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Abstract
Cellular secondary flows are inevitably present in turbulent flows through ducts,
natural or artificial channels, and compound channels. Secondary currents sig-
nificantly modify the characteristics of turbulent quantities, the pattern of
primary flow velocity by causing dip-phenomenon. To understand the detailed
mechanism and hidden cause, modelling of secondary flow velocities is cru-
cial. In this study, proper mathematical models of secondary flow velocities
along vertical and transverse directions are proposed for steady and uniform
turbulent flow through wide open channels with equal smooth and rough bed
strips. Starting from the continuity and the Reynolds averaged Navier–Stokes
equations, governing equation for secondary velocity is derived first and then
using appropriate boundary conditions (no-slip boundary conditions at chan-
nel bottom and free surface, and maximum vertical velocity in magnitude at
the interface of two cellular secondary cells and at mid-depth of the channel.
All these conditions are consistent with several experimental observations).
A new model of the streamwise Reynolds shear stress is proposed for the
entire cross-sectional plane and using it, the analytical solutions are obtained.
Proposed models include the effects of viscosity of the fluid and the eddy vis-
cosity model of turbulence. All suggested models are validated with existing
experimental data in rectangular open-channel flows, compound open channel
flows, and duct flows, and satisfactory results are obtained. Furthermore, mod-
els are also compared with existing empirical models from literature to show
the effectiveness and superiority of proposed models. Apart from these, the
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obtained results from this study are used to investigate the effects of vertical
and transverse secondary flow velocities on the settling velocity vector in a
cross-sectional plane. Effective alternative models for the settling velocity vec-
tor are suggested. The model of settling velocity vector is also compared with
the existing model. Finally, all results are justified from physical viewpoints.

Keywords: open channel turbulent flow, secondary currents,
Reynolds shear stress, settling velocity vector,
method of separation of variables

1. Introduction

Turbulent flows in rivers and open channels are natural phenomena that have drawn the atten-
tion of painters, scientists, and engineers through decades. Open channel flows are three
dimensional and are often too complex to represent or approximate as two dimensional flows
(Bradshaw 1987). Therefore, consideration of secondary currents along vertical and transverse
direction is crucial for the understanding of transfer and mixing mechanisms under the influ-
ence of turbulence. Streamwise helical circulations are known as secondary flows which can
occur due to different reasons. These secondary currents significantly affect the distribution
of primary flow velocity (Guo 1998, Guo and Julien 2001, 2008, Yang et al 2004, Absi 2010,
Kundu and Ghoshal 2012); Reynolds shear stress (Yang et al 2004, Yang 2005); suspension
concentration of sediment particles (Wang and Cheng 2008, Kundu and Ghoshal 2014, Kundu
2015); bed shear stress (Nezu andNakagawa 1993,Wang andCheng 2005) and particle settling
velocity (Wang and Cheng 2008) in the vertical and transverse directions. The effects of sec-
ondary flow on the distribution of the Reynolds shear stress, settling velocity are little-known
compared to its effects on the primary velocity distribution due to lack of proper mathematical
understanding and models of secondary flows. On the other hand, Wang and Cheng (2006)
reported that the time mean structure of secondary current significantly changes due to dif-
ferent bed configurations. Apart from these, in sediment-laden flow, viscosity considerably
changes along vertical and spanwise direction which may reduce the flow circulations. As
a consequence, proper modelling of secondary flow velocities (in the vertical and transverse
direction) including effects of fluid viscosity and different bed configurations is necessary to
understand the pattern of secondary current and to have proper knowledge of its effects on the
above mentioned flow quantities.

Prandtl (1926) classified the secondary currents into two categories depending on their
underlying generation mechanism as: secondary current of the first kind and secondary current
of the second find. Prandtl’s secondary current of first kind is observed in curved pipe, river
bends and meandering channels and they are driven by centrifugal force or pressure gradient
along transverse direction. The second kind of Prandtl’s secondary current is generated as a
result of turbulence non-homogeneity and anisotropy. Streamwise vortices are developed as a
result of transverse variance of the turbulent stresses. These vortices further extend along the
transverse direction and cause a flow circulation with dimension of the flow depth (Wang and
Cheng 2006). This type of secondary current is observed in turbulent flow through straight
wide and narrow open channels. Often, this type of secondary current is called as turbulence-
induced secondary current. Among different variety of turbulence-induced secondary currents,
in this study secondary currents associated to different bed roughness configurations in wide
channels are investigated theoretically. The existence of secondary current in open channel
turbulent flows have been discovered by several researchers (Thomson 1876, Francis 1878,
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Figure 1 . Schematic diagram of secondary currents in wide channels with line of boil
or high sediment zones.

Stearns 1883, Gibson 1909, Vanoni 1946, Coleman 1969). Gibson Gibson (1909) and Naot
and Rodi (1982) envisaged the pattern of secondary current in a narrow open channel which
are called as ‘corner’-induced secondary current (Gessner 1973). In 1980s, several researchers
found that secondary current can also be generated without ‘corner flows’, if the channel bed is
slightly perturbed. Nezu and Rodi (1985) experimentally showed that lateral variations in bed
topography and roughness can lead to the formation of secondary currents, which are inde-
pendent of the side-wall effect or the corner induced secondary current (Nezu and Nakagawa
1993, Wang and Cheng 2005). Besides these reasons, also it has been shown that this kind
of secondary current may be formed in buoyancy-driven flow even in straight circular pipes
(Hallez and Magnaudet 2009), where bed roughness and bed topography do not play any role.
Further, Kinoshita (1967) postulated the form of streamwise secondary currents in straight
rivers. He suggested that streamwise secondary currents consists of two counter-rotating large
vortices with diameter equal to flow depth and spanwise spacing of twice the flow depth. A
schematic diagram is presented in figure 1. During the initiation of flow, due to change of bed
roughness along lateral direction cellular secondary currents are gradually developed. Further
sediment beds are continuously deformed and eventually forms ‘sand troughs’ (made of coarse
sand which can be regarded as rough bed surface) and ‘sand ridges’ (made of fine sands and
can be regarded as smooth bed surface). These cellular secondary cells consist of upflow and
downflow zones. The upflow and downflow zones are correspond to smooth and rough bed
surfaces respectively Wang and Cheng (2005, 2006) (see figure 1). These spanwise upflow
and downflow of secondary currents change the distributions of turbulent stresses and primary
flow velocities. Yang and his co-researchers Yang et al (2004), Yang (2005, 2007), Kundu
and Ghoshal (2012)showed that in the presence of vertical secondary currents, the distribu-
tion of the Reynolds shear stress deviates from its traditional linear type profile. They also
showed that zero Reynolds shear stress always corresponds to the velocity-dip-position which
appears beneath the free surface and as a consequence, the maximum primary flow velocity
occurs below the free surface. Kundu and Ghoshal (2012) showed that with the increase of
vertical secondary flow velocity (measured through the dip-correction parameter), zero-shear
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Figure 2. Schematic diagram for effect of secondary currents on settlement of particles.

stress point gradually shifts downward from free surface. Moramarco and Singh (2004) poin-
ted out that measured maximum primary velocity usually appears below the free surface at a
distance of 0.05–0.5 of the flow depth. In the Mississippi River, maximum velocity appears at
two-third of the water depth from the channel bottom (Gordon 1992). Later Wang and Cheng
(2005) performed experiments to investigate the effects of secondary flows on bed shear stress
and streamwise Reynolds distribution in wide artificial open channels. Their finding suggests
that the Reynolds shear stress shows a convex profile in the upflow zones and a concave profile
in the downflow zone. Apart from the primary velocity, Wang and Cheng (2008) investigated
the effects of cellular secondary flow on settling velocity vectors. They found that the pattern of
contour lines (open or closed) of settling velocity vectors depends on the ratio Vmax/ω0 (where
Vmax is the maximum upwelling velocity and ω0 is the particle settling velocity in still water).
A schematic diagram is presented in figure 2 to demonstrate the interplay between secondary
current and settlement of particles. In the figure, two vertical sections (namely 1-1 and 2-2)
are considered. Along the section 1-1, secondary flow velocity is along upward direction and
it is along the downward direction along the section 2-2. Two particles A and B are considered
at pointed locations in the figure for the description. Particle A which is present along the
section 2-2, moves along downward direction under the influence of downward flow velocity
and eventually may settle on the bed surface or slide along transverse direction (Kundu 2016).
On the other hand, particle B is trapped between two consecutive closed secondary stream-
lines. Due to the continuous circulations of secondary flows in that zone, it may carry particle
B upwards in spite of gravity due to its upward motion. The possible paths of particles A and
B are shown in the figure with red dotted lines. These clearly indicate the role of secondary
currents on the movement of settlement of particles.

A number of researchers investigated the structure of secondary currents and proposed
empirical, analytical and numerical models under different flow conditions and bed configur-
ations. Ikeda Ikeda (1981) proposed models to predict secondary flow velocities. The effects
of fluid viscosity and unequal bed configuration are not included in the study. The application
and results of this study are limited as the Reynolds shear stress is considered as linear model
which rarely holds in such flows (Yang et al 2004). The solutions of Ikeda (1981) were ana-
lyzed by Nezu and Nakagawa (1993). Nezu and Nakagawa (1993) found that the models of
Ikeda (1981) represent the ideal flow situations only and may be applicable for unequal bed
roughness configurations. Instead of proposing a model, Chiu and Lin (1983), Chiu and Choiu
(1985)suggested a method to calculate secondary current from the primary velocity. In their

4



Fluid Dyn. Res. 54 (2022) 015515 S Kundu and T Chattopadhyay

method, the rectangular coordinate system is transformed into a special curvilinear coordin-
ate system which makes the computation process complicated and give rise to large errors.
Since the value of secondary flow velocities are quite small compared to the magnitude of
primary flow velocity, the models of Chiu and Lin (1983), Chiu and Choiu (1985)are not suit-
able. Later, Kotsovinos (1988) proposed mathematical models of secondary flow velocities by
presenting a possible mechanism which produces the cellular secondary current in duct flows.
Wang and Cheng (2006) performed experiments to investigate the time mean structures of sec-
ondary flows in wide open channel with different longitudinal bed forms. From experimental
observations of secondary streamlines, they empirically postulated a simple analytical formula
for the stream function. This empirical result was previously obtained by Kotsovinos (1988)
in duct flows. Apart from it, Wang and Cheng (2006) also observed that the cellular shape
of secondary cells changes under different bed roughness configurations. More precisely they
reported three different types of shapes of secondary cells as: cellular, laterally skewed and
vertically distorted. For each of these shapes, they empirically proposed the forms of stream
function using suitable boundary conditions and the property of periodic functions. Based on
this empirical form of the stream function, they derived models of secondary flow velocities
along vertical and transverse directions. In their studies, Yang (2005) and Yang et al (2012)
empirically proposed parabolic type model for the vertical secondary velocity using boundary
conditions. Later Kundu and Ghoshal (2013) extended the study of Yang (2005) for sediment-
laden flows and proposed a general empirical model for vertical secondary flow velocity. The
model of Kundu and Ghoshal (2013) is used to study the effects of secondary current on sus-
pension distribution. In the same year, Ghoshal et al (2013) performed experimental study on
gravel mixture bed. They found that a beta density function satisfies the obtained experimental
data of vertical velocity well. This model is based on experimental findings and is proposed
empirically without any reasonable mathematical description. A list of all the aforementioned
empirical/semi empirical model of secondary flow velocities is presented in table 1 with their
origin and limitations for better understanding. Apart from these analytical empirical mod-
els, several studies have been carried out using numerical simulations to investigate secondary
currents. Gessner and Emery (1981) investigated secondary flows numerically for a duct flow.
Further, Lin, Yu et al (2017) and Lin, Shao et al (2017) studied the effects of presence of finite-
size neutrally buoyant and heavy particles on mean secondary flows respectively. Their results
for neutrally buoyant particles show that the mean secondary flow is enhanced and its circu-
lation centre shifts closer to the centre of the duct cross section when the neutrally buoyant
and heavy particles are added. They postulated that due to the presence of particles, gradients
of the secondary Reynolds normal stress difference and shear stress in the near-wall region
near the corners, enhances which results an increase in mean secondary flow. Soualmia et al
(2008) performed numerical studies for turbulent characteristics using k− εmodels. Recently,
Proust and Nikora (2020) performed experimental studies to investigate transverse secondary
current in a compound open channel. Though the numerical models proposed in these stud-
ies can predict secondary velocities, but they are computationally complex and costly. From
aforementioned discussions it can be understood that previous investigations mostly propose
empirical models for the secondary flow velocities and employ them to investigate primary
flow velocity, the Reynolds shear stress and suspension concentration distribution. Though in
few studies models are derived by solving governing equations, but effects of the Reynolds
shear stress and fluid viscosity are neglected. As a result, most of these models have limita-
tions and drawbacks. Apart from these, the models summarized in table 1, are applicable only
in open channel flows. Thus, more general models are required which can be simultaneously
applicable for compound channel flows and duct flows apart from wide open channel flows.
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Table 1. Details and limitations of empirical and semi-empirical models in literature.

Authors

Empirical/
semi-empirical/
proposed model Remarks and limitations

Ikeda (1981)
r
ū∗

=− 6Ab
κπ2 cos(πỹ)

[(2z̃− 1)cos(πz̃)+ 1],

q
ū∗

=
6Ab
κπ2 sin(πỹ)[

2
π
cos(πz̃)− (2z̃− 1)sin(πz̃)

]

Used simplified RANS
equation and solved it. This
model does not contain effect
of viscosity and only applied
in open channel flows.

Kotsovinos
(1988)

r=−Acos(πỹ)sin(πz̃),
q= Asin(πỹ)cos(πz̃)

Derived from momentum
equations assuming linear
stability. Effects of bed
roughness and viscosity
effects are not included.
Proposed only for open
channel flows.

Wang and
Cheng (2006)

r
Wmax

=−cos(πỹ)sin(πz̃),
q

Wmax
= sin(πỹ)cos(πz̃)

Semi-empirical model
proposed based on the
empirical form of the stream
function.

Yang (2005),
Yang et al
(2012)

r
u∗

= ακz̃m(1− z̃)n, α, m and

n are empirical coefficients

Empirical model. The model
is proposed on the basis of the
boundary conditions: at bed,
z= 0, w= 0 and at free
surface z= h, w= 0. It
depends only on vertical
coordinate z.

Kundu and
Ghoshal (2013)

r
u∗

= ακz̃m(1− z̃)n(1−C)p,

C is concentration

The model is empirically
proposed for sediment-laden
flow. No rigorous
mathematical background is
present.

Ghoshal et al
(2013)

r
u∗

= b0
Γ(b1 + b2)
Γ(b1)Γ(b2)

z̃b1−1

(1− z̃)b2−1

Model is empirically
proposed based on the
experimental data rather than
theoretical perspective.

The main objectives of this study are: (a) to find general and appropriate mathematical
models for the vertical and transverse secondary flow velocities in wide open channels, com-
pound channels and ducts including effects of viscosity of fluid, eddy viscosity and modified
streamwise Reynolds shear stress distribution; (b) to derived these models from a mathemat-
ical viewpoint rather empirically proposed them; (c) to validate obtained models with wide
range of experimental data for open channel flow, compound channel flow and duct flow; (d)
to compare the proposed models with previous empirical models; and (e) to reinvestigate the
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effects of secondary currents on settling velocity vectors employing the obtained models from
this study.

2. Derivation of governing equation

To derive the full governing equation, we consider a steady and uniform turbulent flow through
straight wide open channels with longitudinal bedforms. The bedforms considered here have
symmetric pattern about the centerline and composed of smooth and rough bed strips of equal
length along transverse direction. We consider x-axis along the main flow direction along
which the flow is considered as uniform. The lateral and vertical coordinates are considered
along y and z directions respectively. Mean flow velocity components along x, y and z direc-
tions are given by p, q and r respectively. Under such flow condition, equations of motion for
the analysis of secondary currents are governed by Reynolds averaged continuity and Navier–
Stokes (RANS) equations which are expressed as follows

∂q
∂y

+
∂r
∂z

= 0 (1)

and

∂q
∂t

+ q
∂q
∂y

+ r
∂q
∂z

=−1
ρ

∂P
∂y

+ ν∇2q+

[
∂

∂y

(
−q ′2

)
+

∂

∂z

(
−q ′r ′

)]
(2)

∂r
∂t

+ q
∂r
∂y

+ r
∂r
∂z

=−gJ− 1
ρ

∂P
∂z

+ ν∇2r+

[
∂

∂y

(
−q ′r ′

)
+

∂

∂z

(
−r ′2

)]
(3)

where J is the longitudinal channel slope, g is gravitational acceleration,P is pressure, ρ is fluid
density, ν is kinematic viscosity. Here primes denote the turbulent fluctuation part of corres-
ponding velocity components. Since in this study, the Prandtl’s secondary current of second
kind is considered which is generated due to the turbulence non-homogeneity and anisotropy
in open-channels, the effect of pressure gradient can be neglected. Therefore, eliminating the

pressure term and defining vorticity vector Ω=
∂r
∂y

− ∂q
∂z

, above momentum equations can be

combined as

∂

∂t

(
∂r
∂y

− ∂q
∂z

)
+ q

∂Ω

∂y
+ r

∂Ω

∂z︸ ︷︷ ︸
I

=
∂2

∂y∂z

(
q ′2 − r ′2

)
︸ ︷︷ ︸

II

+

(
∂2

∂z2
− ∂2

∂y2

)
q ′r ′︸ ︷︷ ︸

III

+ ν∇2

(
∂r
∂y

− ∂q
∂z

)
︸ ︷︷ ︸

IV

. (4)

In equation (4) term I denotes the advection of vorticity under secondary flow velocities which
establishes the existence of secondary current, terms under II and III denote generation of
secondary current due to turbulent anisotropy and suppression of secondary current due to the
Reynolds shear stress respectively (Nezu and Nakagawa 1993). Term IV is the viscous term.
Among all these terms, terms II and III are dominant terms compared to term I (Nezu and
Nakagawa 1984). Further if sediment particles are present in the flow, viscosity term IV plays
significant role and therefore cannot be neglected as mentioned earlier. Also consideration
of the term IV makes the model more general to apply in sediment-laden flows. Since the
study focuses on Prandtl’s secondary current of second type, term I is neglected as it is small
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compared to other terms in the equation as proposed by (Ikeda 1981, Nezu and Nakagawa
1993).

Differentiation of equation (4) with respect to y and simplification gives the below govern-
ing equation (

∂

∂t
− ν∇2

)
∇2r=

∂3

∂y2∂z

(
q ′2 − r ′2

)
+

(
∂2

∂z2
− ∂2

∂y2

)
∂

∂y

(
q ′r ′

)
(5)

where ∇2 = ∂2

∂y2 +
∂2

∂z2 denotes the Laplacian operator. To find full analytical solution of
equation (5) for the vertical component of secondary flow velocity r, algebraic closure of tur-
bulent shear stress and normal stress are required. Several researchers considered equation
(5) to investigate the secondary current in duct flow and straight wide channel flow without
sediment bed. The focus of all previous studies was mainly on the balance between the genera-
tion and suppression of secondary terms. Brundrett and Baines (1964) and Tracy Tracy (1965)
considered equation (5). In both these studies they found that, in a duct flow, the generation
of secondary current is significantly higher than the suppression term and neglected suppres-
sion term in their studies. Later, Ikeda (1981) considered that the generation of secondary
currents is balanced by the suppression of secondary current by the Reynolds shear stress with
negligible viscosity and considered a more simplified equation of equation (5). Whereas the
viscosity plays a significant role in sediment mixed flows. Due to the presence of particles
in fluid, distribution of the eddy viscosity and the Reynolds shear stress changes. Therefore
these aforementioned studies are not suitable to apply for investigation of secondary flows in
rivers. In the present study it is assumed that generation of secondary current is balanced by the
suppression by the Reynolds shear stress as well as by the viscous dissipation. The Reynolds
shear stress −q ′r ′ can be expressed by the eddy viscosity models as (Hinze 1975)

−q ′r ′ = νt

(
∂q
∂z

+
∂r
∂y

)
(6)

where νt denotes the eddy viscosity which are generally considered as constant in such studies
after considering the logarithmic law of primary velocity as νt = (ku∗h)/6 (Ikeda 1981) in
which u∗ is the shear velocity. It is already reported in several studies that in such complex
flows, the log-law cannot be applied for the primary flow velocity throughout the flow depth
(Guo 2006, Kundu 2015). The log-law can predict the primary flow velocity in the inner region
(z/h< 0.2) only. In the outer region (z⩾ 0.2h), log-law deviates from the experimental data
and also fails to predict the maximum velocity below the free surface which is known as dip-
phenomena. Kundu and Ghoshal (2012) proposed the general model total-dip-modified-log-
wake law (TDMLWL) which predicts velocity through the flow depth more accurately than
such previous models. This model is simple and easy to apply due to its full analytical form.
Therefore, to derive a more general model of eddy viscosity, the TDMLWL is employed in this
study. Also, till now no suitable and appropriate model of two dimensional eddy viscosity is
available in the literature and hence the depth averagedmodel of the eddy viscosity is employed
in this study as a first approximation (It is important to point out that though this approximation
is made, but the final results are good and not compromised.). Using it, the modified depth
averaged eddy viscosity model is expressed (see appendix for detail calculation) as (Kundu
and Ghoshal 2012)

ν t = κu∗h
ˆ 1

0

z̃(1− z̃)
1+ 12Πz̃2(1− z̃)

dz̃. (7)

The effects of normal shear stresses are reflected by term II in governing equation (4). This
term signifies the vorticity or secondary flow generation term. The present study primarily
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focuses is to predict the structures of secondary flow cells due to a periodic bed perturbation in
wide open-channel more accurately. In the case of wide open channels, due to the bed effects,
cellular secondary currents are generated that spread over the whole flow depth and width
of the channel (Nezu and Rodi 1985). These secondary circulations in return modify the bed
forms and bed configurations. Therefore, it can be assumed that the bed perturbation occurs
over the whole width of the channel. Since these secondary flows are present over the whole
flow domain, it is more reasonable to consider the vorticity generation term as universal rather
than local. Therefore normal shear stress term can be assumed following Ikeda (1981) as

q ′2 − r ′2

u2∗
= α0

−p ′r ′

u2∗
(8)

where α0 is a constant generally considered as unity (Nezu and Nakagawa 1993). Apart from
the above reason, equation (8) was also considered by several previous researchers (Perkins
1970, Townsend 1976,McLean 1981, Nakagawa et al 1981, Nezu andNakagawa 1993) related
to similar type of study. Equation (8) shows that the production of secondary current (SC)
due to turbulent anisotropy is balanced by the suppression of secondary current due to Reyn-
olds shear stress to make a balance of stability in the flow. Therefore, the constant α0 can
be regarded as the ratio of SC production to suppression of SC and it can be considered as a
stability index. From physical point of view, α0 > 1 indicates the grow of SC and gradually
flow becomes unstable, and α0 < 1 indicates a decay in the formation of SC and flow eventu-
ally becomes stable to rectilinear flow. In equation (8), further α0 = 1 signifies that stability to
instability of the flow gradually occurs through the appearance of secondary flows (Kotsovi-
nos 1988). Further, to find the appropriate closure of normal shear stress term in equation (8),
the closure of the Reynolds shear stresses are to be considered. The Reynolds shear stresses
are generally modeled by a linear profile which satisfy the boundary conditions as at z= 0,
−p ′r ′ = τ0(= ρu2∗) and at z= h, −p ′r ′ = 0. Yang et al (2004) analyzed the Reynolds shear
stress distribution considering effects of secondary current velocities to study primary flow
velocity. After analyzing the data of Immamoto and Ishigaki (1988) (narrow channel experi-
mental data with Ar = 5), he empirically proposed a modified linear type profile form of the
Reynolds shear stress which includes the effect of vertical component of secondary current.
The model of Yang et al (2004) was also considered in some studies by Yang (2007), Kundu
andGhoshal (2012), Yang et al (2012) for investigating turbulent velocity profiles.Whereas the
experimental observations reported by Wang and Cheng (2005) in a wide open-channel flow
show that the Reynolds shear stress distribution differs form the linear profile (which gener-
ally used in two dimensional flows) and exhibit upward convex and upward concave profiles
over smooth and rough beds respectively. Figure 3 shows the relationship between the second-
ary circulation over smooth and rough bed strips with the distribution of the Reynolds shear
stress −p ′r ′/u2∗ as observed by (Wang and Cheng 2005). It can be seen from figure 3(a) that
it follows a non-linear profile along with the aforementioned boundary conditions. Secondary
current flows along vertically upward direction along the section A at the middle of the smooth
bed strip (where ỹ=−1.0). Along the section B, the secondary current is directed along lateral
direction (tangential direction of bed) and along the section C (which is the middle of rough
bed strip), secondary flow occurs along vertically downward direction. Figure 3(b) shows that
along the section A, the Reynolds shear stress increases and follows a upward convex profile;
whereas along the section C, it decreases and shows an upward concave profile. The linear
profile occurs only along the section B where no vertical component of the secondary current
is present. Therefore for wide open channel flows with alternate bed forms, model of Yang et al
(2004) needs to be modified. It is also reported byWang and Cheng (2005) that the variation of
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Figure 3. Relation between the secondary circulation and Reynolds shear stress
(−p ′r ′/u2∗) distribution in wide open-channel with alternate rough and smooth bed
forms (after Wang and Cheng (2005)).

the Reynolds shear stress from upward convex profile to upward concave profile occurs gradu-
ally along transverse direction. Figure 3(c) shows that the parameter α in the model of Yang
et al (2004) can be modeled by a cosine function. Therefore in this study, the shear stresses
due to turbulence is modeled after including these effects as

q ′2 − r ′2

u2∗
= α0

−p ′r ′

u2∗
= α0

[(
1− z

h

)
−απ cos

(πy
λ

){ z
h
−
( z
h

)2
}]

(9)

where α is called as dip correction parameter which physically indicates the strength of sec-
ondary current and can be determined from experimental data. Figure 4 shows the validation
of the proposed model with the experimental data of (Wang and Cheng 2005). Here the value
of α is taken as 0.2, fixed for all channel sections and other values of parameters are taken
form (Wang and Cheng 2005). It can be seen that proposed model reasonably agrees well with
these data sets.
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Figure 4. Validation of the proposed Reynolds shear stress model (equation (9)) with
experimental data of Wang and Cheng (2005).

Substituting equations (6)–(9) into equation (5) and simplifying the governing equation is
obtained as

(
∂

∂t
− ν∇2

)
∇2r= ϕ(y,z)+ ν t

(
∂4 r
∂z4

− 2
∂4 r

∂y2∂z2
+

∂4 r
∂y4

)
(10)

where ϕ(y,z) is a function of y and z defined as

ϕ(y,z) =
u2∗
λ2h

α0 απ
3 cos

(πy
h

)[
1− 2

z
h

]
. (11)

Introducing the following dimensionless quantities
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r̃=
r
u∗

, q̃=
q
u∗

, ỹ=
y
λ
, z̃=

z
h
, t̃=

tu∗
h
, ν̃ t =

ν t
u∗h

, ν̃ =
ν̃

u∗h
and

ϕ̃(ỹ, z̃) = ϕ(y,z)
/(

u∗2
λ2h

)
(12)

the governing equation can be put in dimensionless form as(
∂

∂t
− ν̃∇̃2

)
∇̃2r̃= ϕ̃(ỹ, z̃)+ ν̃ t

(
∂4r̃
∂z̃4

− 2
∂4 r̃

∂ỹ2∂z̃2
+

∂4 r̃
∂ỹ4

)
(13)

where the length λ of rough bed strip is assumed as same as flow height h. Under the steady
and uniform flow conditions, equation (13) can be expressed as(

ν̃+ ν̃ t
) ∂4r̃(ỹ, z̃)

∂z̃4
+ 2

(
ν̃− ν̃ t

) ∂4 r̃(ỹ, z̃)
∂ỹ2∂z̃2

+
(
ν̃+ ν̃ t

) ∂4 r̃(ỹ, z̃)
∂ỹ4

=−ϕ̃(ỹ, z̃) . (14)

Equation (14) is the governing equation for the vertical component r̃(ỹ, z̃) of secondary
current which includes both the generation and suppression of secondary current as well as
effect of viscosity due to the mixing sediment particles in the flow domain. To solve equation
(14) for r̃(ỹ, z̃), boundary and other conditions are required. Since this study focuses on the
cellular secondary currents and streamwise bed configurations, the boundary conditions are
considered from the latest experimental observations and study by Wang and Cheng (2005)
and Wang and Cheng (2006). In these experiments it is observed that vertical secondary flow
velocity is absent in both the channel bottom and free surface due to the presence of boundaries.
Also it has been observed that at every section along the lateral direction, the maximum value
of vertical secondary flow velocity always occurs at the middle of the flow depth. Starting from
zero velocity at the channel bottom, vertical secondary velocity gradually increases towards
the middle of flow depth and then eventually decreases and becomes zero at the free surface.
It is also found by Wang and Cheng (2006) that at the junction of smooth and rough bed
strips, vertical velocity vanishes over the whole flow depth and transverse component of the
secondary current exists. Considering these, the boundary conditions can be formulated as

r̃(ỹ, z̃)
∣∣∣̃
z=0

= 0, r̃(ỹ, z̃)
∣∣∣̃
z=1

= 0,

r̃(ỹ, z̃)
∣∣∣
|̃y|=2m+1,̃z=1/2

= W̃max,
∂r̃
∂z̃

∣∣∣̃
z=1/2

= 0,

and

r̃(ỹ, z̃)
∣∣∣
|̃y|=(2m+1)/2

= 0 (15)

where m= 0,1,2,3, . . . and W̃max =Wmax/u∗ is the dimensionless maximum upwelling velo-
city Wang and Cheng (2006). In the formulation of equations (15), the bed configuration sim-
ilar toWang and Cheng (2006) is assumed and these conditions can be changed accordingly for
other types of bed configurations with suitable length scales (flow height and length of rough
bed strips) and co-ordinate system. It is important to mention here that equation (14) is a partial
differential equation and one can solve it by using any standard numerical methods along with
the specified boundary conditions in equation (15). But finding a complete analytical solution
is very much challenging which is addressed in this study. The main motivation is to find an
analytical solution which is easy for practical applications without any hard core numerical
simulations or empirical assumptions. These analytical solutions not only provide hand free

12



Fluid Dyn. Res. 54 (2022) 015515 S Kundu and T Chattopadhyay

solutions, but also improve our understanding towards the effects of included parameters of
the physical process.

3. Analytical closed form solution

In most of the considered three dimensional turbulent flows, though the magnitude of the sec-
ondary component velocities is apparently less than 5% of the magnitude of primary flow velo-
city, but their effects on primary velocity, suspension distribution and settling velocity cannot
be neglected (Guo 1998, Kundu andGhoshal 2014). In the present studywe focus on the gener-
ation of secondary currents by variation of bed roughness. These changes in bed configuration
serve as effective bed disturbances. To compare with experiments, we assume the flow as com-
bination of ‘base flow’ and a perturbation to the base flow due to the existence of secondary
currents. This assumption is possible due to the fact that secondary flow is generally much
weaker than the primary flowWang and Cheng (2005) and secondary flow is generated gradu-
ally upon the base flow since the initiation of motion. Further it is found from the literatures
that in wide open channels, among many causes for development of secondary flows, it also
occurs due to perturbation in bed roughness. To emphasize the effect of bed disturbances, here
we assume that the secondary flow is comprised of an idealized secondary flow and a modific-
ation to the bed configuration or bed effects. This type of assumption is already employed in
some previous studies (Wang and Cheng 2005, Lu et al 2018). Therefore, to solve the definite
problem in equation (14), it is assumed that r̃(ỹ, z̃) = W̃1((ỹ, z̃))+λ∗W̃2 (ỹ, z̃)where W̃1((ỹ, z̃))
is the idealized secondary flow, W̃2 (ỹ, z̃) is the quantity related to perturbation in the flow due
to the bed configuration and λ∗ is a parameter related to bed perturbation. In their study, Yang
et al (2012) found that the gradients in the wall-tangential direction is much smaller than the
gradient in the wall-normal direction. Equation (14) is satisfied by both the functions W̃1((ỹ, z̃))
and W̃2((ỹ, z̃)). Since near to bed, W2 plays significant role than the other part, following the
results of Yang et al (2012), it is further assumed that the wall-tangential gradient terms ofW2

are negligible. Therefore, the definite problem can be decomposed into two simple problems
which are expressed below along with their boundary conditions as,

(I)


A
∂4W̃2 (z̃)

∂z̃4
=−ϕ̃(ỹ, z̃)

W̃2 (z̃)
∣∣∣̃
z=0

= 0, W̃2 (z̃)
∣∣∣̃
z=1

= 0, ∂W̃2
∂ z̃

∣∣∣̃
z=1/2

= 0,

W̃2 (ỹ, z̃)
∣∣∣
|̃y|=(2m+1)/2

= 0

(16)

and

(II)


A
∂4 W̃1 (ỹ, z̃)

∂z̃4
+B

∂4 W̃1 (ỹ, z̃)
∂ỹ2∂z̃2

+A
∂4 W̃1 (ỹ, z̃)

∂ỹ4
= 0

W̃1 (ỹ, z̃)
∣∣∣̃
z=0

= 0, W̃1 (ỹ, z̃)
∣∣∣̃
z=1

= 0, and ∂W̃1
∂ z̃

∣∣∣̃
z=1/2

= 0,

W̃1 (ỹ, z̃)
∣∣∣
|̃y|=(2m+1)/2

= 0

(17)

where m= 0,1,2,3, . . ., A= ν̃+ ν̃ t and B= 2(ν̃− ν̃ t).
Integrating and applying the boundary conditions in equation (16), the solution W̃2 is

expressed as
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W̃2 (ỹ, z̃) =−Lcos(πỹ)
(
z̃4

24
− z̃5

60
− z̃

64

)
+

9
40
Lcos(πỹ)

(
z̃3

6
− z̃

8

)
+FLcos(πỹ)

(
z̃2

2
− z̃

2

)
(18)

where L= α0 απ3

A and F is a parameter determined from the experimental observation (For
detailed step-by-step solution, see appendix). For the solution of the sub problem (II), the
method of separation of variable is applied. Proceeding the calculation (see appendix for
details) the solution W̃1 (ỹ, z̃) is expressed as

W̃1 (ỹ, z̃) = C1
sin(πz̃)

sin
{
χ1

(
2m+1

2

)} sin

{(
2m+ 1

2
− |ỹ|

)
χ1

}
(19)

where C1 = λ∗L
(
F
8 +

7
1920

)
− W̃max. Therefore the solution r̃(ỹ, z̃) can be expressed in the fol-

lowing as

r̃(ỹ, z̃) =

[
λ∗L

(
F
8
+

7
1920

)
− W̃max

]
sin(πz̃)

sin
{
χ1

(
2m+1

2

)}
sin

{(
2m+ 1

2
− |ỹ|

)
χ1

}
−λ∗Lcos(πỹ)

×

[(
z̃4

24
− z̃5

60
− z̃

64

)
− 9

40

(
z̃3

6
− z̃

8

)
−F

(
z̃2

2
− z̃

2

)]
. (20)

The transverse component of secondary flow q̃(ỹ, z̃) can be obtained from the continuity
equation equation (1) after the integration and using the condition q̃(ỹ=±m) = 0 where m=
0,1,2,3, . . . as

q̃(ỹ, z̃) = (−1)N
[
λ∗L

(
F
8
+

7
1920

)
− W̃max

]
π cos(πz̃)

χ1 sin
{
χ1

(
2m+1

2

)}
×

[
cos

{
χ1

(
2m+ 1

2
− |ỹ|

)}
− cos

{χ1

2

}]
+

(
λ∗L
π

)
sin(πỹ)

×

[(
z̃3

6
− z̃4

12
− 1

64

)
− 9

40

(
z̃2

2
− 1

8

)
−F

(
z̃− 1

2

)]
(21)

with

N=

{
0 when ỹ< 0,

1 when ỹ> 0.
(22)

It can be seen form equations (20) and (21) that it contains the unknown F. To find the value of
it, further the condition q̃= W̃max at z̃= 1 and ỹ=−1/2 is applied from experiments of Wang
and Cheng (2006). This gives the value of the parameter F as

F=

(1+G)W̃max −Lλ∗

(
1

60π
+

7G
1920

)
Lλ∗
2π +

LGλ∗

8

where G=
π [cos(χ1/2)− 1]
χ1 sin(χ1/2)

. (23)

Equations (20) and (21) represent the proposed new analytical models for secondary velocity
components in straight rectangular wide open channel flows. It can be observed that in both
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these equations, velocity components are made dimensionless using u∗. Since the magnitude
of the vertical and transverse flow velocities are less (1%−2%) compared to the primary flow
velocity, it is more reasonable to make dimensionless with its maximum values Wmax. In the
experiment by Wang and Cheng (2006), it has been observed thatWmax = 0.02 Um where Um

is the mean value of primary flow velocity at the central section. The mean velocity Um is
computed from the below formula as

(1− z̃0)Um =

ˆ 1

z̃0

u∗
κ
ln

(
z̃
z̃0

)
dz̃=

u∗(1− z̃0)
κ

[
−1− ln z̃0

1− z̃0

]
(24)

where z̃0 = z0/h and z0 denotes the zero primary velocity level. Equations (20) and (21) give
the most general solution for the vertical and transverse secondary flow velocities till now.
The parameter A present in the model includes the effect of fluid viscosity which is generally
neglected. The next section, describes the validation of these proposed analytical models with
existing experimental data and also discusses the comparison results with existing models.

4. Validation with laboratory flume data

In this section, computed results of the vertical and transverse components of secondary flow
velocities from equations (20) and (21) respectively are validated with laboratory flume data.
Apart from it, these models are also compared with the existing models proposed by Kotsovi-
nos (1988) andWang and Cheng (2006) to get a better idea about the accuracy of these models.
For the validation purpose, experimental data of Gessner and Emery (1981), Wang and Cheng
(2006), Proust and Nikora (2020)and Soualmia et al (2008) are considered in this study for
a wide variety of flows. More precisely, to test the validity of the proposed model in wide
rectangular open channel flow, experimental data of Wang and Cheng (2006) is considered;
for the validity in compound channel flow, experimental data of Proust and Nikora (2020) is
chosen; and for the applicability in closed duct flow, experimental data of Gessner and Emery
(1981) and simulated data of Soualmia et al (2008) are considered.

In figures 5 and 6 contour lines of secondary flow velocities in the yz cross sectional plane
are presented for these two proposed models together with the models of Wang and Cheng
(2006). Models of Wang and Cheng (2006) are plotted in the same figure for comparison pur-
poses. In both the figures, the vertical velocity component r(ỹ, z̃) and the lateral velocity com-
ponent q(ỹ, z̃) both are made dimensionless using Wmax, maximum value of the vertical velo-
city. ThisWmax is computed as discussed earlier. Shear velocity is calculated form u∗ =

√
gJh.

The values of parameters are kept as ν̃ t = 0.0547, u∗ = 0.03 m s−1, Wmax = 0.0095 m s−1,
J= 0.0012, λ∗ = 0.1, α= 0.2 (obtained form equation (9) after fitting the Reynolds shear
stress model with observational data), F=−0.0577 (computed form equation (23)) and z̃0 =
6× 10−4 for figure 5 and ν̃ t = 0.0547, u∗ = 0.03 m s−1, Wmax = 0.0095 m s−1, J= 0.0012,
λ∗ =−0.01, α= 0.2, F= 0.0343 and z̃0 = 2× 10−5 for figure 6. From both the figures it can
be seen that contour lines from the proposed model agree well with the models of Wang and
Cheng (2006). The advantage of the proposed model is that it contains the secondary current
parameter α and fluid viscosity which enhances the applicability of the proposed models to
other type of fluids. Apart from this, proposed models are derived mathematically rather than
assuming them empirically, unlike most of the previous studies done. Apart from these, to val-
idate the results for a large interval in wide open channels, contours of r/Wmax and q/Wmax are
plotted in figures 7 and 8 respectively for the interval [−3,3] along with the model of (Wang
and Cheng 2006). It can be concluded after comparing the plots of two models that results of
the proposed model are similar and comparable with the existing model.
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Figure 5. Comparison of contours of r(ỹ, z̃)/Wmax between model of Wang and
Cheng (2006) and proposed model (equation (20)). Flow conditions are ν̃ t = 0.06,
u∗ = 0.03 m s−1,Wmax = 0.0095m s−1, J= 0.0012,α= 0.2, λ∗ = 0.1, z̃0 = 6× 10−4.

Figures 9 and 10 show the validity of the proposed models of secondary current with the
experimental data of Wang and Cheng (2006). In these figures, dimensionless vertical and
transverse velocity components are plotted against the vertical height z/h at different chan-
nel sections y/λ= 0.0, −0.1, −0.2, …, -1.0 along spanwise direction. Models of Wang and
Cheng (2006) and Kotsovinos (1988) (both are same) are also plotted in the figure for com-
parison purposes. Flow conditions are taken from the experiments of Wang and Cheng (2006)
which are as follows: B= 0.6 m, h= 0.0075 m, J= 0.0012, u∗ = 0.03 m s−1 andWmax is com-
puted as mentioned earlier using the formula in equation (24). Other values of parameters are
kept fixed as mentioned in figures 5 and 6. From figure 9 it can be seen that, at y/λ=−0.5
(smooth and rough strip interface) computed vertical flow velocity becomes almost zero over
the full water depth which agrees well with experimental data. The zero vertical velocity occurs
due to sudden change in bed roughness where the vertical secondary current is almost negli-
gible. In the figure, it is also observed that positive and negative vertical velocities in regions
−1.0⩽ y/h<−0.5 and −0.5< y/h⩽ 0.0 respectively are well explained by the model. The
change in magnitude of the vertical flow velocity occurs due to change in direction (upflow and
downflow) of the secondary current. Furthermore, it can be seen in figure 9 that when y/λ= 0
and−1, predicted values of vertical secondary velocity from the model deviate form the exper-
imental data. This can be explained as follows. Models are developed by expressing the trans-
verse Reynolds shear stress in terms of secondary velocity gradients ∂r

∂y and
∂q
∂z using eddy vis-

cosity concept after following Ikeda (1981) and Hinze (1975). Naot and Rodi (1982) pointed
out that turbulence closure models based on the eddy viscosity concept cannot fully reproduce
the turbulence-induced secondary currents. Along these channel sections vertical secondary
current is acting completely along the upward or downward directions and relatively stronger
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Figure 6. Comparison of contours of q(ỹ, z̃)/Wmax between model of Wang and
Cheng (2006) and proposed model (equation (21)). Flow conditions are ν̃ t = 0.06,
u∗ = 0.03 m s−1, Wmax = 0.0095 m s−1, J= 0.0012, α= 0.2, λ∗ =−0.01, z̃0 = 2×
10−5.

than other parts of the channels, as a result predicted model values deviate at these channel
sections. Similarly, in figure 10 it can be observed that at y/λ= 0.0 (central section) and -1.0
(mid point of smooth strips), transverse velocity is zero. At these sections, secondary velocity
is directed along vertical directions. It can also be observed that predicted model value deviates
from the data when y/λ=−0.5. This is due to the fact that at this channel section, transverse
secondary current is completely acting along the transverse direction and relatively stronger
than other part of the channel which results the deviation from the data. Though the discrepancy
occurs but the proposed model gives better approximation than existing model. It is to be noted
that the turbulence closuremodels are generally expressed through eddy viscosity which is also
used in here. The model prediction can be improved if other forms of turbulence closure are
assumed. This may lead to numerical solution of the model which is cost effective and compu-
tationally complex and does not match with the objective in this study. Though interested read-
ers can improve the results. It is clear from the validation results in these two figures that pro-
posed model predicts data well in general and comparable to the previous model of Wang and
Cheng (2006).

The validity of the proposed model for compound open channel flows is presented in
figures 11 and 12. In these figures, recent experimental data of Proust and Nikora (2020) are
considered. The experiment was conducted in an 18 m long and 3 m wide compound channel
with bed slope J as 1.1× 10−3. The cross section is comprised of a 1 m wide main channel
which is flanked by two 1 m wide flat rough surface symmetrically. Among all data sets, the
uniform flow data set (case 8) are considered in this study. Figure 11 shows the validation for
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Figure 7. Contour of r(ỹ, z̃)/Wmax for model of Wang and Cheng (2006) and proposed
model (equation (20)) over the interval [−3,3].

Figure 8. Contour of q(ỹ, z̃)/Wmax for model of Wang and Cheng (2006) and proposed
model (equation (21)) over the interval [−3,3].

vertical velocity and figure 12 for the transverse velocity as a total of seven different sections
along transverse direction. In both the figures, secondary velocities are made dimensionless
using the shear velocity u∗ which is computed using the formulas

√
gJh. The flow height h is

taken the height of the flow at the main channel. Values of all other parameters are taken from
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Figure 9. Validation and comparison of the proposed model (equation (20)) of
r(ỹ, z̃)/Wmax with experimental data of Wang and Cheng (2006) and existing empir-
ical model of Wang and Cheng (2006). Continuous lines (-) denote proposed model,
dash dotted lines (-.-) denote model of Wang and Cheng (2006) and crosses (×) denote
data points. Flow conditions are B= 0.6 m, h= 0.0075 m, J= 0.0012, u∗ = 0.03 m s−1

and Wmax = 0.0095 m s−1, α= 0.2, λ∗ = 0.1, z̃0 = 6× 10−4.

Figure 10. Validation and comparison of the proposed model (equation (21)) of
q(ỹ, z̃)/Wmax with experimental data of Wang and Cheng (2006) and existing empir-
ical model of Wang and Cheng (2006). Continuous lines (-) denote proposed model,
dash dotted lines (-.-) denote model of Wang and Cheng (2006) and crosses (×) denote
data points. Flow conditions are B= 0.6 m, h= 0.0075 m, J= 0.0012, u∗ = 0.03 m s−1

and Wmax = 0.0095 m s−1, α= 0.2, λ∗ =−0.01, z̃0 = 2× 10−5.
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Figure 11. Validation of the proposed model (equation (20)) for compound channel of
r(ỹ, z̃)/u∗ with experimental data of Proust and Nikora (2020). Continuous lines (-)
denote proposedmodel and squares (■) denote data points. Flow conditions areB= 3m,
h= 0.147 m, J= 0.0011, u∗ = 0.0399 m s−1.

Figure 12. Validation of the proposed model (equation (21)) for compound channel of
q(ỹ, z̃)/u∗ with experimental data of Proust and Nikora (2020). Continuous lines (-)
denote proposedmodel and squares (■) denote data points. Flow conditions areB= 3m,
h= 0.147 m, J= 0.0011, u∗ = 0.0399 m s−1, Wmax = 0.0142 m s−1, z̃0 = 3.1× 10−4.

the experimental data mentioned in Proust and Nikora (2020). From both the figures, it can be
seen that both the proposed models predict the data well in this case also.

Figure 13 shows the validity of the transverse velocity component q(ỹ, z̃) along lateral direc-
tion with the experimental data of Proust and Nikora (2020) at vertical height z/h= 0.94. The
data in themain channel is considered here for the validation purpose. The values of parameters
are kept as α= 0.9 for computation from the proposed model. It can be seen from the figure,
that in general proposed model predicts data well almost over the whole cross section but there
is a slight discrepancy between observed and computed values around the point y/h=−0.45.
In the region−0.45⩽ y/h⩽−0.4, transverse velocity tends to be zero which can be explained
as follows: near the section at y/h=−0.45, the junction of the compound channel appears
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Figure 13. Validation of the transverse distribution of q(ỹ, z̃)/u∗ at z/h= 0.94 with
experimental data of Proust and Nikora (2020) for uniform flow condition.

Figure 14. Validation of the proposed model (equation (20)) of r(ỹ, z̃)/u∗ in duct flow
with experimental data of (a) Gessner and Emery (1981) and (b) Soualmia et al (2008).
Continuous lines (-) denote proposed model, open diamonds (♢) denote data of Gessner
and Emery (1981) and triangles (△) denote data points of Soualmia et al (2008).

where there is a sudden change in flow depth. The vertical deviation at the point y/h=−0.45
creates a separation line between two circular secondary cells of different dimensions and
along which only vertical velocity component exists (as observed in the experiment of Proust
and Nikora (2020)). As a result, transverse component of secondary velocity appears to be
zero.

Finally, the validation of the proposed model of vertical velocity for closed duct flow is
presented in figure 14 with experimental data of Gessner and Emery (1981) and simulated
data of Soualmia et al (2008) at the channel central section. In both the figures the vertical
velocity is made dimensionless using the mean flowUm. The values of the parameters are kept
as:Wmax = 0.0056m s−1, λ∗ = 0.1,α= 0.2, and z̃0 = 6× 10−3 for data of Gessner and Emery
(1981) and Wmax = 0.003 m s−1, λ∗ = 0.1, α= 0.2, and z̃0 = 6× 10−2 for data of Soualmia

21



Fluid Dyn. Res. 54 (2022) 015515 S Kundu and T Chattopadhyay

Figure 15. Comparison of ω-streamlines from equation (28) with existing empirical
model of Wang and Cheng (2008) for (a) Wmax/ω0 = 0.5 and (b) Wmax/ω0 = 5.

et al (2008). Both the comparison results suggest that proposed model for vertical component
of secondary current can be applied for duct flows also.

5. Discussions

In this section, applications of the proposed models of vertical and lateral components of sec-
ondary current on the settling velocity vector is discussed. New modified models of settling
velocity vector incorporating the improved secondary velocity models are also suggested.
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Figure 16. Comparison of retention zones for sediment particles in the cross-sectional
yz-plane for Wmax/ω0 = 2.5 with model of Wang and Cheng (2008).

5.1. Effect of secondary current on settling velocity vector

Wang and Cheng (2008) investigated the effect of secondary currents on the structures of
streamlines of the settling velocity vector. Under negligible flow acceleration and uniform
relative velocity between sediment particle and ambient fluid, settling velocity vector −→ωs in
sediment-mixed fluid is expressed by Wang and Cheng (2008) as

−→ωs =
−→ω0 +

−→
Vlag (25)

where −→ω0 is settling velocity vector in still fluid and
−→
Vlag is the velocity vector corresponding

to the secondary flows. The settling velocity vector −→ω0 is expressed as

−→ω0 =−ω0 k̂ (26)

where ω0 is single particle settling velocity in still clear water and k̂ is the unit vector along
the vertical z direction. As mentioned earlier, secondary currents in wide open channels can
be generated due to several factors. Since in this study generation of secondary current is con-
sidered through the variation of bed roughness, the velocity vector

−→
Vlag is expressed according

to Wang and Cheng (2008) as

−→
Vlag = q(ỹ, z̃) ĵ+ r(ỹ, z̃) k̂. (27)

Equation (27) indicates that the velocity vector due to secondary flow can be affected by both
the secondary flow components and thus applicable in whole yz cross sectional plane. Substi-
tuting equations (26) and (27) into equation (25) and using equations (20) and (21) the settling
velocity vector is expressed as

23



Fluid Dyn. Res. 54 (2022) 015515 S Kundu and T Chattopadhyay

−→ωs
ω0

=

{
q(ỹ, z̃)
ω0

}
ĵ+

{
r(ỹ, z̃)
ω0

− 1

}
k̂=

(
u∗
ω0

)
×
{
(−1)NC1

π cos(πz̃)

χ1 sin
{
χ1

(
2m+1

2

)} [
cos

{
χ1

(
2m+ 1

2
− |ỹ|

)}
− cos(χ1/2)

]

+

(
λ∗L
π

)
sin(πỹ)

[(
z̃3

6
− z̃4

12
− 1

64

)
− 9

40

(
z̃2

2
− 1

8

)
−F

(
z̃− 1

2

)]}
ĵ

+

(
u∗
ω0

){[
λ∗L

(
F
8
+

7
1920

)
− W̃max

]
sin(πz̃)

sin
{
χ1

(
2m+1

2

)}
× sin

{(
2m+ 1

2
− |ỹ|

)
χ1

}
−λ∗Lcos(πỹ)

×
[(

z̃4

24
− z̃5

60
− z̃

64

)
− 9

40

(
z̃3

6
− z̃

8

)
−F

(
z̃2

2
− z̃

2

)]
− 1

}
k̂. (28)

Equation (28) shows the variation of the settling velocity variation in the cross-sectional yz-
plane including its directions as well as magnitude. It can be observed from the equation that
the streamlines of settling velocity depend on several factor such as maximum magnitude of
the secondary flow velocity, dip correction parameter α, viscosity of the fluid and eddy vis-
cosity. This proposed model of the hindered settling velocity in equation (28), is more gen-
eral than the previous model proposed by Wang and Cheng (2008). Due to inclusion of these
aforementioned factors, this equation is more realistic and appropriate for practical applica-
tions. For the validation purpose, the proposed model is compared with the model of Wang
and Cheng (2008) and the result is shown in figure 15 for two different choices of the ratio
Wmax/ω0. In the figure the streamlines of −→ωs in yz cross sectional plane is plotted along with
the vector line segments with directions. Two totally different sceneries are observed which
corresponds to Wmax/ω0 < 1 (In figure 15(a)) and Wmax/ω0 > 1 (In figure 15(b)). The values
of other parameters for both the cases are kept as α= 0.2, λ∗ = 0.1, Wmax = 0.0095 m s−1

and u∗ =
√
gJh= 0.0297 m s−1, z̃0 = 6× 10−6. It can be observed that when Wmax/ω0 < 1

all streamlines are open and directed toward the channel bed; whereas forWmax/ω0 > 1, closed
streamlines are obtained (except for y/h= 0) and are oriented in a cellular fashion. From both
the figures it can be seen that proposed model gives good agreement with the model of Wang
and Cheng (2008). Apart from it, in figure 16 the retention zones (the zone where sediment
particles are trapped) are plotted from the proposed model together with the model of Wang
and Cheng (2008) forWmax/ω0 = 2.5 for comparison purposes. It can be concluded after com-
paring both the figures that proposed model gives comparable and accurate results for the pre-
diction of retention zones. All these results show that the proposed model can be used as an
efficient alternative model for predicting hindered settling velocity vector in the yz-cross sec-
tional plane. Apart from this, since the present study also considered the effect of kinematic
viscosity of the fluid as well as the eddy viscosity closure, this model can further be applied
for other kinds of fluid.

6. Concluding remarks

This study proposes effective mathematical models of vertical and transverse secondary flow
velocities in steady and uniform turbulent flows through straight open rectangular channels,
compound rectangular channels and closed ducts. Most of the previous studies proposed and
employed empirical models for secondary flow velocities using boundary conditions; whereas
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in the present study, the general governing equation is first developed starting from the continu-
ity and the Reynolds averaged Navier–Stokes equation including the effects of fluid viscosity.
The governing equation is solved using suitable turbulence closures and appropriate and real-
istic boundary conditions. The novelty of the work lies in the consideration of viscous effect in
the model, proposition of a new single Reynolds shear stress model for entire cross-section and
the new analytical solution methodology and on the broad applicability. In the literature, most
of the studies and methodologies were focused about the flow conditions rather than the bed
configuration and proposed the empirically. This study considers fluid property as well as bed
property together. The original mathematical equation is divided into two separate equations
using the concept of linear approximation and emphasizing the bed perturbation effect. The
obtained models are fully analytical in nature, contain effects of the fluid viscosity, eddy vis-
cosity of turbulence and depend on the direction of secondary flow velocities and therefore
more appropriate for practical use. Proposed models are validated using experimental data for
open channel flows, compound channel flows and duct flows and also compared with exist-
ing empirical models to justify the effectiveness. From the validation and comparison results,
it is found that proposed model can predict velocity data better than previous models in all
mentioned channels. Apart from this, it is found that proposed models can also be applied to
find velocities along transverse direction of channels. The findings of this study are further
applied to investigate the effects of secondary currents on the hindered settling velocity vector
in an entire cross-sectional plane. New effective alternative models for settling velocity vector
is proposed. Further, it is found that secondary current significantly modifies the streamlines
of settling particles and on the other hand, stream-wise Reynolds shear stress distributions
deviate from its traditional linear model when secondary currents exist in the flow domain.
The obtained results are well consistent with previous findings. The models of these study can
further be applied to find boundary shear stress distributions, free surface flow velocity struc-
tures and to investigate one and two dimensional mean primary velocity distributions in the
flow domain. Further, the study can be extended and improved using other types of turbulence
closure models with numerical simulations.
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Appendix

A.1. Derivation of eddy viscosity model

The eddy viscosity is generally expressed by relating it to the Reynolds shear stress as Yalin
(1977)
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−p ′r ′ = νt

(
∂p
∂z

+
∂r
∂x

)
. (29)

Under such complex flow, the Reynolds shear stress deviates from the linear profile (Yang et al
2004). Yang et al (2004) proposed the following model for such flows as

−p ′r ′

u2∗
=

τt
ρu2∗

= 1− z
h
−α

z
h
. (30)

The primary flow velocity is considered as the total-dip-modified-log-wake law (TDMLWL)
as it givesmore effective result than the log-law and other laws in literature Kundu andGhoshal
(2012). The TDMLWL is expressed as

p
u∗

=
1
κ
ln

(
z
z0

)
+

α

κ
ln
(
1− z

h

)
+

2Π
κ

[
3
( z
h

)2
− 2

( z
h

)3
]
− 4αΠ

κ

( z
h

)3
(31)

where z0 is the zero velocity depth, Π is Coles’ wake parameter (treated as constant. The
value is considered as 0.19 as suggested by Coleman (1981) for such flows) and α is the dip-
correction parameter. Substituting equations (30) and (31) into equation (29), the modified
eddy viscosity model for uniform flow is obtained as

νt
u∗h

= κ
(
1− z

h

)[h
z
+ 12Π

z
h

(
1− z

h

)]−1

. (32)

Equation (32) was first suggested by Kundu and Ghoshal (2012) for studying the effect of
secondary flow on primary flow velocity and is employed here for such complex flow. Simul-
taneously, the depth averaged model of eddy viscosity is obtained as

ν t =
1
h

ˆ h

0
νt dz= κu∗h

ˆ 1

0

z̃(1− z̃)
1+ 12Πz̃2(1− z̃)

dz̃. (33)

A.2. Detailed solutions

A.2.1. Detailed solution of sub-problem I. In this subsection the detailed solution of sub-
problem (I) is explained. We consider the equation along with the boundary conditions such
as,

A
∂4W̃2 (ỹ, z̃)

∂z̃4
=−ϕ̃(ỹ, z̃)

W̃2(z̃= 0) = 0, W̃2(z̃= 1) = 0,
∂W̃2

∂z̃

∣∣∣̃
z=1/2

= 0,

W̃2(|ỹ|= (2m+ 1)/2) = 0. (34)

After integrating equation (34) we get,

W̃2 (ỹ, z̃) =−Lcos(πỹ)
[
z̃4

24
− z̃5

60

]
+
z̃3

6
f1 (ỹ)+

z̃2

2
f2 (ỹ)+ z̃f3 (ỹ)+ f4 (ỹ) (35)

where L= (α0 απ
3)/A. Using the boundary condition W̃2(z̃= 0) = 0 we get, f4 (ỹ) = 0. Again

using the boundary condition
∂W̃2

∂z̃

∣∣∣̃
z=1/2

= 0, the function f3 (ỹ) is obtained as

f3 (ỹ) =−1
2
f2 (ỹ)−

1
8
f1 (ỹ)+

L
64

cos(πỹ) . (36)
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After substituting the value of f3 (ỹ) and f4 (ỹ) in equation (35) we get,

W̃2 (ỹ, z̃) =−Lcos(πỹ)
[
z̃4

24
− z̃5

60
− z̃

64

]
+

(
z̃3

6
− z̃

8

)
f1 (ỹ)

+

(
z̃2

2
− z̃

2

)
f2 (ỹ) . (37)

Applying the boundary condition W̃2(z̃= 1) = 0 we have founded the exact form of f1 (ỹ) =
9
40Lcos(πỹ). Then the solution expressed as,

W̃2 (ỹ, z̃) =−Lcos(πỹ)
[
z̃4

24
− z̃5

60
− z̃

64

]
+

9
40
Lcos(πỹ)

(
z̃3

6
− z̃

8

)
+

(
z̃2

2
− z̃

2

)
f2 (ỹ) . (38)

Finally, to determine f2 (ỹ), the condition W̃2(|ỹ|= (2m+ 1)/2) = 0 being used. It gives that
f2 (ỹ) satisfies the condition, f2

(
2m+1

2

)
= 0 for m= 0,1,2,3, . . .. Following the forms of other

terms and satisfying this condition, f2 (ỹ) is approximated as, f2 (ỹ) = FLcos(πỹ), where F is
determined from the experimental observation. Finally we get the solution of the sub-problem
(I) in the following format,

W̃2 (ỹ, z̃) =−Lcos(πỹ)
(
z̃4

24
− z̃5

60
− z̃

64

)
+

9
40
Lcos(πỹ)

(
z̃3

6
− z̃

8

)
+FLcos(πỹ)

(
z̃2

2
− z̃

2

)
. (39)

A.2.2. Detailed solution of sub-problem II. Using the separation of variables the function
W̃1 (ỹ, z̃) is decomposed as W̃1 (ỹ, z̃) = Y(ỹ)Z(z̃) where Y(ỹ) is a function of ỹ and Z(z̃) is a
function z̃. Therefore equation (17) is expressed as

A
∂4 (Y(ỹ)Z(z̃))

∂z̃4
+B

∂2Y(ỹ)
∂ỹ2

∂2Z(z̃)
∂z̃2

+A
∂4 (Y(ỹ)Z(z̃))

∂ỹ4
= 0. (40)

The generation and propagation of secondary currents in wide open-channels depends
on the variation of bed roughness or bed elevation along lateral direction Wang and Cheng
(2005), Kundu and Ghoshal (2014). These lateral change in bed roughness or bed elevation
can occur in a periodic manner Yang et al (2012), Kundu and Ghoshal (2014). Therefore
it can be assumed that the function Y(ỹ) changes in a periodic manner along lateral direc-
tion and Y ′ ′ (ỹ) = β1Y(ỹ). Similarly, from the boundary conditions mentioned in Kotsovinos
Kotsovinos (1988), further it is assumed that Z ′ ′ (z̃) = β2Z(z̃). Here β1 and β2 are some scal-
ing factors. The experimental observations ofWang and Cheng (2006) shows that the variation
of vertical and lateral components of secondary current changes in a periodic manner. There-
fore the values of β1 and β2 can be chosen as −π2. These assumptions are in consistent with
the experiments of Wang and Cheng (2005) and Wang and Cheng (2006) and observations of
Yang et al (2012). Therefore equation (40) can be expressed as

Z ′ ′

Z
=− β1AY ′ ′

Aβ2Y+BY ′ ′ =−θ2 (41)
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where each ratio is assumed to be equal to −θ2 (θ > 0) and 2A+B ̸= 0. Then the differential
equations with single variables of the functions Y and Z with boundary conditions can be
expressed as

Z ′ ′ (z̃)+ θ2Z(z̃) = 0; Z(z̃= 0) = 0, Z(z̃= 1) = 0 (42)

and

Y ′ ′ +

(
Aβ2θ

2

Bθ2 −β1A

)
Y= 0; Y(ỹ= (2m+ 1)/2) = 0. (43)

The solution of equation (42) is expressed as

Z(z̃) = D1 cos(θz̃)+D2 sin(θz̃) . (44)

Using boundary condition in equation (42), one get D1 = 0 and D2 sin(θ) = 0. For a non-zero
solution, D2 cannot be zero, therefore we get θn = nπ in which n= 1,2,3, . . .. Therefore the
function Z which satisfies equation (42) can be written as

Zn (z̃) = D2 sin(nπz̃) . (45)

Following Kotsovinos (1988), on the onset of instability, n= 1 is assumed. Similarly, the solu-
tion of equation (43) is expressed as

Y(ỹ) = D3 cos(χ1ỹ)+D4 sin(χ1ỹ) (46)

where χ1 =

√(
Aβ2θ2

1

Bθ2
1−β1A

)
. From the boundary conditions in equation (43), one get D4 =

−D3
cos{χ1( 2m+1

2 )}
sin{χ1( 2m+1

2 )} . Then the solution Y(ỹ) is expressed using the symmetric condition as

Y(ỹ) =
D3

sin
{
χ1

(
2m+1

2

)} sin

{(
2m+ 1

2
− |ỹ|

)
χ1

}
. (47)

Therefore the final solution W̃1 (ỹ, z̃) is expressed as

W̃1 (ỹ, z̃) = C1
sin(πz̃)

sin
{
χ1

(
2m+1

2

)} sin

{(
2m+ 1

2
− |ỹ|

)
χ1

}
(48)

where C1 = D2D3 and consequently the final solution r̃(ỹ, z̃) is expressed as

r̃(ỹ, z̃) = λ∗

[
−Lcos(πỹ)

(
z̃4

24
− z̃5

60
− z̃

64

)
+

9
40
Lcos(πỹ)

(
z̃3

6
− z̃

8

)

+FLcos(πỹ)

(
z̃2

2
− z̃

2

)]
+C1

sin(πz̃)

× sin

{
χ1

(
2m+ 1

2

)}
sin

{(
2m+ 1

2
− |ỹ|

)
χ1

}
. (49)

To find the constant C1, the boundary condition r̃(ỹ, z̃)
∣∣∣
|̃y|=2m+1,̃z=1/2

= W̃max is substituted

into equation (51) which gives

C1 = λ∗L

(
7

1920
+
F
8

)
− W̃max (50)

28



Fluid Dyn. Res. 54 (2022) 015515 S Kundu and T Chattopadhyay

Hence, the final solution for the vertical velocity component can be expressed as,

r̃(ỹ, z̃) = λ∗

[
−Lcos(πỹ)

(
z̃4

24
− z̃5

60
− z̃

64

)
+

9
40
Lcos(πỹ)

(
z̃3

6
− z̃

8

)

+FLcos(πỹ)

(
z̃2

2
− z̃

2

)]
+

[
λ∗L

(
7

1920
+
F
8

)
−−W̃max

]
× sin(πz̃)

sin
{
χ1

(
2m+1

2

)} sin

{(
2m+ 1

2
− |ỹ|

)
χ1

}
. (51)

The transverse velocity component can be obtained from equation (1) after the integration with
respect to ỹ as

q̃(ỹ, z̃) = λ∗

[
(L/π)sin(πỹ)

(
z̃3

6
− z̃4

12
− 1

64

)
− 9

40
(L/π)sin(πỹ)

(
z̃2

2
− 1

8

)

− (FL/π)sin(πỹ)

(
z̃− 1

2

)]
+

[
λ∗L

(
F
8
+

7
1920

)
− W̃max

]

× π cos(πz̃)

χ1 sin
{
χ1

(
2m+1

2

)} I∗ +Θ(z̃) (52)

where

I∗ =


−cos

[
χ1

(
2m+ 1

2
− |ỹ|

)]
when ỹ> 0,

cos

[
χ1

(
2m+ 1

2
− |ỹ|

)]
when ỹ< 0

(53)

andΘ(z̃) is the integration constant and can be determined using the condition q̃(ỹ=±m) = 0
where m= 0,1,2,3, . . .. This condition is consistent with the experimental observations of
Wang and Cheng (2006). Hence from equation (52) we get

Θ(̃z) =



[
λ∗L

(
F
8
+

7
1920

)
− W̃max

]
π cos(πz̃)

χ1 sin

{
χ1

(
2m+ 1

2

)} cos
(χ1

2

)
when ỹ> 0,

−
[
λ∗L

(
F
8
+

7
1920

)
− W̃max

]
π cos(πz̃)

χ1 sin

{
χ1

(
2m+ 1

2

)} cos
(χ1

2

)
when ỹ< 0.

(54)

The final form of the transverse velocity component is ,

q̃(ỹ, z̃) = λ∗

[
(L/π)sin(πỹ)

(
z̃3

6
− z̃4

12
− 1

64

)
− 9

40
(L/π)sin(πỹ)

(
z̃2

2
− 1

8

)

− (FL/π)sin(πỹ)

(
z̃− 1

2

)]
+(−1)NC1

π cos(πz̃)

χ1 sin
{
χ1

(
2m+1

2

)}
×
[
cos

{
χ1

(
2m+ 1

2
− |ỹ|

)}
− cos

{χ1

2

}]
(55)
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with

N=

{
0 when ỹ< 0,

1 when ỹ> 0.
(56)
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