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ABSTRACT

The origin of the high inclination of Uranus’ spin-axis (Uranus’ obliquity) is one of the great unanswered questions
about the solar system. Giant planets are believed to form with nearly zero obliquity, and it has been shown
that the present behavior of Uranus’ spin is essentially stable. Several attempts were made in order to solve
this problem. Here we report numerical simulations showing that Uranus’ axis can be tilted during the planetary
migration, without the need of a giant impact, provided that the planet had an additional satellite and a temporary
large inclination. This might have happened during the giant planet instability phase described in the Nice
model. In our scenario, the satellite is ejected after the tilt by a close encounter at the end of the migration.
This model can both explain Uranus’ large obliquity and bring new constraints on the planet orbital evolution.
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1. INTRODUCTION

Today, Uranus’ obliquity (97◦) is essentially stable. This
is due to the regularity of its orbital motion and to the slow
precession motion of Uranus’ axis compared to the secular
frequencies of the solar system (Laskar & Robutel 1993). It
is sometimes believed that a great collision with an Earth-
sized protoplanet could be the reason of Uranus’ large obliquity.
But this straightforward scenario hardly explains the presence
of regular satellites orbiting Uranus in its equatorial plane
(Korycansky et al. 1990). However, the presence of satellites
around a planet can increase its precession rate by a large amount
depending on their mass and orbital parameters (Tremaine
1991; Goldreich 1966; Ward 1975; Boué & Laskar 2006).
For example, with a satellite of mass m = 0.01 MU , where
MU is the mass of Uranus, the increase can reach a factor
of 1000 (Figure 1). The maximal effect is obtained for a
satellite located at about 50 Uranian radii, which is actually
in the region where a satellite has been predicted by some
formation models (Mosqueira & Estrada 2003a, 2003b; Estrada
& Mosqueira 2006). For comparison, the most distant regular
satellite of Uranus is Oberon, whose mass is 3.45×10−5 MU and
distance from Uranus’ barycenter is 23 Uranian radii (Laskar
& Jacobson 1987). The interactions between spin-axes and
secular motions of the planets are also strengthened when orbital
inclinations are high. Such conditions could be met during
the planetary migration. Indeed, in the Nice scenario (Tsiganis
et al. 2005), Jupiter and/or Saturn should have undergone close
encounters with the ice giants to reach their present eccentricities
(Morbidelli et al. 2009). These close encounters can raise the
inclinations. Moreover, the additional satellite can be ejected
during one of these encounters. We therefore propose that
Uranus had an additional satellite and its spin-axis was tilted
during the planetary migration.

2. NUMERICAL EXPERIMENT

The construction of such a scenario for Uranus tilting can be
described in four steps.

First, we simulated the Nice model (Tsiganis et al. 2005). We
integrated 10,000 migrations of the giant planets over 10 Myr.

For these simulations,

ȧ = δa

τ
exp (−t/τ )

de/dt = − e/(2τe)

di/dt = − i/(2τi),

with τ = 2 Myr and τe = τi = τ/10 as in Lee et al. (2007).
a, e, and i are respectively the semimajor axis, the eccentricity,
and the inclination of the giant planets; t is the time and δa
is the difference between the initial semimajor axis of a planet
and its current one. The initial semimajor axis of Jupiter was
set to 5.45 AU. The initial semimajor axes of the other planets
were obtained randomly with a uniform distribution. The initial
semimajor axis of Saturn was varied in the range 8.38–8.48 AU.
The initial order of the ice giants was modified compared to the
current solar system: the initial semimajor axis of Neptune was
varied in the range 9.9–12 AU and the initial semimajor axis of
Uranus was varied in the range 13.4–17.1 AU. The terrestrial
planets are not taken into account in this study.

Then, out of the 5142 simulations that survived without ejec-
tion or planet collision, we selected those where the planet final
order is the same as in the solar system. We obtained 1995
different integrations. As the tilt requires high inclination, we
kept only the simulations where Uranus’ inclination increases
beyond a given threshold. We set this threshold to 17◦ which
limits the number of simulations to 31. Among these simula-
tions, we rejected those where the closest encounter between
Uranus and any other planet is closer than 50 Uranian radii.
With our criterion, we finally selected 17 simulations. One of
them is displayed in Figures 2(a) and (b). We call it the reference
simulation.

In a third step, we computed the maximal effect of an ad-
ditional satellite on Uranus’ obliquity in any orbital evolution
with the same semimajor axis, eccentricity, and inclination as
in the reference simulation, regardless of the conjugated angles.
For that, we used the expression of the effective precession con-
stant as a function of the satellite orbital parameters (Boué &
Laskar 2006). Then, we computed the maximal tilt given Uranus
orbital evolution (Boué et al. 2009). In the calculations, the satel-
lite is at 50 Uranian radii in both circular and eccentric orbits.
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Figure 1. Uranus precession frequency in the presence of a heavy satellite.
Uranus effective precession constant as a function of the distance of an additional
satellite of mass m = 0.01 MU (a), m = 0.005 MU (b), and m = 0.001 MU (c),
where MU is the mass of Uranus (Boué & Laskar 2006). For this calculation,
the semimajor axis and the eccentricity of Uranus are set to the current values,
and the satellite is assumed to have a circular orbit. All inclinations as well as
the obliquity are set to 0.

Figure 2(c) shows the maximal obliquity that has been reached
in these simulations. The evolution shows clearly that the tilt can
only occur when the inclination is high. In the present case, a
satellite with m = 0.01 MU is still necessary for the obliquity to
reach 97◦.

Finally, we integrated the evolution of Uranus’ spin-axis
and the additional satellite in the 17 selected simulations.
Calculations of the evolution of Uranus’ spin-axis take into
account the gravitational torques exerted by the Sun, by the
additional satellite, and by all the other giant planets. For each of
the 17 planet migrations, we performed 100 integrations varying
the initial semimajor axis of the satellite by a small amount
(15 m). The final obliquity distribution is given in Figure 3.
In 644 cases, the obliquity does not exceed 10◦ because the
satellite is ejected at the first encounter before the increase of
the inclinations. But, if the satellite survives the first encounter,
as in 62% of the cases, then the obliquity can reach large values.
Among the integrations in which the satellite is ejected before
the end of the migration, there is a final obliquity larger than
60◦ in 220 cases and an obliquity larger than 90◦ in 37 cases.

3. DYNAMICS OF THE TILT

Here we explain the evolution of Uranus’ spin-axis during the
tilt presented in Figure 2. The smooth evolution of the obliquity
during the tilt (Figure 4(b)) suggests that it is due to a resonance.
In the following, we show that the tilt actually occurs during
a 1:1 spin-orbit resonance between the precession of Uranus’
axis and the regression of the node of its orbit. The obliquity
ε is measured relative to the invariant plane orthogonal to the
total orbital angular momentum at the end of the simulation
(10 Myr). Traditionally, it is defined relative to the orbital plane,
but as the inclination rises to high values it is preferable to
use the invariant plane in order to avoid artificial evolution of
the spin-axis. At the end of the reference simulation, Uranus’
orbital inclination is very small (0.◦0024) and the difference
between the two definitions is sufficiently small to be neglected.
Let (i, j , k) be a base frame such that the x–y plane coincides
with this invariant plane. We note w, Uranus’ spin-axis, and
n, the normal of its orbit. The obliquity ε is thus defined by
cos ε = k · w. Let φα and φν be the angles measured positively
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Figure 2. Comparison between orbital evolution and obliquity increase. (a, b)
Example of orbital evolution of the giant planets during the planetary migration
over 2 Myr. (a) Semimajor axis, minimum, and maximum heliocentric distances.
(b) Uranus inclination. (c) Maximal tilt starting from zero obliquity for any
orbital evolution with the same semimajor axis, eccentricity, and inclination as
Uranus in panels (a) and (b). In this calculation (see Figure 5), the effect of
an additional satellite at 50 Uranian radii is implicitly taken into account in
the precession constant. We considered three different masses for the satellite:
10−4 MU , 10−3 MU , and 0.01 MU , where MU is the mass of Uranus. For each
mass, the satellite eccentricity is set to 0 (lower boundary) and 0.5 (upper
boundary). (d) Results of a numerical integration with a satellite of mass
m = 0.01 MU (black curve). The satellite is ejected by a close encounter
with Saturn at t = 0.38 Myr. Once the satellite is ejected, the obliquity remains
constant (gray curve). In these plots, the obliquity is measured relative to the
fixed plane orthogonal to the final total orbital angular momentum.

from the reference direction i to the projections of w and n into
the x–y plane, respectively. The evolution of ψ = φα − φν − π
is not steady but describes plateaus during the tilt (Figure 4(a),
phases II , and IV +V). This confirms the 1:1 resonance between
the precession of Uranus’ axis and the regression of the node of
its orbit.

In order to have a full understanding of the tilt, we now give
the equations of motion that will allow us to describe the spatial
evolution of the spin-axis displayed in Figure 4(d). Let α be
Uranus’ precession constant including the effect of the satellites,
and ν the regression frequency of Uranus’ orbital node. In the
frame rotating around k with the regression frequency ν, the
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Figure 3. Distribution of Uranus final obliquity. This is the result of 1700
integrations of Uranus spin-axis with an additional satellite: 100 per each of
the 17 selected migrations. In black, the cases where the satellite is ejected; in
gray, the cases where the satellite still orbits Uranus after 2 Myr (the end of
the integrations with a satellite). The first bin has been truncated for a better
visualization, its value is 644 (black) + 8 (gray). Among the simulations with
ejection of the satellite, there is a final obliquity larger than 60◦ (resp. 90◦) in
220 cases (resp. 37 cases).

Hamiltonian describing the spin-axis evolution reads

H = −α

2
(n · w)2 − ν(k · w). (1)

In this frame k is constant, whereas n varies due to the evolution
of the inclination. We have

k =
(

0
0
1

)
, n =

(− sin i
0

cos i

)
, and w =

(
x
y
z

)
, (2)

with x = sin ε cos ψ , y = sin ε sin ψ , and z = cos ε. One can
go from these variables to Ward & Hamilton (2004) ones by
a rotation of angle i around the second axis. The equations of
motion associated with the Hamiltonian (1) are given by

dw

dt
= ∇wH × w, (3)

which gives

dw

dt
= −α(n · w)n × w − νk × w (4)

or equivalently {
ẋ = ωzy
ẏ = −ωzx − ωxz
ż = ωxy,

(5)

with
ωz = α cos i(z cos i − x sin i) + ν,
ωx = α sin i(z cos i − x sin i). (6)

These equations are a combination of two rotations. The first
one is a rotation around the third axis with the angular velocity
ωz. The second is a rotation around the first axis with the angular
velocity ωx .

Now we describe the evolution of Uranus’ spin-axis displayed
in Figure 4.

During phase I, from t = 0 to t = 289 kyr, the inclination
i and the obliquity ε are small, the three axes w, n, and k are
almost aligned, and there is no evolution.
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Figure 4. Details on Uranus tilting. (a) Evolution of the resonant angle
ψ = φα − φν − π , where φα and φν are angles measured positively from
a reference direction to the projection of Uranus’ spin-axis w and Uranus’ orbit
pole n into the x–y plane, respectively. (b) Evolution of Uranus’ obliquity relative
to the invariant plane. (c) Evolution of Uranus’ orbital inclination. (d) Evolution
of Uranus’ spin-axis. The coordinates are x = sin ε cos ψ , y = sin ε sin ψ ,
and z = cos ε. The thin black circles in the x–y plane, that correspond to the
thin black lines in the x–z plane and in the y–z plane, represent the locations
where the obliquity is 45◦ (inner circle) and 90◦ (outer circle). Uranus tilting
is characterized by three resonant phases labeled II , and IV +V separated by
non-resonant evolutions labeled I, III , and VI .

(A color version of this figure is available in the online journal.)

In phase II , the variable ψ remains close to −π/2
(Figure 4(a)), there is thus a 1:1 spin-orbit resonance. In that
case, the angular velocity ωz in Equations (5) and (6) is negli-
gible and it remains only the rotation around the first axis

{
ẋ ≈ 0
ẏ ≈ −ωxz
ż ≈ ωxy.

(7)

As the axis w describes an arc of a circle in the y–z plane
(Figure 4(d)), the third component z decreases, and thus the
obliquity ε increases (Figure 4(b)).

In phase III , the angle ψ evolves (Figure 4(a)), hence the
resonance is broken and the angular velocity ωz becomes impor-
tant. On the other side, the inclination decreases (Figure 4(c)).
Thus, the angular velocity ωx ∝ sin i decreases too. Hence, the
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Figure 5. Constraints on the migration and on the mass of the satellite. (a)
Lower boundary on the time required to tilt Uranus by 97◦ as a function of
the inclination of its orbit for different precession constants (Boué et al. 2009).
(b) Uranus’ precession constant as a function of its semimajor axis for different
masses of the satellite in circular orbit (Boué & Laskar 2006). In case of eccentric

orbit of the planet, the semimajor axis aU should be replaced by aU

√
1 − e2

U .
For example, if during the planetary migration, Uranus’ inclination remains
above 10◦ at least 1 Myr, then the precession constant should be larger or equal
to 5′′ yr−1 to tilt Uranus (a). Such a precession constant can be reached with a

satellite of mass m = 0.001MU if aU

√
1 − e2

U is less than 10 AU during the
period of large inclination (b).

rotation in the x–y plane dominates (Figure 4(d)){
ẋ ≈ ωzy
ẏ ≈ −ωzx
ż ≈ 0,

(8)

and the obliquity ε is almost stationary (Figure 4(b)).
During phase IV , the angle ψ is stable for a second time.

The spin-axis is thus once again captured in resonance and the
equations of motion are Equations (7). The axis thus describes
an arc of a circle in the y–z plane (Figure 4(d)). This time, it starts
with y > 0 and z < 1 (ψ ≈ π/2) and goes toward y = 0 and
z = 1. As z increases, the obliquity decreases (Figure 4(b)). The
orbital inclination i is similar in phase II , and IV (Figure 4(c)),
so is the angular velocity ωx .

When the spin-axis crosses the x–z plane, the angle ψ jumps
from π/2 to −π/2 and the system enters in phase V (Figure 4(a)).
The evolution is similar to the one of phase II . The spin-axis
describes an arc of a circle in the y–z plane on the y < 0 side
(Figure 4(d)). The obliquity increases (Figure 4(b)). However, as
the inclination is higher than in phase II (18◦, see Figure 4(c)),
the angular velocity ωx is larger and the obliquity evolves faster
(Figure 4(b)).

In phase VI , the resonance is once again broken (Figure 4(a)),
the angular velocity ωx becomes negligible with respect to
ωz. The spin-axis describes an arc of a circle in the x–
y plane (Figure 4(d)), and the obliquity remains constant
(Figure 4(b)).

After the tilt, the satellite is ejected. The precession constant
α decreases by a factor close to 1000, which gives ωz ≈ ν and
ωx ≈ 0. The equations of motion (Equations (5)) thus show
that the spin-axis precesses around the third axis at the angular
velocity ν. The obliquity remains constant as one can see in
Figure 2.

4. CONCLUSION

We have shown that the current obliquity of Uranus is
compatible with planetary formation scenarios predicting small
initial obliquities without the need of a large collision. Moreover,
we confirm the necessity of the close encounters used in the Nice
model to recover the present eccentricity of Jupiter and Saturn.
Additionally, we solve the problem of the missing satellite
around Uranus (Mosqueira & Estrada 2003a, 2003b). Although
satellite formation theories are not at the stage that they can
constrain the final mass of the satellites, we acknowledge
that the satellite we have introduced may be too massive.
Nevertheless, a less massive satellite of only 0.001 MU can still
be sufficient to tilt Uranus if the planetary migration timescale
is larger than the one used here (see Figure 5). Several recent
studies actually suggest such a longer migration timescale
(Murray-Clay & Chiang 2005; Boué et al. 2009; Lykawka
et al. 2009). The parameters involved in the formation of the
solar system are still too numerous to be able to derive precise
estimates of the probability of the present scenario to occur,
but with this additional satellite, we are able to propose a
scenario that fits with the present late migration scenario as
given by the Nice model. Depending on the progress made
in satellite formation theories and possible future variations in
the migration scenarios, the elements given here could provide
strong additional constraints on the migration timescales.
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