ACCEPTED MANUSCRIPT

Exact Bloch oscillations in optical waveguide arrays with arbitrary long-range coupling

, and

Accepted Manuscript online 12 July 2017 © 2017 IOP Publishing Ltd

What is an Accepted Manuscript?

DOI 10.1088/2040-8986/aa7f55

10.1088/2040-8986/aa7f55

Abstract

We find the exact Bloch oscillations in zigzag arrays of curved optical waveguides under the influence of arbitrary long-range coupling. The curvature induces a linear transverse potential gradient in the equations of the light evolution. In the case of arrays with second-order coupling, steady states can be obtained as linear combinations of Bessel functions of integer index. The corresponding eigenvalues are equally spaced and form the well-known Wannier-Stark ladder, the spacing being independent of the second-order coupling. We also solve exactly the wave packet dynamics and compare it with experimental results. Accordingly we find that a broad optical pulse performs Bloch oscillations. Frequency doubling of the fundamental Bloch frequency sets up at finite values of the second-order coupling. On the contrary when a single waveguide is initially excited, a breathing mode is activated with no signature of Bloch oscillations. We present a generalization of our results to waveguide arrays subject to long-range coupling. In the general case the centroid of the wave packet shows the occurrence of multiples of the Bloch frequency up to the order of the interaction.

Export citation and abstract BibTeX RIS

During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully protected by copyright and cannot be reused or reposted elsewhere.

As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript will be available for reuse under a CC BY-NC-ND 3.0 licence after the 12 month embargo period.

After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/3.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required. All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record.

10.1088/2040-8986/aa7f55