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Abstract
The Zernike polynomials are a complete set of continuous functions orthogonal over a unit
circle. Since first developed by Zernike in 1934, they have been in widespread use in many
fields ranging from optics, vision sciences, to image processing. However, due to the lack of a
unified definition, many confusing indices have been used in the past decades and mathematical
properties are scattered in the literature. This review provides a comprehensive account of
Zernike circle polynomials and their noncircular derivatives, including history, definitions,
mathematical properties, roles in wavefront fitting, relationships with optical aberrations, and
connections with other polynomials. We also survey state-of-the-art applications of Zernike
polynomials in a range of fields, including the diffraction theory of aberrations, optical design,
optical testing, ophthalmic optics, adaptive optics, and image analysis. Owing to their elegant
and rigorous mathematical properties, the range of scientific and industrial applications of
Zernike polynomials is likely to expand. This review is expected to clear up the confusion of
different indices, provide a self-contained reference guide for beginners as well as specialists,
and facilitate further developments and applications of the Zernike polynomials.
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1. Introduction

The Zernike polynomials are a sequence of continuous func-
tions that form a complete orthogonal set over a unit disk. They
were named after the optical physicist Frits Zernike (figure 1),
winner of the 1953 Nobel Prize in Physics and the inventor of
phase-contrast microscopy. Since most optical systems have
circular apertures, Zernike polynomials are useful for wave-
front analysis and thus play important roles in optics. Zernike
polynomials can be generally divided into two basic types,
i.e. Zernike circle polynomials and Zernike annular polynomi-
als, which are defined over a unit disk and an annular unit disk,
respectively. The Zernike circle polynomials were first intro-
duced by Zernike in 1934 as eigenfunctions of a second-order
rotationally invariant partial differential equation to describe
the phase contrast method [1, 2] and were derived by Bhatia
and Wolf in 1954 from the requirements of orthogonality and
invariance [3]. The Zernike annular polynomials first appeared
in a report of Perkin-Elmer Corporation in 1971 [4] and were
discussed by Tatian in 1976 for aberrations balancing in optical
systems with annular pupils from the standpoint of lens design
[5]. They are systematically studied and explicitly given by
Mahajan in 1981 [4].

Zernike polynomials gradually aroused people’s interests
after introduction (figure 2) and have foundwidespread applic-
ations in optics and image processing. In 1942, Bernard
Nijboer, a PhD student of Zernike, expanded aberration func-
tions of a symmetrical optical system into a series of Zernike
polynomials and formulated an efficient representation of the
complex amplitude distribution of a point object in the image
plane [6]. This work allows analytical evaluation of diffrac-
tion integrals and the point spread function (PSF) of a gen-
eral optical system and is referred to as the Nijboer–Zernike
theory. However, the Nijboer–Zernike theory is only valid in
the case of small aberrations and can only produce accur-
ate results at positions close to geometrical focus. Seventy
years later, Janssen formulated a general expression in terms of
power-Bessel series and extended the Nijboer–Zernike theory
for optical systems with large aberrations [8]. The extended
Nijboer–Zernike theory can analytically compute the PSF of
an aberrated optical system described by Zernike coefficients
and accelerates further developments in the focused field dif-
fraction theory. While the developments of diffraction theory
of aberrations solely rely on analytical derivations, Zernike
polynomial-based wavefront analysis depends on the use of
computers. In the 1970s, with the rise of adaptive optics, Noll
proposed a modified set of Zernike polynomials by normal-
izing and sorting the polynomials for statistical analysis of
wavefront aberrations caused by atmospheric turbulence [9].
At the same time, Loomis at the University of Arizona intro-
duced a reordered subset of Zernike polynomials to the inter-
ferogram processing software FRINGE for wavefront analysis
in interferometric measurements [10, 11]. This subset called
Zernike fringe set contains only 37 terms but has good cor-
responding relationships with classical aberrations. In 1980,
Teague extended the applications of Zernike polynomials from

Figure 1. Frits Zernike (1888–1966), a Dutch physicist and
mathematician who was awarded the Nobel Prize in Physics in
1953 for his invention of the phase contrast microscope. Figure
reproduced with permission from [7]. Reprinted from [7], Copyright
© 2012 Elsevier B.V. All rights reserved.

optics to image processing and pioneered Zernike moments,
which hold the property of rotation invariance and can be used
as shape descriptors for pattern recognition [12]. The Zernike
moments have since then become a valuable shape descriptor
for image analysis. After entering the 21st century, the devel-
opments of Zernike polynomials gradually becomemature and
several Zernike sets were standardized to promote effective
communication by the American National Standards Institute
(ANSI) [13, 14] and the International Organization for Stand-
ardization (ISO) [15–17] (see figure 3).

The widespread use of Zernike polynomials stems from
their uniquemathematical properties. First, Zernike polynomi-
als are orthogonal over a unit circle. The orthogonality makes
the expansion coefficients of a wavefront function independ-
ent of the number of terms [18]. This also enables conveni-
ent mathematical manipulations of wavefronts, such as addi-
tion, subtraction, translation, rotation, and scaling. Second,
while other polynomials orthogonal over a unit disk also exist,
Zernike polynomials are unique in the sense that they have
good corresponding relationships with classical aberrations,
such as astigmatism, coma, and spherical aberration [19, 20].
This enables fast classifications and quantifications of wave-
front aberrations. Third, Zernike polynomials make the evalu-
ation of the image quality of an optical system easy since the
system PSF can be analytically computed from the Zernike
expansion coefficients of wavefront aberrations based on the
(extended) Nijboer–Zernike theory [6, 8, 21]. In addition,
Zernike polynomials can serve as a basis set for wavefront
reconstruction in slope sensitive wavefront sensors, such as the
Shack–Hartmann wavefront slope sensor [22, 23] and the lat-
eral shearing interferometers [24], which are important wave-
front sensing tools in ophthalmic optics and adaptive optics.

Nowadays, a variety of indices for Zernike polynomials
are in use by authors and authorities around the world. Well-
known ones include the Noll indices [9, 25], the OSA/ANSI
indices [13–15, 17, 26, 27], the Fringe/University of Arizona
indices [10, 19], the ISO 14999 indices [16, 28], the Born and
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Figure 2. Number of publications on Zernike polynomials from 1970 to 2020. Source: Web of Science; keyword: Zernike polynomials;
search criteria: topic.

Figure 3. Key events in the history of Zernike polynomials (ZPs).

Wolf indices [29], and the Malacara indices [30, 31]. Each
indexing scheme adopts a different naming, normalization,
and indexing strategy and even the coordinate system may be
different, which causes great confusion to researchers work-
ing with the polynomials and hinders effective communica-
tion. Moreover, mathematical properties of Zernike polyno-
mials developed in the past few decades, such as derivatives,
Fourier transform, and recurrence relations, are scattered in the
literature and no work summarizes these results. This motiv-
ates us to prepare a review paper on the Zernike polynomials
with the aims of clearing up the confusion of different indices,

summarizing mathematical properties, surveying state-of-the-
art applications, and providing a quick reference guide for sci-
entists and engineers in this community.

The remainder of this review is organized as follows (see
figure 4). Section 2 reviews different indexing schemes for
the Zernike circle polynomials, their mathematical proper-
ties, roles in wavefront fitting, relationships with classical
Seidel aberrations and the Strehl ratio, connections with
other important functions, such as the XY monomials and
the Legendre polynomials. Section 3 discusses orthonormal
polynomials over noncircular pupils based on the Zernike

4
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Figure 4. Major topics discussed in this review.

circle polynomials with an emphasis on Zernike annular poly-
nomials, whose definition, mathematical properties, and roles
in wavefront fitting are presented. Section 4 surveys state-
of-the-art applications of Zernike polynomials in a range of
fields, including diffraction theory, optical design, optical test-
ing, ophthalmic optics, adaptive optics, and image analysis.
Finally, section 5 draws concluding remarks. Table 1 lists the
acronyms and symbols used in this review.

2. Zernike polynomials over circular pupils

2.1. Definitions

Zernike polynomials over circular pupils are called Zernike
circle polynomials or simply Zernike polynomials. They

are defined over a unit disk and can be most conveniently
expressed in polar coordinates (ρ, θ), where ρ is the normal-
ized radial coordinate (0 ⩽ ρ ⩽ 1) and θ is the polar angle
measured counterclockwise from the +x-axis (0 ⩽ θ < 2π),
as shown in figure 5(a). The polar coordinates ρ and θ can be
converted to the Cartesian coordinates x and y using the trigo-
nometric functions:

x= ρcosθ, y= ρsinθ. (1)

Likewise, the Cartesian coordinates x and y can be conver-
ted to polar coordinates ρ and θ by:

ρ=
√
x2 + y2, θ = arctan

(y
x

)
. (2)

5



J. Opt. 24 (2022) 123001 Topical Review

Table 1. List of acronyms and symbols.

Symbols Meaning

3D Three-dimensional
PSF Point spread function
(x,y), (ρ,θ) Cartesian coordinates and polar version in the spatial domain
(u,v), (r,ϕ) Cartesian coordinates and polar version in the frequency domain
Fk Orthonormal polynomials over arbitrary pupil shapes
Gi
n Zernike resizing factor

I Intensity; moment invariants
Jn(x) Bessel functions
Mnm Zernike moments
Nmn Normalization factor
Pn(α,β) Jacobi polynomials
Pn Legendre polynomials
P(ρ,θ) Pupil function
Rmn (ρ) Zernike radial polynomials
Tmn XY monomials
U(r,ϕ,υ) Complex amplitude on the image plane
Un Chebyshev polynomials
V l
n Complex Zernike circle polynomials of degree n with an azimuthal frequency l

W Wavefront aberration
W Wavefront mean value
Zj(ρ,θ),Zmn (ρ,θ) Zernike circle polynomials of degree n with an azimuthal frequency m
Zj(ρ,θ;ε),Zmn (ρ,θ;ε) Zernike annular polynomials with an obscuration ratio of ε
Φ(ρ,θ) Phase function
aj,amn Zernike expansion coefficients
bj,bmn Transformed Zernike expansion coefficients
f(x,y) Original images
g(x,y) Degraded images
ωmn ,ω

l
n Weighting factor for (complex) annular Zernike radial polynomials

ψ(x,y) Basis functions
Mnl Pseudo Zernike moments
Rm

n Pseudo Zernike radial polynomials
ℜm
n Radon transform of Zernike radial polynomials

V l
n Pseudo Zernike polynomials

Zj(r,ϕ) Fourier transform of Zernike circle polynomials
Zj(r,ϕ;ε) Fourier transform of Zernike annular polynomials
A Coefficient matrix
a Zernike expansion coefficients vector
W Wavefront vector
s Wavefront slope vector

Figure 5. Definition of a unit circle: (a) Coordinate system used in this review. (b) Coordinate system not recommended.
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It is worth noting that while most people follow the con-
vention that θ is positive when measured counterclockwise
from the +x-axis, some authors, such as Born [32] and
Malacara [30, 31], measure the polar angle from the +y-axis
in the clockwise direction [33], which stems from early (pre-
computer) aberration theory and is not recommended [27].

Zernike polynomials have several different indexing
schemes during evolution, causing confusion to researchers,
especially beginners. In this section, we classify indices in the
literature into six groups, i.e. the Noll indices, the OSA/ANSI
indices, the Fringe indices, the ISO 14999 indices, the Born
andWolf indices, and the Malacara indices, and compare their
naming, normalization, and indexing strategies.

2.1.1. The Noll indexing scheme. When Zernike first intro-
duced the orthogonal polynomials, radial polynomials and azi-
muthal functions were explicitly given [1, 2]. However, the
normalization and ordering methods for these polynomials
were not specified. Noll in 1976 sorted and normalized Zernike
polynomials to facilitate statistical analysis of wavefront dis-
tortion caused by atmospheric turbulence [9]. The indexing
scheme was later followed by many authors [34–36] and was
used in commercial software, such as Zemax [25] as the stand-
ard indices. Note that the ‘standard’ indices in Zemax are not
associated with any ANSI or ISO standards. In this section,
we summarize the Noll indexing scheme, discuss normalized
and non-normalized Zernike circle polynomials, and extend
the definitions from the real domain to the complex domain.

2.1.1.1. Real Zernike circle polynomials. In the Noll indices,
the normalized or orthonormal Zernike circle polynomials are
defined as the products of normalization factors, radial poly-
nomials, and azimuthal (angular) functions, which are written
as [9]:

Zj(ρ,θ) = Zmn (ρ,θ)

=


√
2(n+ 1)Rmn (ρ)cosmθ, m ̸= 0, j is even,√
2(n+ 1)Rmn (ρ)sinmθ, m ̸= 0, j is odd,√
(n+ 1)Rmn (ρ), m= 0,

(3)

where the index n is the degree of the radial polynomials,
Rmn (ρ); the index m is the azimuthal frequency describing the
repetition of the angular function; n and m are non-negative
integers and satisfy n − m ⩾ 0 and n − m = even; j is a
mode-ordering number starting from 1 and its relationships
with n and m are presented in equation (8). There are a total
of (n + 1)(n + 2)/2 linearly independent polynomials for a
degree ⩽ n. The radial polynomial Rmn (ρ) is defined as [1, 6]:

Rmn (ρ) =
(n−m)/2∑
s=0

(−1)s(n− s)!

s!
(
n+m
2 − s

)
!
(
n−m
2 − s

)
!
ρn−2s. (4)

The radial polynomials of the first few degrees are shown
in figure 6. It is easy to verify the following relations:

Rmn (1) = 1, (5)

Figure 6. Zernike radial polynomials of the first few degrees when
m = 0, 1, and 2.

|Zj(ρ,θ)|⩽

√
2(n+ 1)
1+ δm0

. (6)

The normalized Zernike circle polynomials meet the fol-
lowing orthonormality condition:

´ 2π
0

´ 1
0 Zj(ρ,θ)Zj ′(ρ,θ)ρdρdθ´ 2π

0

´ 1
0 ρdρdθ

= δjj ′ , (7)

where δjj ′ is the Kronecker delta function.

7
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The orthonormal Zernike circle polynomials can be sorted
by either the single index, j, or the double indices, n and m.
The former is useful for describing Zernike expansion coeffi-
cients while the latter is useful for unambiguously describing
the functions. To convert a given value j to n and m, one can
use the following relationships [36]:

n=
⌊(√

2j− 1+ 0.5
)
− 1
⌋
,

m=

 2×
⌊
2j+1−n(n+1)

4

⌋
, n is even,

2×
⌊
2( j+1)−n(n+1)

4

⌋
− 1, n is odd,

(8)

where ⌊x⌋ denotes the floor function that gives as output the
greatest integer less than or equal to x. For example, ⌊2.4⌋= 2.
To convert given values of n and m to j, the following relation-
ship can be used:

j=


n(n+1)

2 + 1, m= 0,[
n(n+1)

2 +m, n(n+1)
2 +m+ 1

]
, m ̸= 0.

(9)

Table 2 lists the first 37-term real orthonormal Zernike
circle polynomials in the polar and Cartesian coordinate sys-
tems and the values for n, m, and j.

The non-normalized real Zernike circle polynomials can be
obtained by dropping the normalization factors from the nor-
malized Zernike circle polynomials as:

Zj(ρ,θ) = Zmn (ρ,θ) =


Rmn (ρ)cosmθ, m ̸= 0, j is even,

Rmn (ρ)sinmθ, m ̸= 0, j is odd,
Rmn (ρ), m= 0.

(10)
They satisfy the following relationship:

|Zj(ρ,θ)|⩽ 1. (11)

The orthogonality of non-normalized Zernike circle poly-
nomials can be written as:

´ 2π
0

´ 1
0 Zj(ρ,θ)Zj ′(ρ,θ)ρdρdθ´ 2π

0

´ 1
0 ρdρdθ

=
1+ δm0
2(n+ 1)

δjj ′ . (12)

Note that the integral in the denominator is equal to π.
Figures 7 and 8 show the three-dimensional (3D) visualiza-
tion of the non-normalized Zernike circle polynomials up to
the sixth degree and their corresponding interferometric fringe
patterns as in optical testing [37].

2.1.1.2. Complex Zernike circle polynomials. The Zernike
circle polynomials in the complex domain were not defined in
Noll’s original definition [9]. However, they can be obtained
based on Bhatia and Wolf’s work [3] by replacing the azi-
muthal functions in real Zernike circle polynomials with

a complex exponential function. The orthonormal complex
Zernike circle polynomials can be written as [4]:

V l
n(ρ,θ) =

√
n+ 1Rln(ρ)exp(ilθ), (13)

where n is a non-negative integer, l is an integer, n − |l| ⩾ 0
and is even. The radial polynomial is defined as:

Rln(ρ) =
(n−|l|)/2∑

s=0

(−1)s(n− s)!

s!
(
n+|l|
2 − s

)
!
(
n−|l|
2 − s

)
!
ρn−2s. (14)

The normalized complex Zernike circle polynomials meet
the following orthonormality condition:

´ 2π
0

´ 1
0 [V

l
n(ρ,θ)]

∗
Vl

′

n ′(ρ,θ)ρdρdθ´ 2π
0

´ 1
0 ρdρdθ

= δll ′δnn ′ . (15)

where ∗ denotes complex conjugate.
The non-normalized version of the complex Zernike circle

polynomials are defined as [32]:

V l
n(ρ,θ) = Rln(ρ)exp(ilθ). (16)

The orthogonality can be expressed as:

´ 2π
0

´ 1
0 [V

l
n(ρ,θ)]

∗
Vl

′

n ′(ρ,θ)ρdρdθ´ 2π
0

´ 1
0 ρdρdθ

=
1

n+ 1
δll ′δnn ′ . (17)

The complex and real definitions of Zernike circle polyno-
mials are related via the Euler’s formula [3, 32]. The complex
version is useful to define Zernike moments in image analysis,
which will be discussed in section 4.6.

2.1.2. The OSA/ANSI indexing scheme. The OSA/ANSI
indices for Zernike circle polynomials were initially developed
by an OSA Standards Taskforce in 1999 to reach consensus
recommendations on definitions, conventions, and standards
for reporting of optical aberrations of human eyes [26, 27]. It
was later standardized in ANSI Z80.28 [13, 14] and ISO 24157
[15, 17] and adopted in some commercial software, such as
COMSOL Ray Optics Module [38].

The Zernike circle polynomials in the OSA/ANSI indices
employ a right-handed coordinate system, as shown in figure 9,
and are defined in the real domain as [13, 14, 26, 27].

Zj(ρ,θ) = Zmn (ρ,θ) =

{
Nmn R

|m|
n (ρ)cos(mθ), m⩾ 0,

Nmn R
|m|
n (ρ)sin(|m|θ), m< 0,

(18)

where n is a non-negative integer, m is an integer, n − |m| ⩾ 0
and is even, j is a mode-ordering number starting from 0. The
radial polynomial, Rmn (ρ), is defined as:

R|m|
n (ρ) =

(n−|m|)/2∑
s=0

(−1)s(n− s)!

s!
(
n+|m|

2 − s
)
!
(
n−|m|

2 − s
)
!
ρn−2s. (19)

8
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Table 2. First 37-term orthonormal Zernike circle polynomials under the Noll indices [25, 36].

j n m Zj(ρ, θ) Zj(x, y) Aberration

1 0 0 1 1 Piston

2 1 1 2ρcosθ 2x x-tilt
3 1 2ρsinθ 2y y-tilt

4 2 0
√
3(2ρ2 − 1)

√
3[2(x2 + y2)− 1] Defocus

5 2
√
6ρ2 sin2θ 2

√
6xy 45◦ Primary

astigmatism
6 2

√
6ρ2 cos2θ

√
6(x2 − y2) 0◦ Primary

astigmatism

7 3 1
√
8(3ρ3 − 2ρ)sinθ

√
8y[3(x2 + y2)− 2] Primary y-coma

8 1
√
8(3ρ3 − 2ρ)cosθ

√
8x[3(x2 + y2)− 2] Primary x-coma

9 3
√
8ρ3 sin3θ

√
8y(3x2 − y2)

10 3
√
8ρ3 cos3θ

√
8x(x2 − 3y2)

11 4 0
√
5(6ρ4 − 6ρ2 + 1)

√
5[6(x2 + y2)2 − 6(x2 + y2)+ 1] Primary spherical

aberration
12 2

√
10(4ρ4 − 3ρ2)cos2θ

√
10(x2 − y2)[4(x2 + y2)− 3] 0◦ Secondary

astigmatism
13 2

√
10(4ρ4 − 3ρ2)sin2θ 2

√
10xy[4(x2 + y2)− 3] 45◦ Secondary

astigmatism
14 4

√
10ρ4 cos4θ

√
10[(x2 + y2)2 − 8x2y2]

15 4
√
10ρ4 sin4θ 4

√
10xy(x2 − y2)

16 5 1
√
12(10ρ5 − 12ρ3 + 3ρ)cosθ

√
12x[10(x2 + y2)2 − 12(x2 + y2)+ 3] Secondary x-coma

17 1
√
12(10ρ5 − 12ρ3 + 3ρ)sinθ

√
12y[10(x2 + y2)2 − 12(x2 + y2)+ 3] Secondary y-coma

18 3
√
12(5ρ5 − 4ρ3)cos3θ

√
12x(x2 − 3y2)[5(x2 + y2)− 4]

19 3
√
12(5ρ5 − 4ρ3)sin3θ

√
12y(3x2 − y2)[5(x2 + y2)− 4]

20 5
√
12ρ5 cos5θ

√
12x[16x4 − 20x2(x2 + y2)+ 5(x2 + y2)2]

21 5
√
12ρ5 sin5θ

√
12y[16y4 − 20y2(x2 + y2)+ 5(x2 + y2)2]

22 6 0
√
7(20ρ6 − 30ρ4 + 12ρ2 − 1)

√
7[20(x2 + y2)3 − 30(x2 + y2)2 + 12(x2 + y2)− 1] Secondary spherical

23 2
√
14(15ρ6 − 20ρ4 + 6ρ2)sin2θ 2

√
14xy[15(x2 + y2)2 − 20(x2 + y2)+ 6] 45◦ Tertiary

astigmatism
24 2

√
14(15ρ6 − 20ρ4 + 6ρ2)cos2θ

√
14(x2 − y2)[15(x2 + y2)2 − 20(x2 + y2)+ 6] 0◦ Tertiary

astigmatism
25 4

√
14(6ρ6 − 5ρ4)sin4θ 4

√
14xy(x2 − y2)[6(x2 + y2)− 5]

26 4
√
14(6ρ6 − 5ρ4)cos4θ

√
14[(x2 + y2)2 − 8x2y2][6(x2 + y2)− 5]

27 6
√
14ρ6 sin6θ

√
14xy[32x4 − 32x2(x2 + y2)+ 6(x2 + y2)2]

28 6
√
14ρ6 cos6θ

√
14[32x6 − 48x4(x2 + y2)+

18x2(x2 + y2)2 − (x2 + y2)3]

29 7 1 4(35ρ7 − 60ρ5 + 30ρ3 − 4ρ)sinθ 4y[35(x2 + y2)3 − 60(x2 + y2)2 + 30(x2 + y2)− 4] Tertiary y-coma
30 1 4(35ρ7 − 60ρ5 + 30ρ3 − 4ρ)cosθ 4x[35(x2 + y2)3 − 60(x2 + y2)2 + 30(x2 + y2)− 4] Tertiary x-coma
31 3 4(21ρ7 − 30ρ5 + 10ρ3)sin3θ 4y(3x2 − y2)[21(x2 + y2)2 − 30(x2 + y2)+ 10]
32 3 4(21ρ7 − 30ρ5 + 10ρ3)cos3θ 4x(x2 − 3y2)[21(x2 + y2)2 − 30(x2 + y2)+ 10]
33 5 4(7ρ7 − 6ρ5)sin5θ 4[4x2y(x2 − y2)+ y(x2 + y2)2 − 8x2y3]

×[7(x2 + y2)− 6]
34 5 4(7ρ7 − 6ρ5)cos5θ 4[x(x2 + y2)2 − 8x3y2 − 4xy2(x2 − y2)]

×[7(x2 + y2)− 6]
35 7 4ρ7 sin7θ 8x2y[3(x2 + y2)2 − 16x2y2]

+4y(x2 − y2)[(x2 + y2)2 − 16x2y2]
36 7 4ρ7 cos7θ 4x(x2 − y2)[(x2 + y2)2 − 16x2y2]

−8xy2[3(x2 + y2)2 − 16x2y2]

37 8 0 3(70ρ8 − 140ρ6 + 90ρ4 − 20ρ2 + 1) 3[70(x2 + y2)4 − 140(x2 + y2)3

+90(x2 + y2)2 − 20(x2 + y2)+ 1]

Tertiary spherical

9
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Figure 7. Pyramid of the non-normalized Zernike circle polynomials up to the sixth degree under the Noll indexing scheme.

Figure 8. Interferometric fringe patterns corresponding to the Zernike aberrations shown in figure 7.

10
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Figure 9. Conventional right-handed coordinate system for the eye in Cartesian and polar forms.

The normalization factor, Nmn , can be written as:

Nmn =

√
2(n+ 1)
(1+ δm0)

. (20)

The Zernike circle polynomials under the OSA/ANSI
indices can be sorted by either the single index, j, or the double
indices, n and m. To achieve conversion among these indices,
one can use the following relationships [26, 27]:

j=
n(n+ 2)+m

2
,

n=

⌈
−3+

√
9+ 8j

2

⌉
,

m= 2j− n(n+ 2), (21)

where ⌈x⌉ denotes the ceiling function that gives as output the
least integer greater than or equal to x. For example, when
j = 4, n = ⌈1.7⌉ = 2, m = 0. Table 3 lists the first 37-term
Zernike circle polynomials in the OSA/ANSI indices and the
values for n, m, and j.

2.1.3. The Fringe indexing scheme. The Zernike circle
polynomials under the fringe indexing scheme (also known
as the USAF set) were first developed by John Loomis in an
interferogram analysis program called FRINGE at the Uni-
versity of Arizona, Optical Sciences Center in the 1970s
[10, 11, 40, 41]. They are a low-order Zernike set supplemen-
ted with radial polynomials of higher order and are preferred
for lens design and optical metrology because they group
terms according to optical wavefront aberration order [42, 43].

The Zernike circle polynomials under the fringe indices do
not have normalization factors and can be written as:

Zj(ρ,θ) = Zmn (ρ,θ) =

{
R|m|
n (ρ)cos(mθ), m⩾ 0,

R|m|
n (ρ)sin(|m|θ), m< 0,

(22)

where n is a non-negative integer, m is an integer, n − |m| ⩾ 0
and is even, j is a mode-ordering number starting from 0 (In
CODE V and Zemax, j starts from 1 instead of 0). The radial
polynomial is expressed as:

R|m|
n =

(n−|m|)/2∑
s=0

(−1)s(n− s)!

s!
(
n+|m|

2 − s
)
!
(
n−|m|

2 − s
)
!
ρn−2s. (23)

Note that the above formulas are modified from the Wyant
and Creath formula [19] to facilitate comparisons with other
indices. The final mathematical expression for each term, as
listed in table 4, is the same as that in Wyant’s notation.

Defining N = (n + |m|)/2, Zernike fringe polynomials can
be sorted as follows. First arrange N in ascending order from
0 to 6; then sort n in ascending order for a given value of N;
finally organize m in descending order for given values of N
and n. Comparedwith other Zernike sets, the Zernike fringe set
is unique in the sense that it only has 37 terms (N ⩽ 6). This
small polynomial set is useful for interferogram analysis and
automatic lens design and is widely adopted in commercial
optical software, such as Zemax [25], CODE V [29], OSLO
[44, 45], and MetroPro [46].

2.1.4. The ISO-14999 indexing scheme. The ISO-14999
indices were first published by ISO in the ISO/TR 14999–2
technical report in 2005 [28] for the description of wavefront
in interferometricmeasurement of optical elements and optical
system and then updated in 2019 [16].

The Zernike circle polynomials under the ISO-14999
indexing scheme do not have normalization factors and can
be written as [16, 28]:

Zj(ρ,θ) = Zmn (ρ,θ) =

{
R|m|
n (ρ)cos(mθ), m⩾ 0,

R|m|
n (ρ)sin(|m|θ), m< 0,

(24)

11
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Table 3. First 37-term Zernike polynomials under the OSA/ANSI indices [14, 27, 39].

j n m Zj Aberration

0 0 0 1 Piston

1 1 −1 2ρsinθ y-tilt
2 1 2ρcosθ x-tilt

3 2 −2
√
6ρ2 sin2θ 45◦ Primary astigmatism

4 0
√
3(2ρ2 − 1) Defocus

5 2
√
6ρ2 cos2θ 0◦ Primary astigmatism

6 3 −3
√
8ρ3 sin3θ

7 −1
√
8(3ρ3 − 2ρ)sinθ Primary y-coma

8 1
√
8(3ρ3 − 2ρ)cosθ Primary x-coma

9 3
√
8ρ3 cos3θ

10 4 −4
√
10ρ4 sin4θ

11 −2
√
10(4ρ4 − 3ρ2)sin2θ 45◦ Secondary astigmatism

12 0
√
5(6ρ4 − 6ρ2 + 1) Primary spherical aberration

13 2
√
10(4ρ4 − 3ρ2)cos2θ 0◦ Secondary astigmatism

14 4
√
10ρ4 cos4θ

15 5 −5
√
12ρ5 sin5θ

16 −3
√
12(5ρ5 − 4ρ3)sin3θ

17 −1
√
12(10ρ5 − 12ρ3 + 3ρ)sinθ Secondary y-coma

18 1
√
12(10ρ5 − 12ρ3 + 3ρ)cosθ Secondary x-coma

19 3
√
12(5ρ5 − 4ρ3)cos3θ

20 5
√
12ρ5 cos5θ

21 6 −6
√
14ρ6 sin6θ

22 −4
√
14(6ρ6 − 5ρ4)sin4θ

23 −2
√
14(15ρ6 − 20ρ4 + 6ρ2)sin2θ 45◦ Tertiary astigmatism

24 0
√
7(20ρ6 − 30ρ4 + 12ρ2 − 1) Secondary spherical

25 2
√
14(15ρ6 − 20ρ4 + 6ρ2)cos2θ 0◦ Tertiary astigmatism

26 4
√
14(6ρ6 − 5ρ4)cos4θ

27 6
√
14ρ6 cos6θ

28 7 −7 4ρ7 sin7θ
29 −5 4(7ρ7 − 6ρ5)sin5θ
30 −3 4(21ρ7 − 30ρ5 + 10ρ3)sin3θ
31 −1 4(35ρ7 − 60ρ5 + 30ρ3 − 4ρ)sinθ Tertiary y-coma
32 1 4(35ρ7 − 60ρ5 + 30ρ3 − 4ρ)cosθ Tertiary x-coma
33 3 4(21ρ7 − 30ρ5 + 10ρ3)cos3θ
34 5 4(7ρ7 − 6ρ5)cos5θ
35 7 4ρ7 cos7θ

36 8 −8
√
18ρ8 sin8θ

where n is a non-negative integer, m is an integer, n − |m| ⩾ 0
and is even, j is a mode-ordering number starting from 0 (j= 0,
1, 2, …, ∞). The radial polynomial is expressed as:

R|m|
n =

(n−|m|)/2∑
s=0

(−1)s(n− s)!

s!
(
n+|m|

2 − s
)
!
(
n−|m|

2 − s
)
!
ρn−2s. (25)

DefiningN = n+ |m|, the Zernike circle polynomials under
the ISO-14999 indices are sorted as follows. First arrange N in
ascending order from 0 to ∞; then sort n in ascending order
for a given value of N; finally organize m in descending order
for given values of N and n. One may find that the ISO-14999

indices share almost the same definition as the fringe indices
except that the former contains infinite terms. Actually, the
fringe set is a subset of the ISO-14999 set, which is called
the Extended Fringe Zernike Polynomials in CODE V [29].
Table 5 lists the first 37 terms of the ISO-14999 set and the
values for n, m, N, and j.

2.1.5. The Born and Wolf indexing scheme. In the clas-
sic textbook Principle of Optics, Born and Wolf reviewed
the definition of Zernike circle polynomials and used it for
the expansion of aberration functions [32, 47]. Many people
[12, 48] later follow the Born and Wolf definition and treat it

12
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Table 4. Fringe set of the Zernike circle polynomials [19, 25, 29].

j N n m Zj(ρ, θ) Aberration

0 0 0 0 1 Piston

1 1 1 +1 ρcosθ Tilt X
2 1 −1 ρsinθ Tilt Y
3 2 0 2ρ2 − 1 Defocus

4 2 2 +2 ρ2 cos2θ Astigmatism X
5 2 −2 ρ2 sin2θ Astigmatism Y
6 3 +1 (3ρ3 − 2ρ)cosθ Coma X
7 3 −1 (3ρ3 − 2ρ)sinθ Coma Y
8 4 0 6ρ4 − 6ρ2 + 1 Primary spherical

9 3 3 +3 ρ3 cos3θ Trefoil X
10 3 −3 ρ3 sin3θ Trefoil Y
11 4 +2 (4ρ4 − 3ρ2)cos2θ Secondary X astigmatism
12 4 −2 (4ρ4 − 3ρ2)sin2θ Secondary Y astigmatism
13 5 +1 (10ρ5 − 12ρ3 + 3ρ)cosθ Secondary X coma
14 5 −1 (10ρ5 − 12ρ3 + 3ρ)sinθ Secondary Y coma
15 6 0 20ρ6 − 30ρ4 + 12ρ2 − 1 Secondary spherical

16 4 4 +4 ρ4 cos4θ Tetrafoil X
17 4 −4 ρ4 sin4θ Tetrafoil X
18 5 +3 (5ρ5 − 4ρ3)cos3θ Secondary X trefoil
19 5 −3 (5ρ5 − 4ρ3)sin3θ Secondary Y trefoil
20 6 +2 (15ρ6 − 20ρ4 + 6ρ2)cos2θ Tertiary X astigmatism
21 6 −2 (15ρ6 − 20ρ4 + 6ρ2)sin2θ Tertiary Y astigmatism
22 7 +1 (35ρ7 − 60ρ5 + 30ρ3 − 4ρ)cosθ Tertiary X coma
23 7 −1 (35ρ7 − 60ρ5 + 30ρ3 − 4ρ)sinθ Tertiary Y coma
24 8 0 70ρ8 − 140ρ6 + 90ρ4 − 20ρ2 + 1 Tertiary spherical

25 5 5 +5 ρ5 cos5θ Pentafoil X
26 5 −5 ρ5 sin5θ Pentafoil Y
27 6 +4 (6ρ6 − 5ρ4)cos4θ Secondary X Tetrafoil
28 6 −4 (6ρ6 − 5ρ4)sin4θ Secondary Y Tetrafoil
29 7 +3 (21ρ7 − 30ρ5 + 10ρ3)cos3θ Tertiary X Trefoil
30 7 −3 (21ρ7 − 30ρ5 + 10ρ3)sin3θ Tertiary Y Trefoil
31 8 +2 (56ρ8 − 105ρ6 + 60ρ4 − 10ρ2)cos2θ Quaternary X astigmatism
32 8 −2 (56ρ8 − 105ρ6 + 60ρ4 − 10ρ2)sin2θ Quaternary Y astigmatism
33 9 +1 (126ρ9 − 280ρ7 + 210ρ5 − 60ρ3 + 5ρ)cosθ Quaternary X coma
34 9 −1 (126ρ9 − 280ρ7 + 210ρ5 − 60ρ3 + 5ρ)sinθ Quaternary Y coma
35 10 0 252ρ10 − 630ρ8 + 560ρ6 − 210ρ4 + 30ρ2 − 1 Quaternary Spherical

36 6 12 0 924ρ12 − 2772ρ10 + 3150ρ8 − 1680ρ6 + 420ρ4 − 42ρ2 + 1

as the ‘standard’ indexing scheme. However, as pointed out
in Born and Wolf’s book (appendix VII in the 7th expanded
edition [32]), the indices actually originated from Bhatia and
Wolf’s work published in 1954 [3].

The Zernike circle polynomials under the Born and Wolf
indices do not have normalization factors and can be written
as [3, 32]:

Zj(ρ,θ) = Zmn (ρ,θ) =

{
R|m|
n (ρ)cos(mθ), m⩾ 0,

R|m|
n (ρ)sin(|m|θ), m< 0,

(26)

where n is a non-negative integer, m is an integer, n − |m| ⩾ 0
and is even, j is a mode-ordering number starting from 1 (j= 1,
2, …, ∞). The radial polynomial is expressed as:

R|m|
n =

(n−|m|)/2∑
s=0

(−1)s(n− s)!

s!
(
n+|m|

2 − s
)
!
(
n−|m|

2 − s
)
!
ρn−2s. (27)

The Zernike circle polynomials under the Born and Wolf
indices are sorted as follows. First arrange n in ascending
order from 0 to ∞ and then sort m in descending order for

13
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Table 5. First 37-term Zernike circle polynomials under the ISO-14999 indices [16, 28].

j N n m Zj Aberration

0 0 0 0 1 Piston

1 2 1 1 ρcosθ x-Tilt
2 1 −1 ρsinθ y-Tilt
3 2 0 2ρ2 − 1 Defocus

4 4 2 2 ρ2 cos2θ 0◦ Primary astigmatism
5 2 −2 ρ2 sin2θ 45◦ Primary astigmatism
6 3 1 (3ρ3 − 2ρ)cosθ Primary x-coma
7 3 −1 (3ρ3 − 2ρ)sinθ Primary y-coma
8 4 0 6ρ4 − 6ρ2 + 1 Primary spherical aberration

9 6 3 3 ρ3 cos3θ
10 3 −3 ρ3 sin3θ
11 4 2 (4ρ4 − 3ρ2)cos2θ 0◦ Secondary astigmatism
12 4 −2 (4ρ4 − 3ρ2)sin2θ 45◦ Secondary astigmatism
13 5 1 (10ρ5 − 12ρ3 + 3ρ)cosθ Secondary x-coma
14 5 −1 (10ρ5 − 12ρ3 + 3ρ)sinθ Secondary y-coma
15 6 0 20ρ6 − 30ρ4 + 12ρ2 − 1 Secondary spherical

16 8 4 4 ρ4 cos4θ
17 4 −4 ρ4 sin4θ
18 5 3 (5ρ5 − 4ρ3)cos3θ
19 5 −3 (5ρ5 − 4ρ3)sin3θ
20 6 2 (15ρ6 − 20ρ4 + 6ρ2)cos2θ 0◦ Tertiary astigmatism
21 6 −2 (15ρ6 − 20ρ4 + 6ρ2)sin2θ 45◦ Tertiary astigmatism
22 7 1 (35ρ7 − 60ρ5 + 30ρ3 − 4ρ)cosθ Tertiary x-coma
23 7 −1 (35ρ7 − 60ρ5 + 30ρ3 − 4ρ)sinθ Tertiary y-coma
24 8 0 70ρ8 − 140ρ6 + 90ρ4 − 20ρ2 + 1 Tertiary spherical

25 10 5 5 ρ5 cos5θ
26 5 −5 ρ5 sin5θ
27 6 4 (6ρ6 − 5ρ4)cos4θ
28 6 −4 (6ρ6 − 5ρ4)sin4θ
29 7 3 (21ρ7 − 30ρ5 + 10ρ3)cos3θ
30 7 −3 (21ρ7 − 30ρ5 + 10ρ3)sin3θ
31 8 2 (56ρ8 − 105ρ6 + 60ρ4 − 10ρ2)cos2θ 0◦ Quaternary astigmatism
32 8 −2 (56ρ8 − 105ρ6 + 60ρ4 − 10ρ2)sin2θ 45◦ Quaternary astigmatism
33 9 1 (126ρ9 − 280ρ7 + 210ρ5 − 60ρ3 + 5ρ)cosθ Quaternary x-coma
34 9 −1 (126ρ9 − 280ρ7 + 210ρ5 − 60ρ3 + 5ρ)sinθ Quaternary y-coma
35 10 0 252ρ10 − 630ρ8 + 560ρ6 − 210ρ4 + 30ρ2 − 1 Quaternary spherical

36 12 6 6 ρ6 cos6θ

a given value of n. The Born andWolf indices are used by sev-
eral authors [12, 48] and software [29]. For example, although
the software CODE V does not explicitly define the standard
Zernike polynomials, the tabulated polynomials in its manual
[29] have the same expressions as those in the Born and Wolf
indices. Table 6 lists the first 37-term Zernike polynomials
under the Born and Wolf indices and the values for n, m,
and j.

2.1.6. The Malacara indexing scheme. Different from the
aforementioned five indexing schemes, the Malacara indices
use a different coordinate convention, where the polar angle,
θ, is measured clockwise from the+y-axis. The Zernike circle

polynomials under the Malacara indices do not have normal-
ization factors and can be written as:

Zj(ρ,θ) = Zmn (ρ,θ) =

{
R|m|
n (ρ)sin(mθ), m> 0,

R|m|
n (ρ)cos(mθ), m⩽ 0,

(28)

where n is a non-negative integer, m is an integer, n − |m| ⩾ 0
and is even, j is a mode-ordering number starting from 1 (j= 1,
2, …, ∞). The radial polynomial is expressed as:

R|m|
n =

(n−|m|)/2∑
s=0

(−1)s(n− s)!

s!
(
n+|m|

2 − s
)
!
(
n−|m|

2 − s
)
!
ρn−2s. (29)

14
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Table 6. First 37-term Zernike circle polynomials under the Born and Wolf indices [29].

j n m Zj(ρ, θ) Aberration

1 0 0 1 Piston

2 1 1 ρcosθ x-tilt
3 −1 ρsinθ y-tilt

4 2 2 ρ2 cos2θ 0◦ Primary astigmatism
5 0 2ρ2 − 1 Defocus
6 −2 ρ2 sin2θ 45◦ Primary astigmatism

7 3 3 ρ3 cos3θ
8 1 (3ρ3 − 2ρ)cosθ Primary x-coma
9 −1 (3ρ3 − 2ρ)sinθ Primary y-coma
10 −3 ρ3 sin3θ

11 4 4 ρ4 cos4θ
12 2 (4ρ4 − 3ρ2)cos2θ 0◦ Secondary astigmatism
13 0 6ρ4 − 6ρ2 + 1 Primary spherical aberration
14 −2 (4ρ4 − 3ρ2)sin2θ 45◦ Secondary astigmatism
15 −4 ρ4 sin4θ

16 5 5 ρ5 cos5θ
17 3 (5ρ5 − 4ρ3)cos3θ
18 1 (10ρ5 − 12ρ3 + 3ρ)cosθ Secondary x-coma
19 −1 (10ρ5 − 12ρ3 + 3ρ)sinθ Secondary y-coma
20 −3 (5ρ5 − 4ρ3)sin3θ
21 −5 ρ5 sin5θ

22 6 6 ρ6 cos6θ
23 4 (6ρ6 − 5ρ4)cos4θ
24 2 (15ρ6 − 20ρ4 + 6ρ2)cos2θ 0◦ Tertiary astigmatism
25 0 20ρ6 − 30ρ4 + 12ρ2 − 1 Secondary spherical
26 −2 (15ρ6 − 20ρ4 + 6ρ2)sin2θ 45◦ Tertiary astigmatism
27 −4 (6ρ6 − 5ρ4)sin4θ
28 −6 ρ6 sin6θ

29 7 7 ρ7 cos7θ
30 5 (7ρ7 − 6ρ5)cos5θ
31 3 (21ρ7 − 30ρ5 + 10ρ3)cos3θ
32 1 (35ρ7 − 60ρ5 + 30ρ3 − 4ρ)cosθ Tertiary x-coma
33 −1 (35ρ7 − 60ρ5 + 30ρ3 − 4ρ)sinθ Tertiary y-coma
34 −3 (21ρ7 − 30ρ5 + 10ρ3)sin3θ
35 −5 (7ρ7 − 6ρ5)sin5θ
36 −7 ρ7 sin7θ

37 8 8 ρ8 cos8θ

The Zernike circle polynomials in the Malacara indices
have the same ordering scheme as the Born and Wolf indices
and are sorted as follows. First arrange n in ascending order
from 0 to ∞ and then sort m in descending order for a given
value of n. The Malacara indices are mainly used in the first
and second editions of the well-known book Optical Shop
Testing [30, 31], the third edition of which, however, defines
the Zernike circle polynomials under theNoll indexing scheme
[36]. Table 7 lists the first 37-term Zernike circle polynomials
under the Malacara indices and the values for n, m, and j.

2.1.7. Comparisons. The different indexing schemes of
Zernike circle polynomials are compared and summarized
in table 8 from the perspectives of coordinate system, nor-
malization, and ordering strategy. In particular, the sort-
ing of the polynomials under different indices is shown
in figure 10 for the first few degrees. An illustration of
the sources and applications of the six indices is presen-
ted in figure 11. For convenience, the Noll indices will be
used in the remaining part of the article unless otherwise
stated.
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Table 7. First 37-term Zernike circle polynomials under the Malacara indices [31].

j n m Zj(ρ, θ) Aberration

1 0 0 1 Piston

2 1 1 ρsinθ x-tilt
3 −1 ρcosθ y-tilt

4 2 2 ρ2 sin2θ 0◦ Primary astigmatism
5 0 2ρ2 − 1 Defocus
6 −2 ρ2 cos2θ 45◦ Primary astigmatism

7 3 3 ρ3 sin3θ
8 1 (3ρ3 − 2ρ)sinθ Primary x-coma
9 −1 (3ρ3 − 2ρ)cosθ Primary y-coma
10 −3 ρ3 cos3θ

11 4 4 ρ4 sin4θ
12 2 (4ρ4 − 3ρ2)sin2θ 0◦ Secondary astigmatism
13 0 6ρ4 − 6ρ2 + 1 Primary spherical aberration
14 −2 (4ρ4 − 3ρ2)cos2θ 45◦ Secondary astigmatism
15 −4 ρ4 cos4θ

16 5 5 ρ5 sin5θ
17 3 (5ρ5 − 4ρ3)sin3θ
18 1 (10ρ5 − 12ρ3 + 3ρ)sinθ Secondary x-coma
19 −1 (10ρ5 − 12ρ3 + 3ρ)cosθ Secondary y-coma
20 −3 (5ρ5 − 4ρ3)cos3θ
21 −5 ρ5 cos5θ

22 6 6 ρ6 sin6θ
23 4 (6ρ6 − 5ρ4)sin4θ
24 2 (15ρ6 − 20ρ4 + 6ρ2)sin2θ 0◦ Tertiary astigmatism
25 0 20ρ6 − 30ρ4 + 12ρ2 − 1 Secondary spherical
26 −2 (15ρ6 − 20ρ4 + 6ρ2)cos2θ 45◦ Tertiary astigmatism
27 −4 (6ρ6 − 5ρ4)cos4θ
28 −6 ρ6 cos6θ

29 7 7 ρ7 sin7θ
30 5 (7ρ7 − 6ρ5)sin5θ
31 3 (21ρ7 − 30ρ5 + 10ρ3)sin3θ
32 1 (35ρ7 − 60ρ5 + 30ρ3 − 4ρ)sinθ Tertiary x-coma
33 −1 (35ρ7 − 60ρ5 + 30ρ3 − 4ρ)cosθ Tertiary y-coma
34 −3 (21ρ7 − 30ρ5 + 10ρ3)cos3θ
35 −5 (7ρ7 − 6ρ5)cos5θ
36 −7 ρ7 cos7θ

37 8 8 ρ8 sin8θ

2.2. Mathematical properties

In this section, we review major mathematical properties
of Zernike circle polynomials, including orthogonality, sym-
metry, Fourier transform, integral representation of radial
polynomials, derivatives, and recurrence relations. For more
properties, one can refer to [51, 52].

2.2.1. Orthogonality. The orthogonal relationships of real
and complex Zernike circle polynomials have been presented
and can be found in equations (7), (12), (15) and (17).
Moreover, the radial and azimuthal functions of Zernike circle
polynomials are also orthogonal and satisfy the following
relationships [36]:

ˆ 1

0
Rmn (ρ)R

m
n ′(ρ)ρdρ=

1
2(n+ 1)

δnn ′ , (30)

ˆ 2π

0


cosmθ cosm ′θ, j and j ′ are both even

cosmθ sinm ′θ, j is even and j ′ is odd

sinmθ cosm ′θ, j is odd and j ′ is even

sinmθ sinm ′θ, j and j ′ are both odd

dθ

=


π(1+ δm0)δmm ′ , j and j ′ are both even;

πδmm ′ , j and j ′ are both odd;

0, otherwise.

(31)

Note that the Noll indices are used here.
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Figure 10. Comparison of the low-order sequences of different indices.

Figure 11. Summary of the different indexing schemes and their sources. ZPs: Zernike polynomials.
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2.2.2. Symmetry. The symmetry of Zernike circle polyno-
mials can be expressed as:

Zmn (ρ,θ) = (−1)mZmn (ρ,θ+π). (32)

2.2.3. The Fourier transform. Define the Fourier transform
pair as:

Zj(u,v) =
¨

Zj(x,y)exp [−i2π (ux+ vy)]dxdy, (33)

Zj(x,y) =
¨

Zj(u,v)exp [i2π (ux+ vy)]dudv, (34)

whereZj is the Fourier transform of Zj and (u, v) are Cartesian
coordinates in the frequency domain. Use (r, ϕ) to denote the
polar coordinates in the frequency domain and apply the trans-
formation relationships x = ρcosθ, y = ρsinθ, u = rcosϕ,
v= rsinϕ, the Fourier transform of Zernike circle polynomials
can be written as [9, 53]:

Zj(r,ϕ)

=

ˆ 2π

0

ˆ 1

0
Zj(ρ,θ)exp [−i2πrρcos(θ−ϕ)]ρdρdθ

=


√

2(n+ 1)(−1)n/2−m Jn+1(2πr)
r cos(mϕ), m ̸= 0, j is even,√

2(n+ 1)(−1)n/2−m Jn+1(2πr)
r sin(mϕ), m ̸= 0, j is odd,√

(n+ 1)(−1)n/2
Jn+1(2πr)

r , m= 0,

(35)

where Jn(x) is the nth-order Bessel function of the first kind
and is defined as [54]:

Jn(x) =
∞∑
s=0

(−1)s

s!(n+ s)!

( x
2

)n+2s
. (36)

The Fourier transform of Zernike circle polynomials is use-
ful for the conversion between Zernike coefficients and Four-
ier series coefficients of a wavefront [53].

2.2.4. Integral representation of radial polynomials. Sub-
stituting equation (35) into the inverse Fourier transform
of Zernike circle polynomials (equation (34)), an integ-
ral representation of Zernike radial polynomials can be
obtained as [2, 6]:

Rmn (ρ) = 2π(− 1)
n−m
2

ˆ ∞

0
Jn+1(2πr)Jm(2πrρ) dr. (37)

This integral representation is useful for deriving a
recurrence relation of the derivatives of Zernike radial
polynomials [9].

2.2.5. Derivatives. The integral representation for the radial
polynomials provides a good starting point for calculating
derivatives. The derivatives of radial polynomials can be writ-
ten in a recursion relation as [9]:

dR|m|
n (ρ)

dρ
= n

[
R|m|−1
n−1 (ρ)+R|m|+1

n−1 (ρ)
]
+

dR|m|
n−2(ρ)

dρ
. (38)

In polar coordinate system, the partial derivatives of
Zernike circle polynomials under the Noll indices with respect
to x and y can be written as [18, 55]:

∂Zj(ρ,θ)
∂x

= Nmn

[
dR|m|

n (ρ)

dρ
Θ|m|(θ)cosθ− R|m|

n (ρ)

ρ

dΘ|m|(θ)

dθ
sinθ

]
,

∂Zj(ρ,θ)
∂y

= Nmn

[
dR|m|

n (ρ)

dρ
Θ|m|(θ)sinθ+

R|m|
n (ρ)

ρ

dΘ|m|(θ)

dθ
cosθ

]
,

(39)

where the normalization factor and the azimuthal function are:

Nmn =

√
2(n+ 1)
(1+ δm0)

, (40)

Θm(θ) =

 cos |m|θ, m ̸= 0, j is even,
sin |m|θ, m ̸= 0, j is odd,
1, m= 0.

(41)

In Cartesian coordinate system, the partial derivatives of
Zernike circle polynomials under the OSA/ANSI indices with
respect to x and y can be written as [14]:

∂Zj(x,y)
∂x

= (1+ δm0)

 n−1∑
n ′=|m|+1

(n ′ + 1)Zn ′
m
|m| (|m|+1)

+ (1− δm0)(1− δm,−1)
n−1∑

n ′=|m|−1

(n ′ + 1)Zn ′
m
|m| (|m|−1)

,
∂Zj(x,y)
∂y

= (1+ δm0)
m
|m|

 n−1∑
n ′=|m|+1

(n ′ + 1)Zn ′
− m

|m| (|m|+1)

− (1− δm0)(1− δm1)
n−1∑

n ′=|m|−1

(n ′ + 1)Zn ′
− m

|m| (|m|−1)

 ,
(42)

where n′ increases with a step of 2 in the summations and in
the case that (|m|+ 1) is larger than (n− 1), the first summation
term does not exist. The Cartesian derivatives of Zernike circle
polynomials can also be obtained using recurrence relations,
as reported in [55–57]. The derivatives of Zernike circle poly-
nomials are useful for certain problems, such as ray tracing in
optical design [58] and wavefront reconstruction in wavefront
sensing [22, 24].
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2.2.6. Recurrence relations. Computation of high-order of
Zernike circle polynomials is necessary for some applications,
such as Zernike moments-based image analysis. Although the
radial polynomials are explicitly formulated (equation (19)),
direct numerical computation suffers from the problem of
low computational efficiency and possible cancellation errors
[59–61]. To deal with these problems, various recurrence rela-
tions have been proposed for evaluating the radial polynomials
[60–64]. Here we briefly review four widely-used recurrence
methods, including the modified Kintner method [59, 65],
the Prata’s method [66], the q-recursive method [59], and the
Shakibaei and Paramesran method [62].

ThemodifiedKintner methodwas first proposed byKintner
in 1976 [65] and improved by Chong et al in 2003 [59] by
adding recurrence relations for special cases when n − m = 0
and 2. The improved recurrence relation can be expressed as:

Rmn =


ρn, when n−m= 0,

nρn − (n− 1)ρn−2, when n−m= 2,

1
k1

[
(k2ρ2 + k3)Rmn−2(ρ)+ k4Rmn−4(ρ)

]
,when n−m= 4,6,8, . . . ,

(43)

where n andm are non-negative integers and satisfy n−m⩾ 0
and n − m = even; the coefficients are given by:

k1 =
1
2
(n+m)(n−m)(n− 2),

k2 = 2n(n− 1)(n− 2),

k3 =−m2(n− 1)− n(n− 1)(n− 2),

k4 =−1
2
n(n+m− 2)(n−m− 2). (44)

The modified Kintner method is a degree-varying (n-varying)
approach that computes radial polynomials at higher order
from those at lower order for a fixed value of m.

The Prata methodwas proposed by Prata and Rusch in 1989
[66] and the recurrence relation can be written as:

Rmn (ρ) =

{
ρn, when n−m= 0,

k1ρR
|m−1|
n−1 (ρ)+ k2R

m
n−2(ρ), when n−m= 2,4,6, . . . ,

(45)

where,

k1 =
2n

m+ n
, k2 =

m− n
m+ n

. (46)

The q-recursive method was proposed by Chong et al [59]
and the three-term recurrence relation can be written as:

Rmn (ρ) =


ρn, when n−m= 0,

nρn − (n− 1)ρn−2, when n−m= 2,

k1R
m+4
n (ρ)+

(
k2 +

k3
ρ2

)
Rm+2
n (ρ), when n−m= 4,6,8, · · · ,

(47)

where the coefficients are given by:

k1 =
(m+ 4)(m+ 3)

2
− (m+ 4)k2

+
k3(n+m+ 6)(n−m− 4)

8
,

k2 =
k3(n+m+ 4)(n−m− 2)

4(m+ 3)
+ (m+ 2),

k3 =− 4(m+ 2)(m+ 1)
(n+m+ 2)(n−m)

. (48)

Different from the modified Kintner method and the Prata
method, the q-recursive method is an m-varying method that
computes radial polynomials at lower m from those at higher
m for a fixed radial order n.

The Shakibaei and Paramesran method uses a particularly
simple recursion, in which a radial polynomial is expressed as
a linear combination of three earlier computed radial polyno-
mials as [62]:

Rmn (ρ) = ρ
[
R|m−1|
n−1 (ρ)+Rm+1

n−1 (ρ)
]
−Rmn−2(ρ). (49)

The recursion can be initialized with the conditions
R0
0(ρ) = 1 and Rmn (ρ)≡ 0 when n < m. According to [67], the

speed and accuracy of the recursion outperforms the Prata
method and the q-recursive method in an image processing
setting.

2.2.7. Summary. The mathematical properties of Zernike
circle polynomials are summarized in table 9.

2.3. Wavefront fitting

2.3.1. Mathematical formulation. A wavefront function W
defined over a unit circle can be represented by the linear
combination of finite terms of Zernike circle polynomials
as [31, 34, 68, 69]:

W(Rρ,θ) =
J∑
j=0

ajZj(ρ,θ), (50)

where R is the radius of the pupil, 0⩽ ρ⩽ 1, J is the maximum
number of terms of the polynomials, aj is the expansion coef-
ficients, and Zj is the jth-term Zernike circle polynomial. The
equation can be equivalently expressed in Cartesian coordin-
ates as:

W(x,y) =
J∑
j=0

ajZj(x,y). (51)

Written in discrete and matrix forms, equation (51)
becomes:

Aa=W, (52)
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Table 9. Properties of Zernike circle polynomials and their radial polynomials.

Properties Radial polynomials Zernike circle polynomials

Commutativitya
⟨
Rmn ,R

m ′

n ′

⟩
=
´ 1
0 R

m
n R

m ′

n ′ dρ=
⟨
Rm

′

n ′ ,Rmn
⟩

⟨Zi,Zj⟩=
´ 2π
0

´ 1
0 ZiZjρdρdθ = ⟨Zj,Zi⟩

Homogeneityb
⟨
cRmn ,R

m ′

n ′

⟩
=
´ 1
0 cR

m
n R

m ′

n ′ dρ= c
⟨
Rmn ,R

m ′

n ′

⟩
⟨cZi,Zj⟩=

´ 2π
0

´ 1
0 cZiZjρdρdθ = c⟨Zi,Zj⟩

Distributivity
⟨
Rmn ,R

m ′

n ′ +Rm
′ ′

n ′ ′

⟩
=

⟨
Rmn ,R

m ′

n ′

⟩
+
⟨
Rmn ,R

m ′ ′

n ′ ′

⟩
⟨Zi,Zj+ Zk⟩= ⟨Zi,Zj⟩+ ⟨Zi,Zk⟩

Zero mean value — Zj =
´
Σ
Zj(ρ,θ)ρdρdθ = 0, j ̸= 0

Orthogonality
´ 1
0 R

m
n (ρ)R

m
n ′ (ρ)ρdρ= 1

2(n+1)δnn ′ Non-normalized real ZPs:

1
π

´ 2π
0

´ 1
0 ZjZj ′(ρ)ρdρdθ =

1+δm0
2(n+1)δjj ′

Normalized real ZPs:

1
π

´ 2π
0

´ 1
0 ZjZj ′(ρ)ρdρdθ = δjj ′

Non - normalized complex ZPs:

1
π

´ 2π
0

´ 1
0 [Vmn (ρ)]

∗Vm
′

n ′ (ρ)ρdρdθ = 1
n+1δmm ′δnn ′

Normalized complex ZPs:

1
π

´ 2π
0

´ 1
0 [Vmn (ρ)]

∗Vm
′

n ′ (ρ)ρdρdθ = δmm ′δnn ′

Symmetry Rmn (ρ) = R−m
n (ρ) Zmn (ρ,θ) = (−1)mZmn (ρ,θ+π)

Fourier
transform

—

Zj(k,ϕ)

=


√

2(n+ 1)(−1)n/2−m Jn+1(2πk)
k cos(mϕ), m ̸= 0, j is even√

2(n+ 1)(−1)n/2−m Jn+1(2πk)
k sin(mϕ), m ̸= 0, j is odd√

(n+ 1)(−1)n/2 Jn+1(2πk)
k , m= 0

Integral
representation

Rmn (ρ) = 2π(−1)
n−m
2
´∞
0 Jn+1 (2πk)Jm (2πkρ) dk —

Derivative dR|m|n (ρ)

dρ = n
[
R|m|−1
n−1 (ρ)+R|m|+1

n−1 (ρ)
]
+

dR|m|
n−2(ρ)

dρ

∂Zj(ρ,θ)
∂x

=

[
∂Rmn (ρ)
∂ρ

Θm(θ)cosθ− Rmn (ρ)
ρ

∂Θm(θ)

∂θ
sinθ

]
∂Zj(ρ,θ)
∂y

=

[
∂Rmn (ρ)
∂ρ

Θm(θ)sinθ+
Rmn (ρ)
ρ

∂Θm(θ)

∂θ
cosθ

]
Recurrence
relation

Rmn =
1
k1

[
(k2ρ

2 + k3)R
m
n−2(ρ)+ k4R

m
n−4(ρ)

]
Rmn (ρ) = k1ρR

|m−1|
n−1 (ρ)+ k2R

m
n−2(ρ)

Rmn (ρ) = k1R
m+4
n (ρ)+

(
k2 +

k3
ρ2

)
Rm+2
n (ρ)

—

a Angle brackets denote the inner product of two functions.
b c is a constant.

where,

A=


Z1(x1,y1) Z2(x1,y1) · · · ZJ(x1,y1)
Z1(x2,y2) Z2(x2,y2) · · · ZJ(x2,y2)

...
...

. . .
...

Z1(xK,yK) Z2(xK,yK) · · · ZJ(xK,yK)

 ,

a=


a1
a2
...
aJ

 ,W=


W(x1,y1)
W(x2,y2)

...
W(xK,yK)

 , (53)

where K is the total number of data points within the unit
circle. Generally, equation (52) is an overdetermined linear

system, where there are more equations (K) than unknowns
(J). It can be written into the normal equation [34, 68]:

ATAa= ATW, (54)

where the superscript T denotes matrix transpose. The solution
can be obtained by matrix inversion as:

a= (ATA)−1ATW. (55)

Figure 12 shows an example illustrating circular wave-
front decomposition using orthonormal 37-term Zernike circle
polynomials under the Noll indices. The amplitude of each
coefficient indicates the strength of corresponding aberrations
(table 2).
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Figure 12. Wavefront decomposition using orthonormal Zernike circle polynomials under the Noll indices: (a) wavefront and (b) 37
expansion coefficients.

Table 10. Properties of Zernike based wavefront fitting [18, 35, 36].

Property Formula

Coefficients
independence

aj = 1
π

´ 2π
0

´ 1
0 W(ρ,θ)Zjρdρdθ

Wavefront mean
value

W(ρ,θ) = 1
π

´ 2π
0

´ 1
0 W(ρ,θ)ρdρdθ = a0

Wavefront mean
square value

W2(ρ,θ) = 1
π

´ 2π
0

´ 1
0 W

2(ρ,θ)ρdρdθ =
∞∑
j=0

a2j

Wavefront
variance

σ2 =W2 − (W)2 =
∞∑
j=1

a2j

The Zernike-based wavefront fitting has several useful
properties [18]. First, the truncation of the expansion of a
wavefront does not change the expansion coefficients. In other
words, the expansion coefficients are independent from each
other:

aj =
1
π

ˆ 2π

0

ˆ 1

0
W(ρ,θ)Zjρdρdθ. (56)

Second, all Zernike terms except the piston term have a
mean value of zero and, therefore, the mean value of a wave-
front equals the piston coefficient, i.e.:

W(ρ,θ) =
1
π

ˆ
Σ

W(ρ,θ)ρdρdθ = a0. (57)

Third, wavefront variance equals the sum of the square of
each expansion coefficient, excluding the piston coefficient,
i.e.:

σ2 =
1
π

ˆ 2π

0

ˆ 1

0

[
W(ρ,θ)−W(ρ,θ)

]2
ρdρdθ

=W2 −
(
W
)2

=
∞∑
j=1

a2j . (58)

The properties of Zernike based wavefront fitting are sum-
marized in table 10.

2.3.2. Transformation of Zernike coefficients with pupil trans-
lation, rotation, or resizing. Zernike polynomials and their
associated coefficients are commonly used to quantify the
wavefront aberrations of the eye. When the aberrations of dif-
ferent eyes, pupil sizes, or corrections are compared or aver-
aged, it is important that the Zernike coefficients have been
calculated for the correct position, orientation, and size of the
pupil. In this section, we discuss transformation relationships
of Zernike expansion coefficients for translated, rotated, and
resized pupils, which are shown in figure 13.

2.3.2.1. Translation. Translating a pupil (figure 13(b))
changes the expansion coefficients of a wavefront defined over
it. Assuming that the displacements along the x and the y axis
are∆x and∆y, respectively, the translated wavefront function
can be expanded using the Taylor series [14, 70] as:

W(x−∆x,y−∆y)

=
∞∑
s=0

(−1)s

s!

(
∆x

∂

∂x
+∆y

∂

∂y

)s

W(x,y)

=
∑
n,m

amn

∞∑
s=0

(−1)s

s!

(
∆x

∂

∂x
+∆y

∂

∂y

)s

Zmn (x,y). (59)

New wavefront expansion coefficients bmn can be obtained
by computing the first-order derivatives of the Zernike circle
polynomials in equation (59), which can be expressed as linear
combinations of the untransformed Zernike circle polynomials
(see section 2.2.5).

2.3.2.2. Rotation. Rotating a pupil (figure 13(c)) similarly
changes the expansion coefficients of a wavefront defined over
it, which should be taken into consideration for applications
such as vision correction surgery [71]. For a wavefront coun-
terclockwise rotated with respect to its original coordinate sys-
tem by an angleα, transformed Zernike expansion coefficients
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Figure 13. Coordinate transformations of a wavefront: (a) original wavefront, (b) translated wavefront by ∆x and ∆y, (c) rotated wavefront
by an angle α, (d) resized wavefront from a larger pupil (radius: R1) to a smaller pupil (radius: R2).

bmn can be derived from original expansion coefficients amn
as [18]:

b−|m|
n = a−|m|

n cos(|m|α)+ a|m|n sin(|m|α),
b|m|n =−a−|m|

n sin(|m|α)+ a|m|n cos(|m|α). (60)

2.3.2.3. Resizing. Comparison of Zernike expansion coef-
ficients of wavefronts over different non-normalized pupils
requires the same aperture size. Therefore, it is necessary to
calculate expansion coefficients for an arbitrary pupil size
based on the expansion coefficients of the full pupil. Many
transformation relationships for pupil resizing have been
developed [72–81] and two simpler methods were described
by Dai [18, 82] and Janssen [79, 83].

Suppose there are two wavefronts, W1 and W2, defined
over concentric pupils with radii of R1 and R2, respectively,
as shown in figures 13(a) and (d). W2 is part of W1 and
R2 ⩽ R1. The Zernike expansion of the wavefront W2 can be
written as:

W2(R2ρ,θ) =
J∑
j=0

bjZj(ρ,θ), (61)

where 0 ⩽ ρ ⩽ 1, bj is the expansion coefficients in the
OSA/ANSI indices for the wavefrontW2. Define a scale factor
ε = R2/R1 and the expansion can also be written as:

W2(R2ρ,θ) =W1(εR1ρ,θ) =
J∑
j=0

ajZj(ερ,θ), (62)

where aj is the expansion coefficients for the wavefront W1.
Connecting equations (61) and (62), Dai gives [18, 82]:

bj = bmn =

⌊(nmax−n)/2⌋∑
i=0

Gi
n(ε)a

m
n+2i, (63)

where nmax is the maximum radial degree of the Zernike circle
polynomials and Gi

n(ε) is a resizing factor, defined as [18]:

Gi
n(ε) =

√
(n+ 2i+ 1)(n+ 1)

×

 i∑
j=0

(−1)i+j(n+ i+ j)!
j!(n+ j+ 1)!(i− j)!

ε2j

εn, (64)

where i ⩽ ⌊(nmax − n)/2⌋ and ⌊x⌋ denotes the floor function
that gives as output the greatest integer less than or equal to
x. The results suggest that the transformed expansion coeffi-
cient bmn is a linear combination of amn and more untransformed
coefficients amn are involved for the calculation of transformed
coefficients bmn for lower degrees. Table 11 lists the expres-
sions for the resizing factor Gi

n(ε) and transformed expansion
coefficients bmn for nmax = 6.

In addition to the Dai’s formula (equation (63)), a concise
expression with an elegant proof is given by Janssen and Dirk-
sen as [79, 83]:

bmn (ε) =
∑
n ′

amn ′

[
Rnn ′(ε)−Rn+2

n ′ (ε)
]
,n= m,m+ 2, . . . , (65)

where n’= n, n+ 2, …, and Rn+2
n ≡ 0. The Janssen and Dirk-

sen expression is mathematically equivalent to the Dai’s for-
mula but has the advantages of simplicity and only involving
the radial polynomials, Zernike which can provide better
numerical stability for high radial degrees.

A simple numerical simulation is presented in figure 14 to
demonstrate the idea of wavefront resizing. Figure 14(a) is
the original wavefront defined over a 3 mm-radius pupil and
its first 37 expansion coefficients, aj, under the OSA/ANSI
indices are shown in figure 14(b). Figure 14(c) illustrates the
Zernike expansion coefficients bj for the 2 mm-radius por-
tion of the original wavefront based on the conversion rela-
tionship in equation (63). Figures 14(d) and (e) show the
reconstructed wavefront using the transformed coefficients bj
and the ground truth, respectively. The wavefront difference
map is displayed in figure 14(d). The simulation suggests
that equation (63) is effective for Zernike expansion coeffi-
cients computation over an arbitrary pupil size in wavefront
resizing.
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Table 11. Resizing factor Gi
n(ε) and transformed expansion coefficients bmn for nmax = 6 [18].

nmax n i Gi
n(ε) bmn

6 0 0 1 G0
0(ε)a

0
0 +G1

0(ε)a
0
2 +G2

0(ε)a
0
4 +G3

0(ε)a
0
6

1 −
√
3(1− ε2)

2
√
5(1− 3ε2 + 2ε4)

3 −
√
7(1− 6ε2 + 10ε4 − 5ε6)

1 0 ε G0
1(ε)a

m
1 +G1

1(ε)a
m
3 +G2

1(ε)a
m
5

1 −2
√
2(1− ε2)ε

2
√
3(3− 8ε2 + 5ε4)ε

2 0 ε2 G0
2(ε)a

m
2 +G1

2(ε)a
m
4 +G2

2(ε)a
m
6

1 −
√
15(1− ε2)ε2

2
√
21(2− 5ε2 + 3ε4)ε2

3 0 ε3 G0
3(ε)a

m
3 +G1

3(ε)a
m
5

1 −2
√
6(1− ε2)ε3

4 0 ε4 G0
4(ε)a

m
4 +G1

4(ε)a
m
6

1 −
√
35(1− ε2)ε4

5 0 ε5 G0
5(ε)a

m
5

6 0 ε6 G0
6(ε)a

m
6

Figure 14. Wavefront resizing example. (a) and (b) Wavefront over a 3 mm-radius pupil and its first 37 expansion coefficients aj in the
OSA/ANSI indices. (c) Transformed Zernike expansion coefficients bj for a 2 mm-radius portion of the original wavefront.
(d) Reconstructed wavefront using bj. (e) True wavefront within the 2 mm-radius aperture. (f) Wavefront difference map between (d) and (e).

2.4. Relationships with Seidel aberrations and Strehl ratio

2.4.1. Relation with Seidel aberrations. The performance of
an optical system can be characterized by the deformation

of the wavefront emerging from the exit pupil relative to
its reference sphere, that is, wavefront aberration, as shown
in figure 15. The wavefront aberration for a rotationally
symmetric system can be expanded by a set of power series
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 η y

Figure 15. Wavefront aberration of a rotationally symmetric optical system. Wa: aberrated wavefront.W r: reference sphere. P0 and P ′
0:

object point and its Gaussian image point, respectively. (r, ϕ): polar coordinates of the Gaussian image point on the image plane. Since the
optical system is rotationally symmetric, the coordinate system of the image plane can be chosen such that ϕ = 0.

Table 12. First- and third- order aberrations [84].

l n m Coefficients Expressions Aberrations

1 1 1 W111 rρcosθ Transverse focal shift
0 2 0 W020 ρ2 Longitudinal focal shift
2 2 2 W222 r2ρ2cos2θ Astigmatism
0 4 0 W040 ρ4 Spherical aberration
1 3 1 W131 rρ3 cosθ Coma
2 2 0 W220 r2ρ2 Field curvature
3 1 1 W311 r3ρcosθ Distortion

in the four variables (ρ, θ) (polar coordinates of the exit pupil)
and (r, ϕ = 0) (polar coordinates of an image point on the
image plane) as [19, 20, 84, 85]:

W(ρ,θ) =
∑
l,n,m

Wlnmr
lρn(cosθ)m

=W111rρcosθ+W020ρ
2

+W040ρ
4 +W131rρ

3 cosθ+W222r
2ρ2cos2θ

+W220r
2ρ2 +W311r

3ρcosθ+ higher - order terms,
(66)

where l is a non-negative integer describing the dependence
of the given term upon the distance of the image point from
the axis; n and m are two non-negative integers determining
the type of aberration. The first two terms in equation (66)
represent the transverse (W111) and the longitudinal (W020)
focal shifts, respectively. The remaining aberration terms con-
strained by the relation l + n = 4 are called primary or
Seidel aberrations, which include five monochromatic aberra-
tions, namely, spherical aberration (W040), coma (W131), astig-
matism (W222), field curvature (W220), and distortion (W311).
These aberrations are sometimes called third-order aberrations
when referring to ray aberration, which can be obtained as the
derivative of wavefront aberration. For a fixed image point, r is
a constant and can be absorbed into the coefficients. Assum-
ing the relative aperture and the size of the field to be such
that higher-order terms can be ignored, the expression of the
wavefront aberration in equation (66) reduces to [19, 20]:

W(ρ,θ) =W11ρcosθ+W20ρ
2

+W22ρ
2 cos2θ+W31ρ

3 cosθ+W40ρ
4. (67)

Table 12 lists the first- and third-order aberrations.
The wavefront aberration for a rotationally symmetric sys-

tem can also be expanded by a set of Zernike series instead of
power series. Assuming the first nine terms of Zernike circle
polynomials are used for the expansion, the wavefront aberra-
tion can be written as [20]:

W(ρ,θ) =
8∑
j=0

ajZj(ρ,θ)

= a0 + a1ρcosθ+ a2ρsinθ+ a3(2ρ
2 − 1)

+ a4ρ
2 cos2θ+ a5ρ

2 sin2θ+ a6(3ρ
3 − 2ρ)cosθ

+ a7(3ρ
3 − 2ρ)sinθ+ a8(6ρ

4 − 6ρ2 + 1). (68)

It can be further rearranged as [20]:

W(ρ,θ) = ap+ atρcos(θ−ϕt)+ adρ
2 + aaρ

2cos2(θ−ϕa)

+ acρ
3 cos(θ−ϕc)+ asρ

4, (69)

wherein the expressions for the coefficients and phase angles
are tabulated in table 13. The expansion in equation (69) has
a similar form to equation (67) indicating the coefficients of
Seidel aberrations can be converted from Zernike expansion
coefficients. However, one should keep in mind that without
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Table 13. Relationship between Zernike coefficients and Seidel aberrations [20].

Aberrations Coefficients Phase

Piston ap = a0 − a3 + a8 —

Tilt at =
√

(a1 − 2a6)
2 +(a2 − 2a7)

2 ϕt = arctan [(a2 − 2a7)/(a1 − 2a6)]

Defocusa ad =
(
2a3 − 6a8 ±

√
a24 + a25

)
—

Astigmatismb aa =∓2
√
a24 + a25 ϕa = 1/2arctan(a5/a4)

Coma ac = 3
√
a26 + a27 ϕc = arctan(a7/a6)

Spherical as = 6a8 —
a The sign in the defocus coefficient is chosen to minimize the magnitude of the coefficient [20].
b The sign in the astigmatism coefficient is chosen to be opposite to the sign in the defocus coefficient [20].

Figure 16. The Strehl ratio is the ratio of the central irradiance in an
aberrated image to the central irradiance in an aberration-free
image. This plot shows the irradiance distribution along the x axis
normalized by its aberration-free value at the center. NA: numerical
aperture.

considering field dependence, the terms in equation (69) are
not true Seidel aberrations. Wavefront measurement using an
interferometer only provides data at a single field point. For
this reason, field curvature looks like defocus and distortion
like tilt. A set of wavefronts from different object points should
be measured to determine the Seidel aberrations unambigu-
ously from a Zernike expansion.

2.4.2. Relation with Strehl ratio. The Strehl ratio is defined
as the ratio of the intensity I at the Gaussian image point in
the presence of aberration, divided by the intensity I0 when
no aberration was present, as shown in figure 16. It is given
by [19]:

Strehl ratio=
I
I0

=
1
π2

∣∣∣∣∣
ˆ 2π

0

ˆ 1

0
exp [i2πW(ρ,θ)]ρdρdθ

∣∣∣∣∣
2

,

(70)

where W is the wavefront aberration with respect to the best
reference sphere in the unit of wavelength. The Strehl ratio is a
good measure of image quality when an optical system is well

corrected. For modest amounts of aberrations, equation (70)
can be approximated as [86, 87]:

Strehl ratio≈ exp
[
−(2πσ)2

]
, (71)

where σ2 is the variance of the wavefront across the pupil and
is defined as [19]:

σ2 =
1
π

ˆ 2π

0

ˆ 1

0

[
W(ρ,θ)−W(ρ,θ)

]2
ρdρdθ

=W2 −
(
W
)2

=
∞∑
j=1

a2j . (72)

The Strehl ratio is inversely proportional to the variance of
a wavefront, which can be characterized by Zernike expansion
coefficients.

2.5. Relationships with other functions

2.5.1. XY monomials. XY monomials are power series in x
and y and in Cartesian coordinates are defined as [88]:

Tmn (x,y) = xmyn−m, (73)

where n and m are non-negative integers and n ⩾ m. The XY
monomials are also frequently used for representing wavefront
aberrations, largely because they are a simple and complete
set of basis functions. However, they are less popular than
Zernike polynomials, especially after the 1980s, due to their
non-orthogonality [88]. The conversions of wavefront expan-
sion coefficients based on XYmonomials and Zernike polyno-
mials have been discussed by several authors and can be found
in [88, 89].

2.5.2. Jacobi polynomials. The Jacobi polynomials are a
class of classical orthogonal polynomials and can be defined
by Rodrigues formula as [51]:

Pn
(α,β)(x) =

(−1)n

2nn!(1− x)α(1+ x)β
dn

dxn

×
[
(1− x)n+α

(1+ x)n+β
]
, (74)
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Figure 17. Jacobi polynomials up the 5th degree for α = β = 3.

where α, β >−1. Their explicit expressions are given as [51]:

Pn
(α,β)(x) =

(n+α)!(n+β)!

2n

×
n∑

s=0

1
s!(n+α− s)!(n− s)!(β+ s)!

× (x− 1)n−s(x+ 1)m. (75)

They are orthogonal with respect to the weight
(1 − x)α(1 + x)β on the interval [−1, 1]:

ˆ 1

−1
(1− x)α(1+ x)βp(α,β)n (x)P(α,β)

n ′ (x)dx

=
2α+β+1

2n+α+β+ 1
(n+α)!(n+β)!

n!(n+α+β)!
δnn ′ . (76)

The Zernike radial polynomials are a special case of the
Jacobi polynomials multiplied by ρm with [90]:

Rmn (ρ) = (−1)
n−m
2 ρmP(m,0)

(n−m)/2(1− 2ρ2). (77)

The first few terms of the Jacobi polynomials are illustrated
in figure 17. For more information about the Jacobi Polynomi-
als, one can refer to [51, 91].

2.5.3. Legendre polynomials. The Legendre polynomials,
sometimes called Legendre functions of the first kind, are solu-
tions to the Legendre differential equation. They are a special
class of the Jacobi polynomials with α = β = 0 and can be
defined by Rodrigues formula as [51]:

Pn(x) =
1

2nn!
dn

dxn
(x2 − 1)n. (78)

Their explicit expressions are given as [51]:

Pn(x) =
1
2n

⌊n/2⌋∑
s=0

(−1)s
(2n− 2s)!

s!(n− s)!(n− 2s)!
xn−2s. (79)

Figure 18. Legendre polynomials up to the 5th degree.

The Legendre polynomials are orthogonal over the interval
[−1, 1]:

ˆ 1

−1
Pn(x)Pn ′(x) =

2
2n+ 1

δnn ′ . (80)

They relate to the Zernike radial polynomials via [21]:

R0
2n(ρ) = Pn(2ρ

2 − 1). (81)

The first few terms of the Legendre polynomials are illus-
trated in figure 18. For more information about the Legendre
Polynomials, one can refer to [51, 92].

2.5.4. Bessel functions. The nth-order Bessel function of
the first kind is defined as [92]:

Jn(x) =
∞∑
s=0

(−1)s

s!(n+ s)!

( x
2

)n+2s
. (82)

They relate to the Zernike radial polynomials via [32]:

ˆ 1

0
Rmn (ρ)Jm(xρ)ρdρ= (−1)

n−m
2
Jn+1(x)

x
, (83)

which is of great importance for the reduction of the diffraction
integral in the Nijboer–Zernike theory [6, 21]. The first few
terms of the Bessel functions are illustrated in figure 19.

2.5.5. Chebyshev polynomials. The Chebyshev polynomi-
als of the second kind and of degree n are defined as [51]:

Un(x) =
sin [(n+ 1)arccos(x)]

sin [arccos(x)]
. (84)

They relate to the Radon transforms of Zernike radial poly-
nomials ℜm

n via [93]:

ℜm
n (s) =

2
n+ 1

√
1− s2Un(s). (85)
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Figure 19. Bessel functions of the first kind up to the 4th degree.

Figure 20. Chebyshev polynomials of the second kind up to the 4th
degree.

The equation (85) can be used to compute the Zernike radial
polynomials for large values of the degree n [94]. The first few
terms of the Chebyshev polynomials of the second kind are
illustrated in figure 20.

2.5.6. Pseudo Zernike polynomials. The pseudo Zernike
polynomials (see table 14), first derived by Bhatia and Wolf
in 1954 [3], are a set of polynomials orthogonal over a unit
circle and analogous to complex Zernike circle polynomials.
They are obtained by eliminating the condition n − |l| = even
from the definition of the complex Zernike circle polynomials
in equation (16). Specifically, the pseudo Zernike polynomials
are defined as:

V l
n(ρ,θ) =Rl

n(ρ)exp(ilθ), (86)

where n is a nonnegative integer, l is an integer, and n− |l|⩾ 0;
the radial polynomials of pseudo Zernike polynomials can be
written as:

Rl
n(ρ) =

n−|l|∑
s=0

(−1)s(2n+ 1− s)!
s!(n+ |l|+ 1− s)!(n− |l| − s)!

ρn−s. (87)

The relation between the pseudo Zernike radial polyno-
mials (equation (87)) and the Zernike radial polynomials
(equation (19)) is given by [3]:

Rl
n(ρ

2) =
1
ρ
R2l+1
2n+1(ρ). (88)

The first few terms of the pseudo Zernike radial polyno-
mials are illustrated in figure 21. Pseudo Zernike polynomials
can be used for wavefront sensing [83], and to define pseudo
Zernike moments, which can generate moment invariants as
shape descriptors for pattern recognition (section 4.6.2).

3. Zernike polynomials over noncircular pupils

3.1. Zernike polynomials over arbitrary pupil shapes

Zernike circle polynomials are in widespread use for wave-
front analysis in optical systems with circular pupils. They are
unique in the sense that they are not only orthogonal across a
unit circle, but they also represent balanced aberrations yield-
ing minimum variance. However, in practice, optical systems
do not always have circular pupil shapes. Non-circular pupils,
such as annular, hexagonal, elliptical, rectangular, and square,
are also very common. For example, many telescopes, such as
the Hubble space telescope, have annular pupils [95, 96]; some
mirrors of large telescopes are segmented into small hexagonal
segments to facilitate fabrication, testing, and alignment [97];
the pupil of a human eye is slightly elliptical [98]; rectangu-
lar or square optics are applied in anamorphic optical systems
[99, 100] and high-powered laser systems [101]. In such
cases, Zernike circle polynomials are no longer orthogonal
and their advantages are lost. It is necessary to construct new
orthonormal polynomials for aberration representation. Meth-
ods for constructing orthonormal polynomials mainly include
the recursiveGram–Schmidt process [37] and the nonrecursive
matrix approach [102]. The Gram–Schmidt orthogonalization
approach is briefly summarized below.

Using the Gram–Schmidt orthonormalization process
[103], a set of polynomials Fj(x, y) orthogonal over noncircu-
lar pupils can be constructed from Zernike circle polynomials
as [4, 37, 104]:


F1 = 1,

Fj+1 = Nj+1

[
Zj+1 −

j∑
i=1

Zj+1FiFi

]
,

(89)

where Zj+1Fi denotes the mean value of Zj+1Fi and is defined
as:

Zj+1Fi =
1
A

ˆ
pupil

Zj+1Fidxdy, (90)
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Table 14. Pseudo Zernike polynomials up to the 5th degree.

j n l νj(ρ, θ)

1 0 0 1

2 1 −1 ρexp(−iθ)
3 0 3ρ− 2
4 1 ρexp(iθ)

5 2 −2 ρ2 exp(−i2θ)
6 −1 (5ρ2 − 4ρ)exp(−iθ)
7 0 10ρ2 − 12ρ+ 3
8 1 (5ρ2 − 4ρ)exp(iθ)
9 2 ρ2 exp(i2θ)

10 3 −3 ρ3 exp(−i3θ)
11 −2 (7ρ3 − 6ρ2)exp(−i2θ)
12 −1 (21ρ3 − 30ρ2 + 10ρ)exp(−iθ)
13 0 35ρ3 − 60ρ2 + 30ρ− 4
14 1 (21ρ3 − 30ρ2 + 10ρ)exp(iθ)
15 2 (7ρ3 − 6ρ2)exp(i2θ)
16 3 ρ3 exp(i3θ)

17 4 −4 ρ4 exp(−i4θ)
18 −3 (9ρ4 − 8ρ3)exp(−i3θ)
19 −2 (36ρ4 − 56ρ3 + 21ρ2)exp(−i2θ)
20 −1 (84ρ4 − 168ρ3 + 105ρ2 − 20ρ)exp(−iθ)
21 0 126ρ4 − 280ρ3 + 210ρ2 − 60ρ+ 5
22 1 (84ρ4 − 168ρ3 + 105ρ2 − 20ρ)exp(iθ)
23 2 (36ρ4 − 56ρ3 + 21ρ2)exp(i2θ)
24 3 (9ρ4 − 8ρ3)exp(i3θ)
25 4 ρ4 exp(i4θ)

26 5 −5 ρ5 exp(−i5θ)
27 −4 (11ρ5 − 10ρ4)exp(−i4θ)
28 −3 (55ρ5 − 90ρ4 + 36ρ3)exp(−i3θ)
29 −2 (165ρ5 − 360ρ4 + 252ρ3 − 56ρ2)exp(−i2θ)
30 −1 (330ρ5 − 840ρ4 + 756ρ3 − 280ρ2 + 35ρ)exp(−iθ)
31 0 462ρ5 − 1260ρ4 + 1260ρ3 − 560ρ2 + 105ρ− 6
32 1 (330ρ5 − 840ρ4 + 756ρ3 − 280ρ2 + 35ρ)exp(iθ)
33 2 (165ρ5 − 360ρ4 + 252ρ3 − 56ρ2)exp(i2θ)
34 3 (55ρ5 − 90ρ4 + 36ρ3)exp(i3θ)
35 4 (11ρ5 − 10ρ4)exp(i4θ)
36 5 ρ5 exp(i5θ)

Figure 21. Pseudo Zernike radial polynomials with the azimuthal index l = 1.
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Figure 22. Common noncircular pupils inscribed inside a unit circle. (a) Annular pupil (obscuration ratio: ε). (b) Rectangular pupil (half
width: a). (c) Square pupil. (d) Hexagonal pupil. (e) Elliptical pupil (semi-minor axis: a).

Table 15. Orthonormal polynomials over noncircular pupils [37, 104, 108].

Pupil shapes Orthogonal polynomials Fj+1 Zj+1Fi

Annular Fj+1 = Nj+1

[
Zj+1 −

j∑
i=1

Zj+1FiFi

]
Zj+1Fi = 1

π(1−ε2)

´ 2π
0

´ 1
ε
Zj+1Fiρdρdθ

Rectangular Zj+1Fi = 1

4a
√

1−a2

´√1−a2

−
√

1−a2

´ a
−a Zj+1Fidxdy

Square Zj+1Fi = 1
2

´ 1/√2
−1/

√
2

´ 1/√2
−1/

√
2
Zj+1Fidxdy

Hexagonal Zj+1Fi = 2
3
√
3

´
hexagon Zj+1Fidxdy

Elliptical Zj+1Fi = 1
πa

´ a√1−x2

−a
√

1−x2

´ 1
−1 Zj+1Fidxdy

where A is the area of the region of integration. Nj+1 is a nor-
malization factor and can be expressed as:

Nj+1 =

[
1
A

ˆ
pupil

(
Zj+1 −

j∑
i=1

Zj+1FiFi

)
dxdy

]1/2
. (91)

The constructed polynomials satisfy the following
orthonormality condition:

1
A

ˆ
pupil

FjFj ′dxdy= δjj ′ . (92)

Since an orthonormal polynomial is a linear combination
of Zernike circle polynomials (equation (89)), the wavefront
decomposition with a set of orthonormal polynomials over
noncircular pupils is identical to the decomposition with a
corresponding set of Zernike circle polynomials. However,
in this case, the Zernike circle polynomials do not represent
balanced aberrations and their expansion coefficients lack
physical significance [105].

The constructed orthogonal polynomials are determined
recursively and each term is a linear combination of Zernike
circle polynomials with no higher radial order. The Gram–
Schmidt orthonormalization approach can be applied to
construct orthonormal polynomials over any pupil shape
[106, 107]. Figure 22 presents five common noncircular
pupils, including annular, rectangular, square, hexagonal, and
elliptical pupils. Orthonormal polynomials over these noncir-
cular pupils can be obtained using the Gram–Schmidt ortho-
gonalization process and are tabulated in table 15.

3.2. Zernike polynomials over annular pupils

Annular pupil plays an important role in optical systems, such
as telescopes for astronomical observation [96] and stitch-
ing interferometers for aspheric wavefront testing by annular
sub-apertures [109–111]. Orthonormal Zernike polynomials
over annular pupils, called Zernike annular polynomials, can
be constructed using the Gram–Schmidt orthogonalization
process based on Zernike circle polynomials. Zernike annular
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Figure 23. Unit annular pupil with an obscuration ratio of ε.

polynomials first appeared in a report of Perkin-Elmer Corpor-
ation in 1971 [4], were later discussed by Tatian in 1976 [5]
and systematically studied and explicitly given by Mahajan in
1981 [4].

Zernike annular polynomials are defined over a unit annular
disk with an obscuration ratio of ε (0 ⩽ ε < 1) and can be
most conveniently expressed in polar coordinates (ρ, θ), where
ρ is the normalized radial coordinate (ε ⩽ ρ ⩽ 1) and θ is
the polar angle measured counterclockwise from the +x-axis
(0 ⩽ θ < 2π), as shown in figure 23.

3.2.1. Definition.

3.2.1.1. Real Zernike annular polynomials Real Zernike
annular polynomials have normalized and non-normalized

forms. The normalized form defined under the Noll indexing
scheme can be written as [4, 35, 112]:

Zj(ρ,θ;ε) = Zmn (ρ,θ;ε)

=


[2(n+ 1)]1/2Rmn (ρ;ε)cosmθ, m ̸= 0, j is even,
[2(n+ 1)]1/2Rmn (ρ;ε)sinmθ, m ̸= 0, j is odd,
[(n+ 1)]1/2R0n(ρ;ε), m= 0,

(93)

where the index n is the degree of the radial polynomials,
Rmn (ρ;ε); the index m is the azimuthal frequency describing
the repetition of the angular function; n andm are non-negative
integers and satisfy n− m⩾ 0 and n− m= even; j is a mode-
ordering number starting from 1, and ε is the obscuration ratio.
There are a total of (n + 1)(n + 2)/2 linearly independent
polynomials for a specific degree of n. The radial polynomials
Rmn (ρ;ε) can be obtained by Gram–Schmidt orthogonalization
and are given by:

Rmn (ρ;ε)

= ωmn

[
Rmn (ρ)−

(n−m)/2∑
i=1

(n− 2i+ 1)Rmn (ρ)Rmn−2i(ρ;ε)R
m
n−2i(ρ;ε)

]
,

(94)

where:

Rmn (ρ)R
m
n−2i(ρ;ε) =

2
1− ε2

ˆ 1

ε

Rmn (ρ)R
m
n−2i(ρ;ε)ρdρ, (95)

and the weighting factor ωmn can be determined according
to the orthogonality condition of the radial polynomials as:

ωmn =


1− ε2

2(n+ 1)

´ 1
ε

[
Rmn (ρ)−

(n−m)/2∑
i=1

(n− 2i+ 1)Rmn (ρ)R
m
n−2i(ρ;ε)R

m
n−2i(ρ;ε)

]2
ρdρ


1/2

. (96)

Exemplary profiles of the radial polynomials are shown in
figure 24. It is easy to verify that when ε = 0, Zernike annu-
lar polynomials reduce to circle polynomials. The normalized
Zernike annular polynomials meet the following orthonormal-
ity condition:

´ 2π
0

´ 1
ε
Zj(ρ,θ;ε)Zj ′(ρ,θ;ε)ρdρdθ´ 2π

0

´ 1
ε
ρdρdθ

= δjj ′ , (97)

where δjj ′ is the Kronecker delta function.

Similar to Zernike circle polynomials, orthonormal Zernike
annular polynomials can be sorted by either the single index,
j, or the double indices, n and m. The former is useful for
describing Zernike expansion coefficients while the latter is
useful for unambiguously describing the functions. To con-
vert between the indices n, m, and j, one can use the rela-
tionships described in equation (8) and (9). Table 16 lists
the first 28-term orthonormal real Zernike annular polynomi-
als in the polar coordinate system and the values for n, m,
and j. For more terms up to the 45th, one can refer to the
tables 5–7 in [104].
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Figure 24. Annular Zernike radial polynomials (ε = 0.5) of the first few degrees when m = 0, 1, and 2.

The non-normalized Zernike annular polynomials can be
obtained by dropping the normalization factors from the
orthonormal Zernike annular polynomials as:

Zj(ρ,θ;ε) = Zmn (ρ,θ;ε) =


Rmn (ρ;ε)cosmθ,m ̸= 0, j is even,
Rmn (ρ;ε)sinmθ, m ̸= 0, j is odd,
R0n(ρ;ε), m= 0.

(98)

They satisfy the following orthogonality condition:

´ 2π
0

´ 1
ε
Zj(ρ,θ;ε)Zj ′(ρ,θ;ε)ρdρdθ´ 2π

0

´ 1
ε
ρdρdθ

=
1+ δm0
2(n+ 1)

δjj ′ . (99)

Figures 25 and 26 show the 3D visualization of the non-
normalized Zernike annular polynomials up to the sixth degree
for ε= 0.6 and their corresponding interferometric fringe pat-
terns as in optical testing [37].

3.2.1.2. Complex Zernike annular polynomials Complex
Zernike annular polynomials have normalized and non-
normalized forms. The normalized complex Zernike annu-
lar polynomials defined in the Noll indices can be written
as [4, 35]:

V l
n(ρ,θ;ε) =

√
n+ 1Rln(ρ;ε)exp(ilθ), (100)
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Table 16. Zernike annular polynomials under the Noll indices up to the sixth degree (n = 6).

j n m Rmn (ρ;ε) Zj(ρ,θ;ε) Aberration

1 0 0 1 R0
0(ρ;ε) Piston

2 1 1 ρ

(1+ε2)1/2 2R1
1(ρ;ε)cosθ X Tilt

3 1 2R1
1(ρ;ε)sinθ Y Tilt

4 2 0 2ρ2−1−ε2

1−ε2

√
3R0

2(ρ;ε) Defocus

5 2 ρ2

(1+ε2+ε4)1/2

√
6R2

2(ρ;ε)sin2θ Primary Y astigmatism
6 2

√
6R2

2(ρ;ε)cos2θ Primary X astigmatism

7 3 1 3(1+ε2)ρ3−2(1+ε2+ε4)ρ

(1−ε2)[(1+ε2)(1+4ε2+ε4)]1/2

√
8R1

3(ρ;ε)sinθ Primary Y coma
8 1

√
8R1

3(ρ;ε)cosθ Primary X coma
9 3 ρ3

(1+ε2+ε4+ε6)1/2

√
8R3

3(ρ;ε)sin3θ
10 3

√
8R3

3(ρ;ε)cos3θ

11 4 0 [6ρ4−6(1+ε2)ρ2+1+4ε2+ε4]

(1−ε2)2

√
5R0

4(ρ;ε) Primary spherical

12 2 4ρ4−3[(1−ε8)/(1−ε6)]ρ2

{(1−ε2)−1[16(1−ε10)−15(1−ε8)2/(1−ε6)]}1/2

√
10R2

4(ρ;ε)cos2θ Secondary X astigmatism
13 2

√
10R2

4(ρ;ε)sin2θ Secondary Y astigmatism
14 4 ρ4

(1+ε2+ε4+ε6+ε8)1/2

√
10R4

4(ρ;ε)cos4θ
15 4

√
10R4

4(ρ;ε)sin4θ

16 5 1
[10(1+4ε2+ε4)ρ5−12(1+4ε2+4ε4+ε6)ρ3+3(1+4ε2+10ε4+4ε6+ε8)ρ]

(1−ε2)2[(1+4ε2+ε4)(1+9ε2+9ε4+ε6)]1/2

√
12R1

5(ρ;ε)cosθ Secondary X coma
17 1

√
12R1

5(ρ;ε)sinθ Secondary Y coma
18 3 5ρ5−4[(1−ε10)/(1−ε8)]ρ3

{(1−ε2)−1[25(1−ε12)−24(1−ε10)2/(1−ε8)]}1/2

√
12R3

5(ρ;ε)cos3θ
19 3

√
12R3

5(ρ;ε)sin3θ
20 5 ρ5

(1+ε2+ε4+ε6+ε8+ε10)1/2

√
12R5

5(ρ;ε)cos5θ
21 5

√
12R5

5(ρ;ε)sin5θ

22 6 0 [20ρ6−30(1+ε2)ρ4+12(1+3ε2+ε4)ρ2−(1+9ε2+9ε4+ε6)]

(1−ε2)3

√
7R0

6(ρ;ε) Secondary spherical

23 2
[

15(1+ 4ε2 + 10ε4 + 4ε6 + ε8)ρ6 − 20(1+ 4ε2 + 10ε4 + 10ε6 + 4ε8

+ε10)ρ4 + 6(1+ 4ε2 + 10ε4 + 20ε6 + 10ε8 + 4ε10 + ε12)ρ2

]
(1−ε2)2

[
(1+ 4ε2 + 10ε4 + 4ε6 + ε8)(1+ 9ε2 + 45ε4

+65ε6 + 45ε8 + 9ε10 + ε12)

]1/2


√
14R2

6(ρ;ε)sin2θ Tertiary Y astigmatism

24 2
√
14R2

6(ρ;ε)cos2θ Tertiary X astigmatism

25 4 6ρ6−5[(1−ε12)/(1−ε10)]ρ4

{(1−ε2)−1[36(1−ε14)−35(1−ε12)2/(1−ε10)]}1/2

√
14R4

6(ρ;ε)sin4θ
26 4

√
14R4

6(ρ;ε)cos6θ
27 6 ρ6

(1+ε2+ε4+ε6+ε8+ε10+ε12)1/2

√
14R6

6(ρ;ε)sin4θ
28 6

√
14R6

6(ρ;ε)cos6θ

where n is a non-negative integer, l is an integer, n − |l| ⩾ 0
and is even, and the radial polynomial is defined as:

Rln(ρ;ε) = ω|l|
n

{
R|l|
n (ρ)−

(n−|l|)/2∑
i=1

(n− 2i+ 1)

×R|l|
n (ρ)R|l|

n−2i(ρ;ε)R
|l|
n−2i(ρ;ε)

}
, (101)

and the weighting factor ω|l|
n is given by:

ω|l|
n =


1− ε2

2(n+ 1)

´ 1
ε

{
R|l|
n (ρ)−

(n−|l|)/2∑
i=1

(n− 2i+ 1)R|l|
n−2i(ρ;ε)R

|l|
n (ρ)R

|l|
n−2i(ρ;ε)

}2

ρdρ


1/2

. (102)
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Figure 25. Pyramid of the non-normalized Zernike annular polynomials up to the sixth degree with an obstruction ratio of 0.6.

The normalized complex Zernike annular polynomials sat-
isfy the following orthonormality condition:
´ 2π
0

´ 1
ε
[V l

n(ρ,θ;ε)]
∗
Vl

′

n ′(ρ,θ;ε)ρdρdθ´ 2π
0

´ 1
ε
ρdρdθ

= δll ′δnn ′ . (103)

The non-normalized complex Zernike annular polynomials
can be written as:

V l
n(ρ,θ;ε) = Rln(ρ;ε)exp(ilθ). (104)

They satisfy the following orthogonality condition:
´ 2π
0

´ 1
ε
[V l

n(ρ,θ;ε)]
∗
Vl

′

n ′(ρ,θ;ε)ρdρdθ´ 2π
0

´ 1
ε
ρdρdθ

=
1

n+ 1
δll ′δnn ′ .

(105)

3.2.1.3. Summary. The definitions for the real and complex
Zernike annular polynomials are summarized in table 17.

3.2.2. Mathematical properties.

3.2.2.1. Orthogonality. The orthogonal relationships of real
and complex Zernike annular polynomials have been presen-
ted and can be found in equations (97), (99), (103) and (105).

Moreover, the radial polynomials of Zernike annular polyno-
mials are also orthogonal over the annular aperture and satisfy
the following relationships [4]:

ˆ 1

ε

Rmn (ρ;ε)R
m
n ′(ρ;ε)ρdρ=

1− ε2

2(n+ 1)
δnn ′ . (106)

3.2.2.2. Recurrence relation. The recurrence relationship
for generating radial polynomials of Zernike annular polyno-
mials was derived by Tatian in 1974 [4, 5] and can be written
as:

Rmn (ρ;ε)

=


R0
n=2k(ρ;ε) = R0

2k

[(
ρ2 − ε2

1− ε2

)1/2
]
, m= 0;

Rmn=2l+m(ρ;ε) =

[
1− ε2

2(2l+m+ 1)hml

]1/2
ρmQm

l (u), m ̸= 0,

(107)

where n and m obey the same conditions defined in Zernike
annular polynomials (n and m are non-negative integers,
n − m ⩾ 0 and is even); k is a non-negative integer (k = 0,
1, 2, …, ∞); l = (n − m)/2; u = ρ2; Qm

l (u) is a set of ortho-
gonal polynomials obtained by orthogonalizing the sequence
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Figure 26. Interferometric fringe patterns of the Zernike annular aberrations shown in figure 25.

1, u, ..., ul over the interval (ε2, 1) with a weight function um

and can be written as [4, 5]:

Qm
l (u) =


R0
2l

[(
ρ2 − ε2

1− ε2

)1/2
]
, m= 0;

2(2l+ 2m− 1)

(l+m)(1− ε2)

hm−1
l

Qm−1
l (0)

l∑
i=0

Qm−1
i (0)Qm−1

i (u)

hm−1
i

, m ̸= 0.

(108)

The coefficient hml is:

hml =


1− ε2

2(2l+ 1)
, m= 0;

− 2(2l+ 2m− 1)
(l+m)(1− ε2)

Qm−1
l+1 (0)

Qm−1
l (0)

hm−1
l , m ̸= 0.

(109)

Especially, when m = n,

Rnn(ρ;ε) =
ρn(

n∑
i=0
ε2i
)1/2

. (110)

The above recurrence relationship can be initialized with
R0
0(ρ;ε) = 1.

3.2.2.3. The Fourier transform. The Fourier transform of
Zernike annular polynomials is derived by Dai and Mahajan
[95] and can be written as:

Zj(r,ϕ;ε) =
ˆ 2π

0

ˆ 1

ε

Zj(ρ,θ;ε)

× exp [−i2πrρcos(θ−ϕ)]ρdρdθ

=


√

2(n+ 1)Hm
n (r;ε)cos(mϕ), m ̸= 0, j is even,√

2(n+ 1)Hm
n (r;ε)sin(mϕ), m ̸= 0, j is odd,√

(n+ 1)Hm
n (r;ε), m= 0,

(111)

where (r, ϕ) denotes the polar coordinates in the frequency
domain and:

Hm
n (r;ε)

=
1

r

n∑
n ′=0

{
gn ′ (n,m;ε)(−1)(n

′/2)+m

×

Jn ′+1(2πr)− ε

n ′∑
n ′ ′=0

(−1)(n
′ ′−n ′)/2hn ′ ′ (n

′;ε)Jn ′ ′+1(2πεr)

},

(112)
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Table 17. Summary of the definition of Zernike annular polynomials.

Real Zernike annular polynomials Complex Zernike annular polynomials

Sources Tatian, 1974 [5]
Mahajan, 1981 [4]
Zemax [25]

Mahajan, 1981 [4]

Indexing The Noll indices The Noll indices

Definition

Zj(ρ,θ;ε) = Zmn (ρ,θ;ε)

= Nmn


Rmn (ρ;ε)cosmθ, m ̸= 0, j is even

Rmn (ρ;ε)sinmθ, m ̸= 0, j is odd

Rmn (ρ;ε), m= 0

V l
n(ρ,θ;ε) = NlnR

l
n(ρ;ε)exp(ilθ)

Radial
polynomials

Equation (94) Equation (101)

Coordinate
system

0 ⩽ ρ ⩽ 1
θ from +x axis
anticlockwise

0 ⩽ ρ ⩽ 1
θ from +x axis
anticlockwise

Normalization Optional Optional

Normalization
factor

Nmn =


1, non-normalized√

2(n+1)
(1+δm0)

, normalized
Nln =

{
1, non-normalized
√
n+ 1, normalized

Term number Infinite Infinite
Indices j = 1, 2, 3, …, ∞

n: non-negative integer
m: non-negative integer
n − m ⩾ 0 and even

n: non-negative integer
l: integer
n − |l| ⩾ 0 and even

Relationship
between indices

j=


n(n+1)

2 + 1, m= 0[
n(n+1)

2 +m, n(n+1)
2 +m+ 1

]
, m ̸= 0

n=
⌊(√

2j− 1+ 0.5
)
− 1

⌋
m=


2×

⌊
2j+1−n(n+1)

4

⌋
, n is even

2×
⌊
2(j+1)−n(n+1)

4

⌋
− 1, n is odd

—

Ordering n, m both in ascending order —

where J is the Bessel function of the first kind (equation (82))
and:

gn ′(n,m;ε) = ωmn (ε)
2

1− ε2

ˆ 1

ε

Rmn (ρ)R
m
n ′(ρ;ε)ρdρ, (113)

hn ′ ′(n;ε)

=

(n−m)/2∑
s=0

[(n−m)/2]−s∑
s ′=0

(−1)sεn−2s(n− s)!(n+ 1− 2s− 2s ′)
s!s ′!(n+ 1− 2s− s ′)!

.

(114)

A list of the first few terms for Hm
n , gn ′ , and hn ′ ′

can be found in [95]. The expression in equation (111)
reduces to the Fourier transform of Zernike circle polynomials
(equation (30)) when ε = 0.

3.2.3. Wavefront fitting. The orthogonality of Zernike annu-
lar polynomials makes them an excellent basis for wavefront

analysis in annular optical systems. An annular wavefront can
be represented by the linear combination of finite terms of
Zernike annular polynomials as [113]:

W(ρ,θ;ε) =
J∑
j=1

ajZj(ρ,θ;ε), (115)

where J is the total terms of the polynomials, aj is the
expansion coefficients, and Zj is the jth-term Zernike annu-
lar polynomial. The equation can be equivalently expressed in
Cartesian coordinates as:

W(x,y;ε) =
J∑
j=0

ajZj(x,y;ε). (116)

Written in discrete and matrix forms, equation (51)
becomes:

Aa=W, (117)
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Figure 27. Annular wavefront decomposition using orthonormal Zernike annular polynomials under the Noll indices: (a) wavefront and
(b) 28 expansion coefficients.

where:

A=


Z1(x1,y1;ε) Z2(x1,y1;ε) · · · ZJ(x1,y1;ε)

Z1(x2,y2;ε) Z2(x2,y2;ε) · · · ZJ(x2,y2;ε)

...
...

. . .
...

Z1(xK,yK;ε) Z2(xK,yK;ε) · · · ZJ(xK,yK;ε)

 ,

a=


a1

a2
...

aJ

 ,W=


W(x1,y1;ε)

W(x2,y2;ε)

...

W(xK,yK;ε)

 , (118)

where K is the total number of data points within the unit
circle. Generally, equation (117) is an overdetermined linear
system, where there are more equations (K) than unknowns
(J). It can be written into the normal equation [34, 68]:

ATAa= ATW, (119)

where the superscript T denotes matrix transpose. The solution
can be obtained by matrix inversion as:

a= (ATA)−1ATW. (120)

Figure 27 shows an example illustrating annular wavefront
decomposition using 28-term orthonormal Zernike annular
polynomials under the Noll indices. The amplitude of each
coefficient indicates the strength of corresponding aberrations
(table 16).

4. Applications

The unique properties of Zernike polynomials have enabled
them to be an attractive mathematical tool in many fields.
In this section, we survey their applications in a range of
fields, including diffraction theory, optical design, optical test-
ing, adaptive optics, ophthalmic optics, and image analysis, as
illustrated in figure 28.

4.1. Diffraction theory

4.1.1. The diffraction theory of aberrations. Zernike polyno-
mials have important applications in the diffraction theory of
aberrations, which is concerned with the study of how wave-
front aberrations affect image formation in practical optical
systems [32, 47]. In a perfect optical imaging system, the light
waves from a point object emerge in the image space as spher-
ically convergent waves and form the well-known Airy pat-
tern. However, a perfect imaging system never exists in prac-
tice. Waves emerging from a practical optical system deviate
from a spherical wave and possess complicated forms.

Consider the wave propagation model illustrated in
figure 29, where an aberrated wavefront at the exit pupil con-
verges to the image plane. LetWa andWr denote the aberrated
wavefront and its Gaussian reference wavefront in the unit of
length, respectively. The position of the exit pupil is defined
by the Cartesian coordinates (x, y, z) or the cylindrical coordin-
ates (ρ, θ, z); the position of the image plane is defined by the
Cartesian coordinates (ξ, η, ζ) or the cylindrical coordinates
(r, ϕ, υ). The complex amplitude distribution at the exit pupil,
called the pupil function, can be written as [114]:

P(ρ,θ) = A(ρ,θ)exp [iΦ(ρ,θ)] , (121)

where A(ρ, θ) is the amplitude function and Φ is the phase
function in the form of:

Φ(ρ,θ) =
2π
λ
(Wa−Wr), (122)

where λ is the wavelength. According to the scalar Debye
integral [32, 114], the normalized complex amplitude, U(r, ϕ,
υ), in the focal region of the image plane is given by:

U(r,ϕ,υ) =
1
π

¨
exp(iυρ2)P(ρ,θ)

× exp [i2πrρcos(θ−ϕ)]ρdρdθ

=
1
π

¨
exp(iυρ2)A(ρ,θ)exp [iΦ(ρ,θ)]

× exp [i2πrρcos(θ−ϕ)]ρdρdθ, (123)
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Figure 28. Major applications of Zernike polynomials.

Figure 29. Geometry of wave propagation from the exit pupil to the
image plane. Wa: aberrated wavefront; W r: reference wavefront.

where υ is defined as the negative axial coordinate (-ζ) normal-
ized with respect to the axial diffraction unit, λ/(πs20), and s0
is the numerical aperture (NA) of the focusing beam.When the
image plane is at the best focus (υ= 0), the complex amplitude
U(r, ϕ, υ) in equation (123) reduces to the Fourier transform
of the pupil function P(ρ, θ).

The PSF, defined as the diffraction pattern of a point object
in the image plane, can be written as the squared modulus of
the complex amplitude U [115, 116], i.e.

PSF= |U(r,ϕ,υ)|2. (124)

The image of an extended object formed by an optical sys-
tem is the convolution of the object itself with the PSF of the
system, which can be mathematically modeled as [117]:

g= f ∗PSF, (125)

where f and g denote the object and the image, respectively,
and ∗ represents convolution. To understand the impact of
wavefront aberrations on the final image quality, the PSF
needs to be evaluated. In the next section, we briefly review
the analytical PSF computation approaches first developed by
Nijboer and Zernike [6, 21] and later extended by Janssen [8],
where expanding wavefront aberrations at the exit pupil using
Zernike circle polynomials is the key.

4.1.2. PSF computation using the Nijboer–Zernike theory.
In general, analytical evaluation of the diffraction integrals
in equation (123) is difficult except for some specific cases.
In 1942, Bernard Nijboer, a PhD, student of Zernike, expan-
ded the aberration function at the exit pupil into a series of
Zernike circle polynomials and formulated an efficient repres-
entation of the complex amplitude distribution in the image
plane [6, 21]. This work allows analytical evaluation of the dif-
fraction integral and the PSF of a general optical system and is
referred to as the Nijboer–Zernike theory. For completeness,
we briefly review the basic principle of the theory, which is
well summarized in [114].
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In the Nijboer–Zernike theory, the pupil function is
assumed to be uniform in amplitude and thus can be written
as a purely phase-aberrated function, i.e.

P(ρ,θ) = exp [iΦ(ρ,θ)] . (126)

Expanding the pupil function into the Taylor series, the dif-
fraction integral in equation (123) becomes:

U(r,ϕ,υ) =
1
π

∞∑
k=0

ik

k!

ˆ 2π

0

ˆ 1

0
exp(iυρ2)Φk(ρ,θ)

× exp [i2πrρcos(θ−ϕ)]ρdρdθ. (127)

Expanding the phase function,Φ(ρ, θ), into a set of Zernike
circle polynomials gives:

Φ(ρ,θ) =
∑
n,m

αmn Z
m
n (ρ,θ). (128)

Substituting the Zernike expansion into the integral
(equation (127)) and performing the integration over θ using
elementary Bessel function operations, we obtain:

U(r,ϕ,υ)≈ 2
ˆ 1

0
exp(iυρ2)J0(2πρr)ρdρ

+ 2i
∑
n,m

imαmn cos(mϕ)

×
ˆ 1

0
exp(iυρ2)Rmn (ρ)Jm(2πρr)ρdρ, (129)

where αmn is the Zernike expansion coefficients and Jm is a
Bessel function of the first kind and of order m. Note that in
the reduction, the phase aberration is considered small enough
so that truncation of the infinite series in equation (128) after
the term k = 1 is allowed. The above equation can be further
reduced using the relationship in equation (83) as:

U(r,ϕ,υ = 0) =
J1(2πr)
πr

+
′∑

n,m

in+1 Jn+1(2πr)
2πr

[αmn cos(mϕ)],

(130)

where the prime indicating that m= n= 0 should be excluded
from the summation.

The expression of the complex amplitude, U, provides an
analytical method for evaluating the PSF of an optical system.
Although elegant in expression, the Nijboer–Zernike approach
is not widely used in practice [114], largely because that the
derivation requires the amplitude over the pupil to be uniform

and the wavefront aberration is restricted to be sufficiently
small (in the order of a fraction of the wavelength [32]).

Figure 30 illustrates the appearance of the PSF of an optical
system when only a single Zernike term (root mean square
value: 0.1 µm, wavelength: 570 nm) is present in the wave-
front aberration. Figure 31 presents an example showing that
wavefront aberrations degrade the image quality of an optical
system.

4.1.3. PSF computation using the extended Nijboer–Zernike
theory. The Nijboer–Zernike theory is only valid in the case
of small aberrations and can only produce accurate values of
PSF at positions close to geometrical focus. To deal with the
problem, Janssen in 2002 formulated a general expression in
terms of the power-Bessel series and extended the Nijboer–
Zernike theory for optical systems with large aberrations
[8, 114, 118, 119]. The extended Nijboer–Zernike theory can
analytically compute the PSF of an aberrated optical sys-
tem described by Zernike coefficients and accelerates further
developments in focused field diffraction theory.

The extended Nijboer–Zernike theory adopts a generalized
definition for the pupil function and expands it using Zernike
circle polynomials as [114]:

P(ρ,θ) = A(ρ,θ)exp[iΦ(ρ,θ)] =
∑
n,m

βmn Z
m
n (ρ,θ), (131)

where the amplitude, A(ρ, θ), and phase aberration, Φ(ρ, θ),
are real-valued; the coefficients, βmn , is in general complex-
valued; Zmn is the non-normalized complex Zernike circle poly-
nomials defined in equation (16). Substituting the pupil func-
tion into the diffraction integral (equation (123)), the complex
amplitude, U, can be expressed as:

U(r,ϕ,υ) = 2
∑
n,m

βmn i
|m|K|m|

n exp(imϕ), (132)

where:

Kmn =

ˆ 1

0
exp(iυρ2)R|m|

n (ρ)Jm(2πρr)ρdρ. (133)

Janssen derived a Bessel series representation for the integ-
ral in equation (133) and reformulate the above equation as:

Kmn = εm exp(iυ)
∞∑
l=1

(−2iυ)l−1
p∑
j=0

vlj
J|m|+l+2j(v)

lvl
, (134)

where:

vlj =
(−1)p(|m|+ l+ 2j)

(
|m|+ j+ l− 1

l− 1

)(
j+ l− 1
l− 1

)(
l− 1
p− j

)
(

q+ l+ j
l

) , (135)
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Figure 30. PSFs of the Zernike circle polynomials (root mean square value: 0.1 µm) up to the fourth degree under the Noll indices.

Figure 31. Convolution of an object with the PSF of an optical system leads to degraded images.

v= 2πr,εm

=

{
−1, odd m< 0,
1, others,

, p=
(n− |m|)

2
,q=

(n+ |m|)
2

.

(136)

The symbol

(
n

k

)
denotes combination and is defined as:

(
n

k

)
=

n!
k!(n− k)!

. (137)

Note that the equation (134) suffers from loss-of-digits
and slow convergence for larger υ under standard precision.
An advanced version of the ENZ-theory has been developed
to virtually eliminate the convergence problem by replacing
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the power-Bessel series in equation (134) with Bessel-Bessel
series [120]. Using equation (134), we can compute the PSF
of an optical system with an exit pupil defined by a set of β-
coefficients (equation (131)). The extended Nijboer–Zernike
theory has been used in several applications, such as aberration
retrieval in high-NA optical lithography systems [121–123]
and acoustic diffraction problems [124, 125].

4.2. Optical design

Optical design is the process of designing an optical system
to meet specific performance requirements and constraints.
Owing to their unique properties, Zernike polynomials are
beneficial to wavefront analysis and surface representation in
modern lens design programs. In wavefront analysis, since
Zernike expansion coefficients are independent and directly
represent balanced aberrations, it is convenient to decompose
wavefront aberrations of an optical system into a set of Zernike
polynomials to evaluate the contribution of each aberration
[25]. Moreover, the coefficients of Zernike polynomials can
also be used as variables of the merit function of a lens system
to facilitate system optimization [126].

In surface representation, Zernike polynomials have
emerged as ameans of describing the shape of freeform optical
surfaces [127–131]. State-of-the-art lens design programs,
such as Zemax and CODE V, empower optical designers to
use Zernike polynomials to represent freeform surfaces, which
are called Zernike surfaces. For example, Zernike phase sur-
faces and Zernike sag surfaces are defined and used in Zemax.
The Zernike phase surfaces are standard surfaces, such as
planes, spheres, and conics, superimposed with phase terms
defined by Zernike polynomials [132]. The phase term can be
written as:

Φ= m
J∑
j=1

2πajZj(ρ,θ), (138)

where m represents the diffraction order, Zj is Zernike circle
polynomials, and aj is the expansion coefficients, ρ is the nor-
malized radial coordinate and θ is the polar angle. This surface
type is well suited to modeling system aberrations for which
measured interferometer data is available [132]. The Zernike
sag surfaces are defined as the conic surface (figure 32) plus
additional deformation terms characterized by even orders
of the power series and finite terms of Zernike polynomials
[58, 132]. They are given by:

z=
cr2

1+
√
1− (1+ k)c2r2

+
8∑
j=1

αjr
2j+

J∑
j=1

ajZj(ρ,θ),

(139)

where c denotes the curvature of the base conic; r = x2 + y2

is the radial ray coordinate in lens unit; k is the conic con-
stant; αj and aj are the coefficients of the power series and
the Zernike polynomials, respectively; J is the maximum num-
ber of terms of the Zernike polynomials; ρ is the normalized
radial coordinate and θ is the polar angle. The Zernike phase

Figure 32. Conic surfaces.

surfaces (equation (138)) describe phase variation of a surface
while the Zernike sag surfaces (equation (139)) characterize
surface deformations. These Zernike surfaces can also employ
Zernike annular polynomials to define the aspheric termswhen
an optical system has an annular pupil. Figure 33 is an example
showing the design of a long wave infrared reflective imaging
system optimized with Zernike surfaces [133].

4.3. Optical testing

Optical testing is concerned with testing the optical qual-
ity of optical systems by optical techniques [134, 135]. The
applications of Zernike polynomials in optical testing are
mainly concentrated in the field of optical surface or wave-
front measurement by phase-shifting interferometry [136], the
principal purpose of which is to determine the aberrations
present in an optical component or an optical system [19].
There are many different types of phase-shifting interfero-
meters used in practice, such as the Fizeau, Mach-Zehnder,
and Twyman-Green interferometers [137–140]. Here we use
a phase-shifting Twyman-Green interferometer as an example
to demonstrate the usefulness of Zernike polynomials in pre-
cise surface figure measurement.

A typical optical layout of a phase-shifting Twyman-Green
interferometer is shown in figure 34. The emitted beam from
a laser source is first collimated by a beam expander and
then divided by a beam splitter into two parts. The reflected
part (red) propagates to a reference mirror and is then reflec-
ted back serving as the reference beam. The transmitted part
(blue), after passing through a compensation lens, is incid-
ent onto the optical surface under test and then reflected back
along the same path. The reference beam and the measure-
ment beam meet at the beam splitter, interfere with each other,
and produce fringe patterns with periodic intensity modula-
tion. The fringe patterns carry the surface figure information
of the optical component under test and are finally recorded
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Figure 33. Optical system design with Zernike polynomials. (a) Optical layout of a long wave infrared reflective imaging system optimized
with Zernike surfaces. (b) Housing structure of the optical system. Reprinted with permission from [133] © The optical Society.

Figure 34. A phase-shifting Twyman-Green interferometer for optical surface testing. PZT: piezoelectric transducer. CCD: charge-coupled
device. Adapted with permission from [141] © The optical Society.

by a charge-coupled device (CCD) detector. Phase shifting is
achieved bymoving the referencemirror a certain amount with
a piezoelectric transducer (PZT).

The intensity of a fringe pattern can be mathematically
modeled as [142–144]:

I(x,y) = a(x,y)+ b(x,y)cos[Φ(x,y)], (140)

where a(x, y) and b(x, y) are the background and the mod-
ulation terms, respectively, and Φ(x, y) is the phase map to
be recovered. There are three unknowns in equation (140),
indicating at least three frames of phase-shifted interfero-
grams are needed to recover the phase function. This is
known as the three-step or three-bucket phase demodulation
algorithm. In practice, there are many more different phase-
shifting algorithms in use, such as the four-step, five-step, and
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0.337λ

0

-0.476λ

Figure 35. Surface figure retrieval from a set of phase-shifted fringe patterns. (a) Phase-shifted interferograms. (b) Demodulated phase.
(c) Unwrapped continuous phase. (d) 37 expansion coefficients of the Zernike circle polynomials under the fringe indices. (e) Recovered
surface figure. λ: wavelength.

least- squares algorithms [137, 138, 142]. Herein the four-step
algorithmwill be introduced. Suppose that four interferograms
with phase shifts of 0, π/2, π, and 3π/2 are collected. Their
intensity functions can be written as:

I1(x,y) = a(x,y)+ b(x,y)cos[Φ(x,y)],

I2(x,y) = a(x,y)+ b(x,y)cos

[
Φ(x,y)− 1

2
π

]
,

I3(x,y) = a(x,y)+ b(x,y)cos[Φ(x,y)−π],

I4(x,y) = a(x,y)+ b(x,y)cos

[
Φ(x,y)− 3

2
π

]
. (141)

The phase, Φ(x, y), can be simply calculated as:

Φ(x,y) = arctan

(
I4 − I2
I3 − I1

)
. (142)

Since the value of the inverse tangent function is within
[−π,π], the calculated phase,Φ(x, y), is typically wrapped. An
extra process, called phase unwrapping [145, 146], is needed
to yield a continuous phase map.

Generally, misalignment errors, such as tilt and defocus, are
present in the phase function,Φ(x, y) and need to be removed to
reveal the true surface figure. This can be achieved by expand-
ing the phase function into finite terms of Zernike polynomials
and eliminating the coefficients of the tilt and defocus terms.
Mathematically, the phase expansion can be written as:

Φ(x,y) =
2π
λ
W=

2π
λ

J∑
j=0

ajZj, (143)

where aj is the expansion coefficients and can be computed
by the least-squares method described in section 2.3.1. The

final figure map of the surface under test can be obtained
as [141, 147]:

Wfigure =
1
2
{W− [a0 + a1Z1 + a2Z2 + a3Z3} , (144)

where a0, a1, a2, and a3 represent the coefficients of the pis-
ton, x-tilt, y-tilt, and defocus terms of the Zernike expansion,
respectively. The Zernike expansion coefficients, aj, can be
further used to calculate the PVr (peak-to-valley robust) [148],
which is a robust amplitude parameter for describing the figure
error of the optical surface under test.

For ease of understanding, the whole procedure for sur-
face figure retrieval from a set of phase-shifted fringe patterns
is illustrated in figure 35 and a state-of-the-art commercial
Fizeau interferometer for optical testing is shown in figure 36.

4.4. Ophthalmic optics

The eye, like any other optical system, suffers from a number
of specific optical aberrations [149]. Aberrations of eyes with
refractive errors include lower-order aberrations and higher-
order aberrations. Lower-order aberrations, such as myopia,
hyperopia, and regular astigmatism, account for approxim-
ately 90% of the overall ocular aberration and are the most
common causes of visual impairment [150]. In contrast,
higher-order aberrations, such as spherical aberration, coma,
and trefoil, account for less than 10% of ocular aberrations
but they may significantly impact on visual performance when
the pupil is large [149, 151]. Measuring the aberrations of the
human eye can provide objective and quantitative data for vis-
ion correction and is of critical importance to certain correct-
ive measures [23, 152], such as wavefront-guided refractive
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Figure 36. A commercial laser Fizeau interferometer for optical
surface testing. Reproduced with permission from Zygo
Corporation. ©2021 Zygo Corporation.

surgery [153, 154], which has been a paradigm shift in the
field of refractive error correction. The most commonly used
tool for the measurement of ocular aberrations is the Shack–
Hartmann wavefront slope sensor [155], which was developed
by Shack and Platt in the late 1960s [156, 157] and is an evol-
utionary technology of the Hartmann Screen test. The Shack–
Hartmann wavefront slope sensor can measure wavefront like
an interferometer but uses optical components less expensive.

The setup and principle for aberrations measurement of the
eye using a Shack–Hartmann wavefront slope sensor are illus-
trated in figure 37. An incident infrared light beam is reflec-
ted by a beam splitter and focused onto the retina. Since the
beam diameter is small (approximately 1 mm), the light spot
on the retina can be regarded as a point source independent
of eye aberrations. This point source emits spherical waves,
which will be affected by eye aberrations and become aber-
rated planar waves when leaving the eye. The aberrated waves
pass through the beam splitter and are detected by a Shack–
Hartmann wavefront slope sensor, which consists of a 2D
microlens array and a CCD camera located at the focal plane
of the microlenses. In this arrangement, the whole aberrated
wavefront is actually divided into many smallareas, which can
be locally treated as plane waves and are individually focused
onto the CCD camera. When the eye is aberration-free, the
outgoing wavefront from the eye is planar and the CCD cam-
era detects a regular spot pattern (shown as black dots in
figure 37(b)). In contrast, when the eye has aberrations, the
outgoing wavefront from the eye is aberrated and individual
parts of the wavefront are tilted with respect to the reference
wavefront, resulting in displaced focal spots (shown as red dots
in figure 37(b)) after being imaged onto the CCD camera. The
magnitude of the position shifts of the displaced spots reflects
the tilt amount of the measured wavefront and can be used to
recover the original wavefront using the algorithm described
below.

In a Shack–Harmann wavefront slope sensor, the relation-
ship between the position shift of an actual spot and the slope
of an aberrated wavefront can be written as [22, 23]:

∂W(x,y)
∂x

=
1
f
∆x,

∂W(x,y)
∂y

=
1
f
∆y,

(145)

where f is the focal length of the microlens array; ∆x and∆y
denote the shifts of the actual spot with respect to its ideal posi-
tion in the x and y directions, respectively. Based on these rela-
tionships, the aberrated wavefront, W(x, y), can be recovered
using either zonal or modal algorithms [22, 24]. In a modal
reconstruction, the wavefront is represented by finite terms of
Zernike circle polynomials as:

W(x,y) =
J∑
j=0

ajZj(x,y), (146)

where aj is the expansion coefficients. Taking the derivatives
with respect to x and y for both side of equation (146) at each
sampling points gives [23]:

∂W(xk,yk)
∂x

=
J∑
j=0

aj
∂Zj(xk,yk)

∂x
(k= 1,2, . . . ,K),

∂W(xk,yk)
∂y

=
J∑
j=0

aj
∂Zj(xk,yk)

∂y
(k= 1,2, . . . ,K),

(147)

where K is the total number of sampling points. Substituting
equation (145) into equation (147) yields a matrix equation as:

Aa= s, (148)

where:

A=



∂Z1(x1,y1)
∂x

∂Z2(x1,y1)
∂x · · · ∂ZJ(x1,y1)

∂x

∂Z1(x1,y1)
∂y

∂Z2(x1,y1)
∂y · · · ∂ZJ(x1,y1)

∂y

...
...

. . .
...

∂Z1(xK,yK)
∂x

∂Z2(xK,yK)
∂x · · · ∂ZJ(xK,yK)

∂x

∂Z1(xK,yK)
∂y

∂Z2(xK,yK)
∂y · · · ∂ZJ(xK,yK)

∂y


, (149)

s=
1
f

[
∆x(x1,y1) ∆y(x1,y1) · · · ∆x(xK,yK) ∆y(xK,yK)

]T
,

(150)

a=
[
a1 a2 · · · aJ

]T
. (151)

s is a 2 K × 1 column vector containing measured wavefront
slope data, a is a J × 1 column vector containing the unknown
Zernike expansion coefficients,A is a 2 K × J coefficient mat-
rix whose elements can be computed using the derivative for-
mulas of Zernike polynomials in equation (42). The unknown
a can be computed by matrix inversion as:

a= (ATA)−1ATs. (152)

Substituting the expansion coefficients (equation (152))
into equation (146) gives the wavefront aberrations of the eye.
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Figure 37. Measurement of ocular wavefront aberration with a Shack–Hartmann wavefront slope sensor. (a) Setup schematic. (b) Principle
of Shack–Hartmann wavefront sensing. Aberrated wavefront passing through the lenslet array is focused on a CCD. f : focal length of the
lenslet array; ∆x and ∆y: shift of the actual spot with respect to the ideal spot in the x and y directions, respectively.

The first measurement of ocular aberration using a Shack–
Hartmann wavefront slope sensor was performed by Liang
et al in 1994 [23]. The wavefront sensor was later improved
by increasing sampling density to provide more complete
descriptions of the aberrations of the eye, including irregular
and classical aberrations [152]. Since then, measuring ocular
aberrations by Shack–Hartmann wavefront slope sensor has
become common in clinical practice. Ocular aberrations can
also be measured by a wavefront curvature sensor, in which
curvature polynomials can be used to obtain Zernike aberra-
tion coefficients [158].

In addition to wavefront reconstruction in a Shack–
Hartmann wavefront slope sensor, Zernike polynomials are
also very useful in the analysis of the aberrations of the eye
[159]. Since Zernike polynomials are orthogonal over a cir-
cular disk, their expansion coefficients contain a wealth of
measurable metrics, such as root mean square error, equival-
ent defocus, spherocylindric refraction values [155] can be
derived for more illustrative description of eye aberrations.
Consensus recommendations on definitions, conventions, and
standards of Zernike polynomials were developed by OSA in
1999 for reporting of optical aberrations of the human eye
[27]. The recommendations were later standardized in ANSI
Z80.28 [14] and ISO 24157 [15, 17] and accepted by the vision
community.

Figure 38 shows a photograph of a commercially available
aberrometer, which uses a Shack–Hartmann wavefront slope
sensor for aberrations measurement. Zernike polynomials are
used for wavefront reconstruction and aberration reporting of
the eye [155].

4.5. Adaptive optics

Ground-based telescope is an important tool to explore the uni-
verse. Its image quality is critical to astronomical observations
but can be degraded significantly by atmospheric turbulence-
induced optical aberrations. Naturally, light coming from dis-
tant stars is plane waves before reaching the atmosphere of
the earth and can theoretically form images limited only by
the optical diffraction limit. However, due to the effect of
atmospheric turbulence, the light wavefront will be distor-
ted when propagating through the atmosphere, degrading the
image quality of a telescope. Adaptive optics is such a tech-
nology that can improve the performance of an astronomical
telescope by compensating wavefront aberrations induced by
atmospheric turbulence using wavefront correctors [160, 161].
The technique was first envisioned by Babcock in 1953 [162]
but did not come into common usage until the 1990s.

A typical adaptive optics system for an astronomical tele-
scope consists of three principal subsystems: a wavefront
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Figure 38. Photograph of a commercially available aberrometer that uses a Shack–Hartmann wavefront slope sensor. Left: Photograph of
ZEISS i.Profiler. Right: interface of its analysis software. Reproduced with permission from © ZEISS.

Figure 39. Schematic of an astronomical telescope equipped with an adaptive optics system, which contains a deformable mirror, a
wavefront sensor, and a control computer. Reproduced with permission from [163].

sensor, a deformable mirror, and a control computer [163],
as illustrated in figure 39. Its working principle is sketched
in figure 40 and can be understood as follows. A telescope
captures the light from the object of interest, such as a dis-
tant star or a satellite. Before being focused on the cam-
era, the light is first sampled by a wavefront sensor, such as
a Shack–Hartmann wavefront sensor, and the sampling data
are transferred to a control computer. The control computer
performs mathematical reconstruction to recover the wave-
front distortion of the sampled light and drives a servo sys-
tem to control the wavefront corrector, such as a deform-
able mirror, to compensate for the wavefront distortion. After

compensation, the wavefront of the light should be less dis-
torted, yielding images with improved quality at the cam-
era. If the light from the object is too faint to determine the
wavefront distortion, reference sources, such as nearby nat-
ural guide stars or artificial guide stars, can be used to facilitate
the correction process. Figure 41 is an example showing that
adaptive optics can improve the image quality of a telescope
significantly.

The use of Zernike polynomials in adaptive optics can be
reflected in two aspects. On one hand, Zernike polynomials
provide a unique set of functions for the representation, recon-
struction, and analysis of wavefront distortions in adaptive
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Figure 40. Working principle of adaptive optics.

Figure 41. Adaptive optics sharpens a telescope’s view. (a) No adaptive optics. (b) With adaptive optics. AO: adaptive optics. Reproduced
from [164], with permission from Springer Nature.

optics. Generally, atmospheric turbulence, described by the
Kolmogorov model [160], generates smoothly varying optical
wavefronts [161], which can be decomposed into different
modes by Zernike polynomials [9, 161]. The decomposition
makes it possible to use modal algorithms to reconstruct and
analyze wavefronts measured by slope-sensitive wavefront
sensors, such as the Shack-Harmann wavefront slope sensor
described in section 4.4. On the other hand, Zernike polyno-
mials offer a modal basis for the compensation of wavefront
distortions caused by atmospheric turbulence. In practice, both
zonal and modal approaches are used for wavefront compens-
ation in adaptive optics [161]. The zonal approach achieves the
compensation by an array of independent subapertures while
the modal approach compensates for distorted wavefronts over
the whole aperture. High-order aberrations are suitable for the
use of the zonal method while low-order aberrations described
can be compensated for more effectively by Zernike based
modal methods. Although Zernike polynomials are not stat-
istically orthogonal and are not independent [161] when used
for turbulence compensation, they are near optimum for low-
order corrections [9, 161, 165].

To date, adaptive optics has become a standard instrument-
ation suite and is in widespread use in a range of biomedical
and industrial applications, such as retinal imaging [166–168],
optical microscopy [169–172], optical tweezer [173], micro/

nanofabrication [174–176], and optical storage [177].
Figure 42 shows representative applications of adaptive optics
in laser fabrication, optical coherence tomography (OCT), and
super-resolution microscopy with improved performance.

4.6. Image analysis

In addition to applications in optics, Zernike polynomials
also play an important role in moments-based image analysis.
Image moments are real- or complex-valued quantities used to
characterize an image function and describe its features. They
are commonly used in statistics to characterize the distribution
of random variables and in mechanics to measure the mass dis-
tribution of a body. The use of moments for image analysis is
straightforward if we treat the pixel intensity of a binary or
gray level image as a random variable. Image moments, M,
can be considered as projections of an image function onto a
set of basis functions and are mathematically defined as:

M=

¨
f(x,y)ψ(x,y)dxdy, (153)

where f (x, y) is the image function and ψ(x, y) is the basis
function.

Image moments have been intensively studied in image
analysis because they can be used to construct moment
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Figure 42. Applications of adaptive optics in industry and biomedicine. (a) Ultrafast laser fabrication beneath the surface of diamond
without and with aberration correction. Adapted with permission from [174] © The optical Society. (b) Ultrafast laser writing of structures
in glasses without and with wavefront correction. Adapted with permission from [175] © The optical Society (c) In vivo OCT tomograms of
a normal human eye in the foveal region without and with adaptive optics. Adapted with permission from [178] © The optical Society.
(d) Mitochondria (magenta) and the plasma membrane (green) in a cell ∼150 µm deep in a zebrafish hindbrain imaged without and with
aberration correction and deconvolution. Reproduced from [172], with permission from Springer Nature.

invariant features for the description and recognition of
deformed objects and patterns. Common moments used
for image analysis include geometric moments, rotational
moments, complex moments, and orthogonal moments
[48, 179]. Among them, geometric moments, which use a
power series as the basis function [ψ(x, y) = xnyl], are the
earliest. Based on geometric moments, Hu first introduced
moment invariants in 1962 using the theory of algebraic
invariants and constructed seven moment invariants to lin-
ear transformations (translation, rotation, scaling, and skew)
[180]. This work opens the door to moment invariants based
image analysis and pattern recognition. In contrast to geo-
metric moments, orthogonal moments are a family of image
moments that use orthogonal polynomials as the kernel. Ortho-
gonal moments have simple inverse transform and minimum
information redundancy compared with geometric moments
and are widely used in practice. Zernike moments are an
important type of orthogonal moments.

4.6.1. Zernike moments and fast calculation. Zernike
moments for image analysis and pattern recognition were
first introduced by Teague in 1980 [12]. They are defined over
a unit circle by employing Zernike polynomials as the basis
function and can be written as [12]:

Mnl =
n+ 1
π

¨

x2+y2⩽1

f(x,y)
[
V l
n(x,y)

]∗
dxdy, (154)

where V l
n is the non-normalized complex Zernike polynomi-

als (equation (16)), the asterisk denotes complex conjugate,
and Mnl is the Zernike moment of degree n with repetition
l. n is a non- negative integer, l is an integer, n − |l| ⩾ 0
and is even. The completeness and orthogonality of V l

n allow
for the representation of a square integrable image function,
f (x, y), defined on a unit disk using Zernike polynomials
as [181, 182]:

f(x,y) =
n+ 1
π

∑
n

∑
l

MnlV
l
n(x,y). (155)

The expression in equation (155) suggests that the image,
f (x, y), can be theoretically reconstructed from its Zernike
moments. However, the practical importance of this property
is not that significant because moments are not a good tool
for image compression in general [183]. For a digital image,
equation (154) can be written in discrete form as:

Mnl =
n+ 1
π

∑
x

∑
y

f(x,y)
[
V l
n(x,y)

]∗
, (156)

where x2 + y2 ⩽ 1.
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Table 18. List of Zernike moments from degree zero to nine.

Degree Moments No. of Moments

0 M00 1
1 M11 1
2 M20,M22 2
3 M31,M33 2
4 M40,M42,M44 3
5 M51,M53,M55 3
6 M71,M73,M75,M77 4
7 M71,M73,M75,M77 4
8 M80,M82,M84,M86,M88 5
9 M91,M93,M95,M97,M99 5

Figure 43. Zernike moments are rotationally invariant. From left to right: image rotated counterclockwise by an angle of 60 degrees.

The fundamental feature of Zernike moments is their rota-
tional invariance. If the image, f (x, y) is rotated by an angle, α,
the Zernike moments of the rotated image is given by [184]:

M ′
nl =Mnl exp(−ilα). (157)

Equation (157) indicates that rotating an image will intro-
duce a phase shift to the Zernike moments but will not alter
the magnitudes. This simple property leads to the conclusion
that themagnitudes of the Zernikemoments, |Mnl|, can be used
as rotationally invariant features of the image function, f (x, y).
Moreover, bearing the facts thatMn,−l =Mnl

∗, |Mn,−l|= |Mnl|
in mind, one may only use |Mnl| with l ⩾ 0 as Zernike fea-
ture descriptors, as shown in table 18. Based on the Zernike
moments, two primary rotation invariants, In0 and Inl, can be
constructed as [12, 185, 186]:

In0 =Mn0,

Inl = |Mnl|2. (158)

They are the most important and most frequently used
Zernike shape descriptors.

The rotation invariance of Zernike moments is illustrated
by a numerical experiment. Figure 43 shows a gray image of
512 × 512 pixels and its five rotated versions with rotation
angles of 60◦, 120◦, 180◦, 240◦, 300◦, respectively. Table 19
presents the magnitudes of the Zernike moments up to the
third degree and their statistics (mean µ and standard deviation
σ). The data show that the standard deviations of the Zernike
moments are close to zero, suggesting that Zernike moments
are excellent shape descriptors for object recognition. In this
example, the reason for not obtaining exact rotation invariance
is due to discretization errors, which have been discussed by
several authors [182, 187].

Fast computation of Zernike moments is an important
topic in Zernike moments based image analysis. To com-
pute Zernike moments at lower degrees, one can directly
use the explicit definition of Zernike polynomials. However,
for Zernike moments at higher degrees, this method is not
recommended because it involves the calculation of factorial
functions present in the radial polynomial, which is com-
putationally expensive [59]. In these cases, one can employ
fast computation algorithms, such as the recursive methods
based on the recurrence relationships of the radial polynomi-
als (section 2.2.6) [59, 62, 64], among others [63, 188]. The
recursive algorithms are reportedly more efficient and partic-
ularly suitable for fast calculation of Zernike moments.

As an important orthogonal moment, Zernike moments
employ Zernike polynomials as the basis function and over-
come the drawbacks of geometric moments. They have min-
imum information redundancy and can represent features in
a more efficient, irredundant way. To date, Zernike moments
have been widely used in many applications, such as pattern
recognition [184, 189–191], multimedia watermarking [192,
193], and medical image analysis [194, 195].

4.6.2. Pseudo Zernike moments. Pseudo Zernike moments
stem from the pseudo Zernike polynomials (described in
section 2.5.5), which are also a set of polynomials ortho-
gonal over a unit circle analogous to the conventional Zernike
polynomials. Pseudo Zernike moments, denoted by Mnl, are
defined as [48, 186]:

Mnl =
n+ 1
π

ˆ 2π

0

ˆ 1

0
f(ρ,θ)

(
V l
n

)∗
ρdρdθ, (159)

where V l
n is the pseudo Zernike polynomials defined in

equation (86), n is a nonnegative integer, l is an integer,
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Table 19. Magnitudes of some Zernike moments for the rotated images in figure 43 and their statistics.

|M00| |M11| |M20| |M22| |M31| |M33|

0◦ 29 686.85 2295.99 4959.74 3543.28 3219.67 1585.55
60◦ 29 682.93 2296.33 4969.33 3543.65 3217.36 1584.38
120◦ 29 685.44 2296.22 4964.34 3548.26 3220.37 1586.41
180◦ 29 686.85 2295.99 4959.74 3543.28 3219.67 1585.55
240◦ 29 682.93 2296.33 4969.33 3543.65 3217.36 1584.38
300◦ 29 685.44 2296.22 4964.34 3548.26 3220.37 1586.41
µ 29 685.07 2296.18 4964.47 3545.06 3219.13 1585.47
σ 1.78 0.15 4.29 2.48 1.41 0.91
σ/µ% 0.006 0.007 0.09 0.07 0.04 0.06

and n − |l| ⩾ 0. Pseudo Zernike moments are analogous
to conventional Zernike moments (equation (154)) and also
hold the property of rotation invariance. However, they elim-
inate the constrain of n − |l| = even and thus have more
moment invariants for the same degree n [Pseudo Zernike
moments contain (n + 1)2 invariants while Zernike moments
have (n + 1)(n + 2)/2]. It is shown that pseudo Zernike
moments are less sensitive to image noise than conven-
tional Zernike moments [48]. Pseudo Zernike moments also
have fast computation algorithms [196, 197] and have been
used in a range of image analysis and pattern recognition
applications [198, 199].

5. Discussion and conclusion

Although Zernike polynomials have been successfully used
in a range of fields, it is important to be aware of potential
pitfalls. First, Zernike circle polynomials are only orthogonal
over a unit circle. For systems with non-circular pupils, such
as annular and hexagonal pupils, Zernike circle polynomials
are neither orthogonal nor represent balanced aberrations. In
these cases, orthonormal polynomials can be constructed by
orthogonalizing Zernike circle polynomials across the pupil
[37, 105], as discussed in section 3.1. Second, Zernike poly-
nomials are only orthogonal in a continuous fashion. This sug-
gests that in general, they are not or at least not strictly ortho-
gonal over a discrete set of data points in numerical simulation
or real experiments. Potential errors should be taken into con-
sideration when data points are sparse or unevenly distributed
[200, 201]. Third, when comparing Zernike expansion coeffi-
cients of two wavefronts, it is important to specify the pupil
diameters since the expansion coefficients vary with aperture
size. This is especially true when comparing the aberrations of
the eye from two measurements. Furthermore, Zernike poly-
nomials may fail to represent some complex, irregular surfaces
or shapes using a reasonable number of terms. Representative
examples include fabrication errors present in the single-point
diamond turning process [19] and irregular corneal aberrations
of postsurgical or pathological eyes [202, 203].

In conclusion, we provide a comprehensive account of
the development of Zernike polynomials in the past sev-
eral decades, including the history, definitions, mathematical

properties, roles in wavefront fitting, relationships with associ-
ated physical concepts, and connections with other polynomi-
als, and survey their state-of-the-art applications. Potential pit-
falls when using the Zernike polynomials are also discussed.

For Zernike polynomials over circular pupils, there are at
least six different indexing schemes used by national and inter-
national standards, commercial software, and prominent sci-
entists, including the Noll, OSA/ANSI, Fringe (University of
Arizona), ISO-14999, Born and Wolf, Malacara indices. All
indices share the same expression for the radial polynomi-
als, which is the eigenfunctions of a second-order rotationally
invariant partial differential equation [1, 6]. However, they
differ from each other in naming, normalization, and index-
ing strategies, which are compared and summarized (table 8).
Zernike polynomials possess rigorous mathematical proper-
ties, such as orthogonality and symmetry, and are closely
related to other functions, such as XY monomials, Jacobi
polynomials, Legendre polynomials, Bessel functions, and
pseudo Zernike polynomials. Their Fourier transform, integ-
ration representation, derivative, and recurrence relations can
be explicitly obtained to facilitate solving complex problems.
Zernike polynomials are well-suited for wavefront analysis
in optics because they have good corresponding relationships
with Seidel aberrations. The wavefront fitting problem can be
solved using the least-squares method. Expansion coefficients
represent the standard deviations of corresponding aberration
terms (except the piston term) and contain a wealth of inform-
ation about the wavefront. The expansion coefficients can be
easily transformed when the original wavefront is translated,
rotated, or resized (section 2.3.2).

Zernike circle polynomials are only orthogonal over
the interior of a unit circle. Polynomials orthogonal over
non-circular pupils can be constructed based on Zernike
circle polynomials. The most commonly used construction
approach is the recursive Gram–Schmidt orthogonalization
method. Based on this method, orthonormal polynomials
over five noncircular pupils, including annular, rectangular,
square, hexagonal, and elliptical pupils common in optics,
are discussed. The orthonormal polynomials over annular
pupils, called Zernike annular polynomials, are reviewed with
emphasis due to their practical significance. The Zernike annu-
lar polynomials are defined based on the Noll indices and
their recurrence relations and Fourier transform are explicitly
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presented. The Zernike annular polynomials have similar cor-
responding relationships with Seidel aberrations as Zernike
circle polynomials and are well-suited for wavefront analysis
over annular pupils.

In addition, we also survey state-of-the-art applications of
Zernike polynomials in a range of fields, including the dif-
fraction theory of aberrations, optical design, optical testing,
ophthalmic optics, adaptive optics, and image analysis. In
the diffraction theory of aberrations, Zernike polynomials are
used to expand the wavefront aberration at the exit pupil of
an optical system and corresponding expansion coefficients
are used to compute the PSF at the image plane according
to the (extended) Nijboer–Zernike theory. In optical design,
Zernike polynomials are used to analyze the wavefront aberra-
tion of a designed optical system, represent freeform surfaces,
and facilitate system optimization. In optical testing, Zernike
polynomials are used to fit measured interferometric wave-
fronts and remove misalignment errors. In ophthalmic optics,
Zernike polynomials are used to reconstruct ocular wave-
front measured by a Shack–Hartmann wavefront slope sensor
and report optical aberrations of the eye. In adaptive optics,
Zernike polynomials are used for the representation, recon-
struction, and compensation of optical wavefronts distorted by
atmospheric turbulence. In image analysis, Zernike polynomi-
als are used to define Zernike moments and pseudo Zernike
moments, which hold the property of rotation invariance and
can be used as shape descriptors for pattern recognition.

This review is aimed to clear up the confusion of different
indexing schemes, provide a self-contained reference guide for
beginners as well as specialists, and facilitate further develop-
ments and applications of Zernike polynomials.
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