to impose an atmospheric structure, or T–τ relation.
One of the more popular boundary condition is the Eddington
T–τ relation, which is purely radiative and does not include
any effect from photospheric convection or overshoot. In the
Eddington T–τ relation, the boundary of the photosphere is
fixed at an optical depth of τ = 2/3, and the relation is not sen-
sitive to variation in metallicity. Other popular alternatives to the
Eddington T–τ include the semi-empirical KS (Krishna Swamy
1966) and VAL relations (Vernazza et al. 1981). The choice of
T–τ relation directly affects the value of α when constructing
a model with a particular mass and radius. For example, stan-
dard solar models computed with the Eddington and KS T–τ
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Table 1
Global Properties of Three-dimensional Simulations

ID Z X log Teff

s1 0.040 0.715 3.694
s2 0.040 0.715 3.716
s3 0.040 0.715 3.737
s4 0.040 0.715 3.757
s5 0.020 0.735 3.709
s6 0.020 0.735 3.730
s7 0.020 0.735 3.750
s8 0.020 0.735 3.770
s9 0.010 0.745 3.726
s10 0.010 0.745 3.746
s11 0.010 0.745 3.764
s12 0.010 0.745 3.780
s13 0.001 0.754 3.759
s14 0.001 0.754 3.771
s15 0.001 0.754 3.783
s16 0.001 0.754 3.795

Notes. Properties of three-dimensional RHD simulations
from Tanner et al. (2012). All simulations have the same
surface gravity (log g = 4.30). There are four metallicity
groups with overlapping ranges in Teff .

relations have mixing length parameters of approximately 1.8
and 2.1, respectively.

Semi-empirical T–τ relations, such as the KS (Krishna
Swamy 1966) and VAL (Vernazza et al. 1981) relations, can be
used instead of the purely radiative Eddington relation. These
relations are derived from the Sun, and so are applicable to
models with the solar composition, mass, and radius. While they
are likely to be an improvement for computing solar models,
they are, however, not necessarily any better for models of stars
other than the Sun.

One way to get metallicity-dependent T–τ relation is through
three-dimensional radiation hydrodynamic simulations. Sim-
ulations provide a realistic and self-consistent description of
stellar convection by following the gas dynamics from the near-
adiabatic region below the SAL to the optically thin atmosphere.
In a simulation there is no distinction between the atmosphere
and interior as there is in a stellar model, and the effect of con-
vective overshoot is naturally included in the simulated stratifi-
cation. Simulations of photospheric convection show a range of
convective properties across the H-R diagram (e.g., Trampedach
& Stein 2011; Magic et al. 2013) and with chemical composi-
tion (Tanner et al. 2013a, 2013b). Simulations also reveal that
in addition to changing the convective properties, metallicity
also changes the atmospheric stratification in ways that are not
represented by the static T–τ relations used in one-dimensional
stellar models (e.g., Asplund et al. 1999; Tanner et al. 2013a).

We extract T–τ relations from a grid of simulations at a
fixed surface gravity (log(g) = 4.30), but span a range in
effective temperature, and are divided into four groups according
to metallicity. The basic properties of the simulations are
summarized in Table 1, and further details can be found in
Tanner et al. (2012). The range in effective temperature is
comparable to the stars in the Bonaca et al. (2012) data set, and
the metallicity variation extends to lower-Z. The grid comprises
simulations with four metallicities, ranging from slightly super-
solar (Z = 0.040) to very sub-solar (Z = 0.001). The precise
Solar composition is not included, although the Z = 0.020
simulations have roughly the same metallicity as the Sun. Note
that the mass-radius relation for the corresponding calibrated
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Figure 1. Eddington T–τ relation compared with semi-empirical T–τ relations
for the Sun. Also shown are average T–τ relations taken from three-dimensional
RHD for simulations with varied metallicity and fixed log(g) and log(Teff ).

(A color version of this figure is available in the online journal.)

models is fixed because of the log(g) constraint. The helium
mass fraction (Y) is held constant, and the hydrogen mass
fraction (X) adjusted according to the change in metallicity (Z).

The simulation domain is a Cartesian box, and the tempera-
ture stratification (T) from each simulation is extracted by taking
temporal and spatial averages as a function of optical depth (τ ).
For a given temporal snapshot, the optical depth is calculated
for each vertical column by integrating the opacity and density:

τ =
∫

ρ(z)κ(z)dz. (1)

This results in many T (τ ) profiles (one for each column)
which are spatially averaged by interpolating onto a uniform
τ grid. This is repeated for many snapshots spread uniformly
over several thermal timescales, until statistical convergence is
achieved.

Each of the simulated T–τ relations uniquely represent the
thermal structure of a star with the corresponding surface
gravity (log(g) = 4.30), effective temperature (log(Teff)) and
composition. Figure 1 compares the T–τ relations that were
used to compute the calibrated stellar models. They differ both
in the nearly isothermal region at low optical depth, and near the
photosphere which is defined as where T = Teff . In particular,
the photosphere of the semi-empirical T–τ relations is shifted
to smaller optical depth relative to the Eddington relation. The
value of the mixing length parameter is particularly sensitive
to the location of the photosphere because the stellar structure
equations are integrated inward from this point.

Radiative heating and cooling plays an important role in the
optically thin layers. An important source of cooling, which
is neglected in the Eddington T–τ relation, is the adiabatic
cooling from the rising and expanding convective granules,
i.e., atmospheric overshoot. The temperature structure in the
optically thin layers is the result of balancing radiative heating
with adiabatic cooling. As the simulations can more accurately
account for the additional cooling, their T–τ relations tend to
approach a cooler isotherm. The temperature of the optically
thin layers also depends on the metallicity, with lower opacities
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Figure 2. Left: calibrated stellar models computed with the Eddington T–τ relation, corresponding to log(g) = 4.30 and log(Teff ) of the simulations in Table 1. These
models are not intended to represent a particular stellar population, and some of them are not physically realistic (models with ages less than that of the universe
are below the dashed line). Comparing these models illustrates the behavior of MLT used in conjunction with a prescribed static T–τ relation. Right: a subset of the
calibrated models with a stellar mass of 0.80 M�.

(A color version of this figure is available in the online journal.)

resulting in steeper T–τ gradients and cooler atmospheres.
The Eddington, KS, and VAL relations are insensitive to
chemical composition, and so are identical in models with varied
metallicity. We use our grid of three-dimensional simulations
to provide simulated T–τ relations that are used for modeling
stars with the corresponding log(g) and log(Teff). Two of these
relations are included in Figure 1, which illustrates the effect
of metallicity that is not captured in the Eddington or semi-
empirical T–τ relations. These two simulations (s4 and s13)
have the same Teff and span the largest range in metallicity in
the grid.

3. CALIBRATED STELLAR MODELS

Stellar models with convective envelopes can be constructed
if the chemical composition, mass, age, and mixing length pa-
rameter are specified. Thus, for a star with a particular compo-
sition, the stellar model is characterized by three parameters. It
is often convenient to substitute the stellar surface parameters
of log(g) and log(Teff) for two of the three parameters in the
(M, R, α) triplet.

To determine how the T–τ relation affects the relationship be-
tween the mixing length parameter and metallicity, we compute
sets of models corresponding to a particular set of atmospheric
parameters and boundary conditions. In effect, we create models
for a star of a given log(g) and log(Teff). Without additional con-
straints the model mass and radius are not unique and depend
on the value of the mixing length parameter.

Calibrated stellar models are computed in an iterative manner,
using the Yale Stellar Evolution code (Demarque et al. 2008)
which uses the Böhm-Vitense formulation of the MLT. For a
given composition, stellar mass and surface gravity, the model
is evolved until the desired radius (determined from stellar
mass and log(g)) is achieved. The evolution is repeated with
a different value for the mixing length parameter until log(Teff)
also matches the desired value. This processes is repeated for
all of the stellar masses that yield solutions corresponding to
the log(g) and log(Teff) of the simulations in Table 1. In order

to keep the widest range of possible stellar masses, the models
are not restricted in age. This leads to some of the models being
older than the age of the universe, and not physically realistic.
We include all of the models in our analysis because we aim to
understand the behavior of the models, and we are not modeling
an actual star.

The input physics in the stellar evolution code is consistent
with that of the three-dimensional simulations. We use the
OPAL equation of state (Rogers & Nayfonov 2002) and high-
temperature opacities from Iglesias & Rogers (1996) along
with low-temperature opacities from Ferguson et al. (2005).
The models do not include convective core overshoot or the
diffusion of heavy elements. We compute calibrated stellar
models with log(g) and log(Teff) that correspond to the set of
three-dimensional radiation hydrodynamic (RHD) simulations.
In addition to the static T–τ relations that are typically used in
stellar models, we can substitute the time-averaged atmospheric
structures from the three-dimensional simulations.

A range of stellar masses (and mixing length parameters)
are possible for calibrated models with a given composition,
log(g) and log(Teff). In order to match the desired log(g) and
log(Teff), smaller values for α are required at lower metallicity
to compensate for the shifting of the evolution tracks to
hotter effective temperatures. The left side of Figure 2 shows
the Eddington T–τ calibrated models corresponding to the
simulations in Table 1. Each curve corresponds to a particular
effective temperature and metallicity. Isolating a particular
stellar mass and radius (right side of Figure 2) reveals a more
apparent metallicity–α trend for a fixed effective temperature.
For our analysis, we compute similar sets of calibrated models
for different fixed T–τ relations, as well as with those from
three-dimensional simulations, which vary with Z and log(Teff).
The different sets of calibrated models reveal whether the
metallicity–α trend depends on the choice of T–τ relation for
the stellar models.

The thermal structure of the atmosphere in three-dimensional
simulations depends to some degree on the details of the ra-
diative transfer solver. For example, Tanner et al. (2012) show
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Figure 3. Comparison of calibrated stellar models computed with different T–τ relations to show the relationship between the mixing length parameter and the surface
boundary condition. All of the models have the same log(g) and log(Teff ) but differ in metallicity between the left (Z = 0.001) and right (Z = 0.040) panels. Two
of the T–τ relations are extracted from three-dimensional simulations that used alternative radiative transfer schemes. The relative effect introduced by changing the
three-dimensional radiative transfer scheme is more pronounced in the low metallicity case, but not large enough to significantly change the metallicity-mixing length
relation.

(A color version of this figure is available in the online journal.)

that different radiative transfer schemes can yield differences
of 20% in the density through the SAL. Whether the differ-
ences are important will depend on how the three-dimensional
stratification is applied to stellar models. To test if the radiative
transfer solver in the three-dimensional simulations affects the
T–τ relations in a way that is significant, we duplicated two
of the simulations using an alternate radiative transfer scheme.
The simulations listed in Table 1 were all computed using the
three-dimensional Eddington approximation (Unno & Spiegel
1966), but we re-computed simulations s4 and s13 with a long-
characteristic ray integration method. We refer the reader to
Tanner et al. (2012) for a detailed description and comparison
of these two radiative transfer schemes. After switching the
radiative transfer solver, simulations s4 and s13 were evolved
for several thermal timescales to ensure that they were prop-
erly relaxed, at which time statistics were gathered in a manner
identical to the other simulations.

Stellar models computed with simulated T–τ relations show
that the three-dimensional radiative transfer scheme has a small
effect on the mixing length determination. Presented in Figure 3,
the mixing length value as a function of stellar mass is shown
for low (Z = 0.001) and high (Z = 0.040) The relative effect is
somewhat larger at low metallicity, but is still too small to alter
the relationship between the metallicity and the mixing length
parameter. The stellar mass ranges of the calibrated models
differ between the two panels because the metallicities are quite
different.

4. RESULTS AND DISCUSSION

To determine whether the stellar model surface boundary
condition significantly affects the metallicity-mixing length
trend reported by Bonaca et al. (2012), we compute several
groups of calibrated models similar to those presented in
Figure 2 but with different surface boundary conditions.

We make a 0.80 M� cut in the set of models (presented
in Figure 4) to show the metallicity-mixing length trend. The
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Figure 4. Calibrated stellar models with a stellar mass of 0.80 M� for several
T–τ relations. The metallicity-mixing length trend is clear and independent of
the choice of T–τ relation. The effect of introducing a metallicity-dependent T–τ

relation is not large enough to change the overall α–metallicity trend, although
the relative effect on the mixing length parameter is larger at low-Z.

(A color version of this figure is available in the online journal.)

trend is clearly visible, with all low-Z models having smaller
mixing length values than those with higher-Z. Changing the
T–τ relation from Eddington to KS introduces a shift in the
mixing length value, but leaves the trend almost unchanged.
Introducing simulated T–τ relations shifts the mixing length
values as a function of metallicity, and the effect is largest at
low-Z. Models that used simulated surface boundary conditions
relations are quite similar to the Eddington models because both
T–τ relations are similar at the stellar photosphere.

As mentioned in the Introduction, the value of the mixing
length parameter is sensitive to the atmospheric boundary
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condition of the stellar models. To illustrate this effect, we
compare the set of Eddington T–τ calibrated models with those
that have the KS T–τ relation. The change in the surface
boundary condition results in a shift in the mixing length
parameters, shown with dotted lines in Figure 4. Switching the
surface boundary condition between the Eddington and KS T–τ
relations, however, does not change the basic behavior as a
function of effective temperature or metallicity.

Bonaca et al. (2012) performed a trilinear fit to their data to
measure the variation of the mixing length value as a function
of log(g), log(Teff), and [Fe/H]. Since our simulated data points
share the same log(g) = 4.30, we perform a similar bilinear fit.

α = a + b log Teff + c[Fe/H], (2)

where we define the metallicity as:

[Fe/H] = log(Z/X) − log(Z/X)�. (3)

Models were weighted for the linear regression such that the
models comprising each metallicity group sum to equal values.
The result of the bilinear fit shows a robust correlation between
metallicity and the mixing length value, regardless of whether
a constant T–τ relation is used, or one that is a function of
metallicity and derived from simulations. The proportionality
factor is c = 0.31 ± 0.048 for the complete sample, and
c = 0.33 ± 0.029 for the age-restricted subset of models.

In the Bonaca et al. (2012) study, the stellar masses and radii
were asteroseismically determined. In our set of models, it is
possible that there is a α-dependence on stellar mass, since our
models span a range of stellar masses for a given log(g) and
log(Teff). In addition to the bilinear fit described above, we also
performed a trilinear fit of:

α = a + b log Teff + c[Fe/H] + dM/M�. (4)

The proportionality constant from this fit is c = 0.74±0.019 and
c = 0.64 ± 0.030 for the complete sample and age-restricted
subset, respectively.

The results of our bilinear and trilinear fitting are robust,
and indicate that the relationship between metallicity and the
mixing length value, as reported by Bonaca et al. (2012), are not
an artifact of the stellar model surface boundary condition. This
strengthens the understanding that the solar-calibrated value
for the mixing length parameter is not suitable for modeling
other stars. Although the metallicity-mixing length trend is
significant, it is not possible to directly interpret the mixing
length value, as it depends on the details of the formulation of
MLT in the stellar model as well as on any input physics that
affect entropy, of which the T–τ relation is just one. For a given
MLT formulation and set of input physics, changes in the mixing
length parameter are still informative.

We have carried out our tests on stellar models within
the mixing length framework because MLT-like treatments of

convection are predominant in stellar modeling today. It is
important to note, however, that the MLT formalism and the
tunable parameter associated with it is just a proxy for describing
convection in stars. Even if a value for the mixing length
can be extracted directly from three-dimensional simulations
(e.g., Ludwig et al. 1999; Trampedach & Stein 2011), MLT
cannot correctly reproduce the properties of three-dimensional
simulations in the SAL near the stellar surface.

Going beyond the surface boundary condition to include other
aspects of stellar convection may change the result as well. This
work focuses on the T–τ relation, but it contains only a small part
of the information present in three-dimensional simulations. In-
cluding a representation of additional physical processes, such
as the turbulent pressure contribution to hydrostatic equilib-
rium, will potentially yield different results. It is desirable to
ultimately replace MLT-like treatments of convection with a
better description of stellar convection (for example, the ongo-
ing efforts of Viallet et al. 2013), and such models may behave
quite differently than our current MLT models.
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