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Abstract
Micro-swimmers in confinement are encountered in a variety of scenarios such
as locomotion of sperm cells in female reproductive tract, targeted drug
delivery and biofilm formation. Using a squirmer, a surface actuating model,
we simulate the trajectory of swimmers in a two-dimensional channel con-
finement. Exploiting the simplicity of squirmer model and performing the
study in two dimensions we restrict the analysis to minimum number of
parameters and isolate and analyze the confinement induced swimmer tra-
jectories. Using exact solutions of two dimensional disk squirmers we first
show that they behave qualitatively similar to three dimensional spherical
squirmers near a repulsive, planar wall. In a channel, fully resolved flow and
thus hydrodynamic interaction between the squirmer and the channel walls are
obtained using the lattice Boltzmann method. We find that strong pullers and
pushers slide along the channel walls, a behavior determined by single wall. In
contrast, swimmers with weak force dipoles break the symmetry in behavior
between pushers and pullers, and this behavior is determined by both walls of
the channel. Weak pullers stay at the channel center and weak pushers execute
an oscillatory trajectory spanning the channel width. Straight line trajectories
can be solely characterized by a fixed point on a phase plane spanned by its
orientation angle and the distance from the channel centerline whereas oscil-
latory trajectories can be solely characterized using its escape angle from the
wall. The nature of the trajectories is found to be robust to the details of higher
modes and the size of the confinement.

Keywords: micro-swimmer dynamics, 2D confinement, lattice Boltzmann
simulation, squirmer model, numerical simulation
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1. Introduction

Locomotion of microorganisms in fluids, whether it is in search of food or escape from a prey,
is an essential survival mechanism in nature (Koch and Subramanian 2011). Synthetic
autophoretic swimmers, the laboratory counterparts of biological swimmers, use locally
available light, heat or chemical energy for propulsion (Bechinger et al 2016). Both biological
and synthetic swimmers generally reside in a colloidal world: often they are micron-sized
(thus the name micro-swimmers) and move very slowly. Correspondingly the Reynolds
number (Re) defined as the ratio of inertial to viscous forces is very small, typically ranges
from 10−4 to 10−2 (Brennen and Winet 1977). Thus the viscous forces dominate the fluid
dynamics and the thrust generating mechanism of these micro-swimmers from the sur-
rounding fluid differ from that in the macroscopic world of inertial swimmers (Purcell 1977).
Moreover, the local environment, e.g.: physical confinement plays a decisive role in deter-
mining the velocity of the swimmer. In this work, we determine the trajectories of a model
micro-swimmer confined between two parallel walls using lattice Boltzmann simulations. We
then proceed to show the extent to which different factors affect the behavior of these
trajectories.

Being long ranged, the hydrodynamic interaction of a micro-swimmer with its confining
surface is important in several scenarios. For example, it is known that increased residence
time of bacteria near a surface can facilitate biofilm formation (van Loosdrecht et al 1990,
Kantsler et al 2012, Li et al 2017). Moreover, since interactions with the confining wall
change the translational and angular velocity of a micro-swimmer, the resulting trajectories in
a confinement are different from that in the bulk. Such studies are also relevant to understand
the sperm locomotion in female reproductive tract (Riffell and Zimmer 2007), and in the
development of artificial micro-swimmers for drug delivery and sensing applications (Fusco
et al 2013). Another projected application is for microfluidic mixing devices since some
micro-swimmers exhibit space-spanning oscillatory trajectories (Najafi et al 2013).

In a drop of dispersion of bull spermatozoa confined between two parallel glass walls,
Rothschild (1963) found that cells accumulate near the confining walls. Later on, similar
observations were found with E. coli as well (Berke et al 2008) and the origin of this
accumulation has been shown to be the hydrodynamic interaction between the wall and the
swimming microorganisms. On the other hand, several works show that micro-swimmers
exhibit an enhanced swimming velocity (Aguilar and Yeomans 2013, Zhu et al 2013, Liu
et al 2016) and an oscillatory or helical trajectory when confined in a narrow channel or tube.
In experiments, it was observed that increased confinements changed the trajectory of a
Paramecium cell from a helix to a straight line (Elgeti and Gompper 2015). Theoretical
investigations using a finite swimming cylinder (Jana et al 2012) and numerical investigations
of squirmers in a capillary tube (Zhu et al 2013) generated helical trajectories. While
accounting for hydrodynamics of lowest order microswimmer models results in attraction/
repulsion of the swimmer, higher order effects are shown to yield the onset of oscillatory
motion (de Graaf et al 2016). However, depending on the channel geometry and the
swimming dynamics, these results change too (Ao et al 2014, Lintuvuori et al 2016, Mal-
garetti and Stark 2017, Liot et al 2018).

The rheological properties of the suspending fluid will also affect the dynamics of
microswimmers. In a power law fluid, the swimmers swim slower than in a Newtonian fluid
and the swimming characteristics become very sensitive to the Reynolds number (Ouyang
et al 2018). The local modification to the fluid properties due to swimming motion also
modifies the fluid velocity field thus affecting the interaction between the swimmers as well as
the interaction with a confining medium (Ouyang et al 2017, 2019). Therefore, the non-
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Newtonian fluid properties can significantly alter the dynamics of swimmers compared to that
in a Newtonian fluid.

Theoretical and numerical investigations mentioned above have provided insights into
the origin of hydrodynamic behavior of micro-swimmers with confining walls. However,
several assumptions made in such studies are re-examinable as outlined below. The simplest
approach to understand the hydrodynamic collision behavior of micro-swimmer with a sur-
face comes from the analytical calculations using the method of images (Blake and
Chwang 1974, Berke et al 2008). This analysis models swimmers as point particles within the
framework of a multipole expansion and entails the assumption that confining wall is always
sufficiently far away (Spagnolie and Lauga 2012, Ider et al 2018). However, this is not the
case in narrower channels (stronger confinements). Confinement is shown to even change the
nature and motility of deformable swimmers (Männik et al 2009, Wu et al 2015). Therefore it
is important to relax the point swimmer approximation and investigate the effect of the finite
size of the swimmer and its proximity to the wall in determining their trajectories in a
confined environment. Similarly, most of the studies restrict the details of swimming stroke to
the first two modes of the multipole expansion. However, higher order modes may always be
present invariably as subtle details of swimming strokes (de Graaf et al 2016). In an inter-
esting case, flow fields measured around starfish larvae show the dominance of (five) different
modes during swimming and feeding phase (Gilpin et al 2016). Presently it is not clear
whether these higher modes can substantially alter the trajectories of channel confined
swimmers.

Simplifications noted above are frequently justified by stating that they may only slightly
change the instantaneous dynamics of the micro-swimmer from actual values. However,
firstly, it may be noted that the deviations can accumulate over time to make large differences.
One such example is the trajectory of a channel confined micro-swimmer. Secondly, tra-
jectory is the consequence of interaction (including hydrodynamic) of the micro-swimmer
with the confining walls and small effects can affect the dynamic behavior of the micro-
swimmer near a wall. Therefore, in this work, we calculate the swimming trajectories of
confined micro-swimmers, characterize them for various types of micro-swimmers and
analyze the robustness of their trajectories with respect to the common assumptions men-
tioned above.

The primary aim of the paper is to calculate the trajectories of microswimmers in a long
channel. Hydrodynamic interactions with the walls cause deviations from a straight line
trajectory which will be quantified. For this purpose, we make several simplifications. We use
squirmer as a model micro-swimmer to perform the trajectory analysis. Compared to models
taking detailed geometry of microswimmers into account (Liu et al 2014, Wu et al 2015),
squirmer is not a very sophisticated model. However it is simple and easy to implement in
numerical studies. Moreover we restrict our study into two dimensions. It may be noted that
trajectories of a single spherical squirmer in a circular tube has been studied numerically in
Zhu et al (2013) and it was observed that neutral swimmers followed a helical trajectory while
the swimmer with a force dipole showed variety of trajectories such as motion near the center
of the tube, near the wall or crashing on the walls. However the interaction of a swimmer with
a curved surface itself gives rise to a variety of collision behavior (Kuron et al 2019).
Therefore we restrict our analysis to flat surfaces and in two dimensions since it allows
analysis with reduced number of variables. Thus, (i) exploiting the simplicity of squirmer
model and (ii) performing analysis in two dimensions we isolate and analyze the confinement
induced swimmer trajectories.

Most of the earlier studies have concentrated on analyzing the hydrodynamic collision
behavior of a squirmer with a single wall. The collision may result in the swimmer trapped
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near the wall if the force dipole contribution dominates the fluid flow around the squirmer
(Ishimoto and Gaffney 2013, Shen et al 2018). Otherwise the swimmer may bounce off from
the wall or exhibit an oscillatory trajectory near the single wall. However, the behavior of
these squirmers, especially a trajectory analysis between two parallel walls is not studied in
the literature yet. Studies which have done squirmer between parallel walls have either
concentrated on the hydrodynamic collsion behavior with a single wall (Li and Arde-
kani 2014, Lintuvuori et al 2016, Shen et al 2018) or in a curved wall (Zhu et al 2013) or the
behavior of multiple swimmers (Delfau et al 2016). As we show here, hydrodynamic colli-
sions with the walls also result in confinement induced trajectories of microswimmers. These
trajectories are also diverse as the collision behavior, and is of importance in describing the
long term behavior of confined microswimmers.

Section 2 provides the description of the squirmer model. Lattice Boltzmann method
(LBM) is used to solve for the fluid flow and the coupling between fluid flows and swimmer
resulted in the dynamics of the swimmer. These details of numerical method are explained in
section 3. Then we begin the results in section 4 by describing the hydrodynamic collision
behavior of a single squirmer near a single wall. The results are then expanded for a squirmer
in a channel confinement and described in a phase space spanning the orientation direction
and the location of the swimmer. The behavior of fixed points and limit cycles obtained in this
phase portrait are then analyzed by including higher modes of swimming and changing the
confinement to squirmer size ratio.

2. Modeling a confined micro-swimmer

2.1. Squirmer model

We use squirmers, an envelope model developed by Lighthill (1952) and Blake (1971a) as a
model micro-swimmer. Though, this model has been developed for ciliated organisms
(Pedley 2016), it is used in varied contexts (Wang and Ardekani 2013, Chisholm et al 2016).
Following Blake (1971b), we define squirmers as circular rigid particles having a tangential
surface slip velocity,

( ) ( ) ( )åf f=fu B nsin , 1s

n
n

where Bn specifies the magnitude of nth mode. A schematic of the system under consideration
is shown in figure 1. As shown let the orientation vector of the squirmer be ∣ ∣ =e e, 1 and the
position vector on the surface of the squirmer be xs. Then f is defined as the angle between

these two vectors, ( )·
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where ur and uf represent the radial and angular components of the velocity field. Thus, in an
unbounded fluid, a squirmer translates with a translational velocity = BU e0

1

2 1 , determined
only by the B1 mode. The relative magnitudes of subsequent modes, which capture the details
of near-field fluid motion but do not contribute to swimming, are characterized by defining
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( )b = =B B n, 2, 3, 4 ... 3n n 1

The leading order singularities associated with first two modes (B1, B2) are a source dipole
and a force dipole (Pak and Lauga 2014) respectively. These are the two modes often used in
the literature (Götze and Gompper 2010, Li et al 2014, Chisholm et al 2016) and they
categorize the micro-swimmers into following three types. Microorganisms such as
Chlamydomonas, categorized as pullers (β2>0), generate thrust in front of their body by
drawing fluid from the front and the back and ejecting the fluid sideways. On the other hand,
pushers, β2<0, (e.g.: bacteria) generate thrust behind their body by sucking fluid from the
sides and pushing itself through the fluid. β2= 0 corresponds to neutral swimmers, e.g.:
Volvox that has a source dipole flow field around their body. A neutral swimmer is different
from a passive particle, as the former has a slip velocity due to which it swims in a fluid, but
the latter can be driven only by an external force.

2.2. Confined squirmer

The domain under consideration is shown in figure 1. A two-dimensional disk squirmer of
radius a is placed between two parallel plates separated by a distance 2R. Incompressible
Navier–Stokes equations describe the fluid dynamics around the squirmer,

· ( ) =u 0 4

⎛
⎝⎜

⎞
⎠⎟ ( )r m

¶
¶

+  = - + 
t

p
u

u u u. , 52

where u is the velocity field, p is the pressure field, ρ is the density and μ is the viscosity of
the surrounding fluid. Section 3 describes the implementation details.

3. Numerical method

Fluid motion is solved using the method of lattice Boltzmann and by appropriately coupling
to the squirmer dynamics as described below.

Figure 1. A squirmer of radius a, oriented along e is placed between two plates
separated by a distance 2R.
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3.1. Lattice Boltzmann method (LBM)

LBM is used to solve Navier–Stokes equations numerically (Succi 2001). In this approach,
Boltzmann transport equation describing the non-equilibrium evolution of probability dis-
tribution functions, g(x, v, t), is discretized in physical and velocity space and then evolved
temporally according to

( ) ( ) ( )+ D + D =g t t t g tx v x, , 6k k k
*

( ) ( ) [ ( ) ( )] ( )
t

= -
D

-g t g t
t

g t g tx x x x, , , , . 7k k k k
eq*

Here gk(x, t) represents the kth population in the direction of discrete lattice velocity vk at
position x and time t. The zeroth and first moments of distribution functions give the fluid
density r = å gk k and the momentum r = å gu vk k k where u is the fluid velocity. The
distribution functions undergo successive streaming and collision. According to equation (6),
during the streaming process, the populations are propagated from one lattice node to another.
According to equation (7), during the subsequent collision operation, the populations are
relaxed to the equilibrium distribution function
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Both mass and momentum are conserved during the collision. Collision process is controlled
by the relaxation time scale τ which relates to viscosity of the fluid as ( )t= - Dm

r
c t0.5s

2 .
Also, cs is the sound speed and wk is the weight factor corresponding to each discrete velocity
direction k. We will use a D Q2 9 model of LBM in our simulations which solves fluid motion
in 2 dimensions with 9 discrete velocity directions.

No-slip boundary condition is imposed on the two channel walls and is achieved using a
midpoint bounce back scheme (Aidun and Clausen 2010). Boundary conditions on the
squirmer is described in the next subsection.

3.2. Squirmer dynamics

Consider a squirmer located instantaneously at (x, y) and oriented at an angle θ as shown in
figure 1. If the squirmer has a translational velocity U and rotational velocity W, then its
surface velocity is given by,

( ) ( ( )) ( )å f W= + + ´fB nu x e U xsin . 9
n

n
s

s s

( )u xs
s drives the fluid flow around the squirmer and this flow field is calculated via LBM as

explained above.
However, both U andW are not known a priori in this calculation. Therefore we impose

the force-free, torque-free conditions

( ) ( )ò =Sf x d 0 10s

( ) ( )ò ´ =Sx f x d 0 11s s

on the squirmer. Here, ( )f xs is the force density on the surface of the swimming particle and it
is related to the first moment of the lattice Boltzmann distribution function (Aidun and
Clausen 2010).
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where +t refers to a time post-collision but pre-propagation and k̄ represents the direction
opposite to k.

Thus, this procedure ensures the dynamic coupling between the fluid and the micro-
swimmer: equation (9) acts as the boundary condition driving the fluid flow, but the resulting
stress distribution on the surface of the swimmer has to satisfy equations (10) and (11). Thus,
U andW in equation (9) are modified iteratively to satisfy force-free, torque-free conditions of
the squirmer. In order to simultaneously solve equations (9)–(11), Broyden’s iterative algo-
rithm (Burden and Faires 2011) is used. This is a numerical technique developed to solve
nonlinear equations in which an identity matrix is taken as an approximation for the Jacobian
matrix and then proceeded by updating it in each iteration till convergence. During this
iterative procedure, the squirmer is not allowed to move in the computational domain. In other
words, we have taken a ‘quasi-stationary’ approach to determine the instantaneous values of
the translational and rotational velocities of the squirmer.

The trajectory of the squirmer in two dimensions is then constructed by integrating the
kinematic equations of motion

˙ ˙ ˙ ( )q= = = Wx U y U, , and 13x y

from any initial position and orientation using Euler’s method.

3.3. Exploiting linearity

At Re=0, Navier–Stokes equations reduce to Stokes equations which are linear. The line-
arity of these governing equations can be exploited in two different ways in computing
squirmer dynamics. This approach is useful since it reduces the amount of computations
dramatically. Also, the problem under consideration is translationally invariant in the x-
direction. Therefore, we need to investigate squirmer dynamics only in y–θ space. The two
different ways in which linearity is exploited in this work are explained below.

(i) To calculate the velocities due to individual modes:Consider the computation of UBn, the
instantaneous translational swimming velocity of an individual squirmer solely due to nth
mode of swimming (see equation (1)) at a given y location and an arbitrary orientation θ.
It can be done by superposition of two known solutions, UB

I
n and UB

II
n which are the

translational swimming velocities of the squirmer for two different orientations θ=θI
and θ=θII respectively, but at the same y location. These ‘basis’ orientations are chosen
to be as θI=0 and q = p

nII 2
. Mathematically,

⎜ ⎟
⎛
⎝

⎞
⎠( ) ( ) ( )q q q q

p
q= = + =y y n y

n
nU U U, , 0 cos ,

2
sin . 14B B B

I I II IIn n n

For example, for B1 mode the two basis orientations are squirmer oriented perpendicular
to the wall (θI=0) and squirmer oriented parallel to the wall (q = p

II 2
). Calculations

done as explained in section 3.2 give UB
I

1 and UB
II

1 respectively. Using equation (14), the
total translational velocity due to B1 mode at any orientation can be calculated. The
magnitude of each mode (Bn) is always chosen as unity to simplify the next step.

(ii) To calculate the total velocity of the squirmer:The total translational swimming velocity
of the squirmer is calculated as a superposition of velocities from individual modes,
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( ) ( ) ( )åq q=y B yU U, , 15
n

n
Bn

for any desired βn.

A similar superposition principle is followed to calculate the angular velocity corresponding
to each mode and at any y location and orientation.

This procedure of using equations (14) and (15) reduced the number of computations
substantially.

3.4. Non-dimensional variables

There are two relevant non-dimensional numbers in the problem arising from the geometry.

(i) A non-dimensional variable ( )a = -y R a is defined to indicate the transverse location
of the squirmer in the channel, αä [−1, 1]. α=0 represents the center of the channel
and α=±1 represent the two walls.

(ii) a/R is another non-dimensional number that indicates the squirmer size with respect to
the channel width.

If we choose squirmer radius a as the characteristic length and translational swimming speed
of an unconfined squirmer U0=B1/2 as the characteristic velocity then the Reynolds number
of the squirmer is calculated as Re=( )

( )m r
B a21 . A small Re is maintained in the simulations in

order to analyze the results in creeping flow regime, however variations in Re can bring in
inertial effects to the fluid dynamics (Chisholm et al 2016, Ouyang et al 2018). In the
simulations Re=0.015 << 1 is used and hence Re is not a parameter in this study. In the
results below, translational and rotational velocities of the squirmer are reported after
normalising with U0 and U0/a respectively. Also, it may be noted that positive Ω shows
anticlockwise rotation of the squirmer.

3.5. Simulation parameters

A domain size of 400×400 is chosen for the simulations, unless mentioned otherwise. Wall
boundary conditions are applied at the top and bottom of the domain and periodic boundary
conditions are applied on the other two sides. As usual in LBM, spatial and temporal reso-
lutions are chosen as unity. Density and viscosity of the fluid are taken as 1 and 2/3 lattice
units respectively. A single squirmer of radius 20 lattice units is placed at a specified y and at
a specified orientation θ. Iterative procedure to calculate the squirmer velocities using
equations (10) and (11) is done on the steady state flow fields obtained using LBM. The
iterative procedure is continued as long as the tolerance limit for the force and torque exceeds
10−6. For an unconfined swimmer, we find the swimming velocity U0 to be within an error of
1% of the theoretical value B1/2.

4. Results and discussion

4.1. Instantaneous velocities of a squirmer near a wall

The instantaneous translational and angular velocities (Ux , Uy and Ω) of a squirmer located
near a wall are shown in figure 2 as a function of squirmer orientation θ. (a)–(c) Correspond to
squirmer with only B1 mode and (d)–(f) with only B2 mode of swimming. The case of a wall
bound squirmer is much studied in the literature Li and Ardekani (2014), Lintuvuori et al
(2016), Rühle et al (2017), Shen et al (2018), however we discuss these results first as it (i)
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naturally leads to explaining the behavior of channel confined squirmers and (ii) serves as a
validation of our numerics.

Figure 2 shows the translational velocities of an unconfined swimmer, Uo,x and Uo,y, as
well. On comparison between the unconfined swimmer and the wall bound swimmer it may
be seen that presence of a wall reduces the velocity of the B1 squirmer in both directions—
velocity parallel to the wall and velocity perpendicular to the wall. The reduction in Uy may
be interpreted as a wall induced repulsion of a B1 squirmer due to hydrodynamic interaction
with the wall. While there is no qualitative change in Ux and Uy compared to Uo,x and Uo,y,
this is not the case with Ω. The angular velocity of an unconfined squirmer in figure 2(c) is
zero for all θ since the squirmer does not rotate by itself in the bulk fluid. But a B1 squirmer
rotates near a wall. The direction of this wall induced rotation is such that the B1 squirmer gets
oriented away from the wall always. Therefore, the hydrodynamic interactions of a squirmer
with the wall may lead to attraction or repulsion and reorientation resulting in a hydrodynamic
collision with the wall.

Unlike a B1 squirmer which exhibits only quantitative changes in the translational
velocities, a B2 squirmer shows changes qualitatively too. The nature of wall-induced effects
on a B2 squirmer as a function of squirmer orientation is shown in figures 2(d)–(f). An
unconfined squirmer with B2 mode alone does not swim or rotate. Figures 2(d) and (e) show
that a wall induces a translational velocity, along as well as perpendicular to the wall. The
direction of the induced velocity depends upon the orientation of the squirmer.

On analyzing figure 2(e) further, it may be observed that a B2 squirmer oriented close to
and parallel to the wall (θ=90°) has a negative Uy indicating a repulsion from the wall. On

Figure 2. Normalised translational (U U U U,x y0 0) and angular (Ωa/U0) velocities of
squirmer located at a distance h=1.25a from a wall, as a function of orientation of the
squirmer (θ). (a)–(c) B1 squirmer (d)–(f) B2 squirmer. The insets of (a) schematically
show three orientations of the squirmer θ=0°, 90° and 180°. Legends for all graphs
are same as that given in (a).
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the other hand, a B2 squirmer oriented normal to the wall, whether towards (θ=0°) or away
(θ=180°) is attracted towards the wall. We will see later that this attraction can cause
trapping of squirmers near channel walls in certain cases. The angular velocity of B2 squirmer
also depends upon the orientation of the squirmer: if it is oriented towards the wall, it rotates
further towards the wall; if it is oriented away from the wall, it gets rotated further away from
the wall (figure 2(f)).

Ishimoto and Crowdy (2017) have derived exact expressions for describing the dynamics
of a two dimensional squirmer near a no-slip wall,

( )[ ] ( )r q r q= - - +U B B
1

2
1 sin 2 sin 2 16x

2
1 2

( )
( )

[ ] ( )r
r

q r q=
-
+

+U B B
1

2 1
cos 2 sin 2 17y

2 2
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2 is the distance from the wall. The instantaneous translational

and rotational velocities obtained from these equations are also plotted in figure 2. Indeed the
simulation results match well with the exact solutions thus serving (also) as a validation of our
numerical results.

4.2. Instantaneous velocities of a squirmer in a channel

Figure 3 shows the instantaneous translational and angular velocities (Ux, Uy and Ω) of
channel confined squirmers as a function of squirmer orientation θ. (a)–(c) Correspond to
squirmer with only B1 mode and (d)–(f) correspond to squirmer with only B2 mode of
swimming. Different plots in each graph correspond to different α i.e. different y locations in
the channel, from location near the wall to the channel centerline. The results are symmetric
with respect to the centerline of the channel and therefore only the results for the upper half of
the channel (α�0) are shown.

The qualitative behavior in the instantaneous velocities of a channel confined squirmer is
similar to that of a wall bound squirmer. For example, we have seen that the translational
velocity of a B1 squirmer decreases while it acquires an angular velocity near a single wall.
Similarly, both the translational velocity and the magnitude of acquired angular velocity
increase as the squirmer approaches the channel walls. The acquired velocities of B2 squirmer
also increase as it approaches the walls of the channel.

Before we proceed, it is worth thinking about the consequence of these plots on the
trajectory of a channel confined squirmer. While reduced translational velocities indicate that
squirmer will spend more time near the wall than the case without hydrodynamic interactions,
the presence of a wall induced angular velocity shows that the squirmer may just reorient and
escape from the wall. Thus the competition between these two effects determines the actual
effect of hydrodynamic interactions on the trajectory of a squirmer even for a B1 or B2

squirmer.
Thus, the consequence of the diverse behavior shown in figure 3 is that a squirmer having

B1 and B2 modes of surface actuation will show a complex hydrodynamic collision process
with channel boundaries. An example of this process is shown schematically in figure 4.
Consider a puller located near the upper wall but oriented towards it (figure 4, case I). It
experiences an axial velocity in the negative x-direction due to hydrodynamic interactions of
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both B1 and B2 modes. The two arrows below the swimmer represent the direction of induced
velocities. Consequently, the puller experiences a net velocity in the negative x-direction. On
the other hand, a puller oriented away from the wall (case II) experiences a lower x-directional
velocity since the induced velocity due to hydrodynamic interactions of both these modes are
in opposite directions. The direction of net induced velocity depends upon the magnitudes of
B1 and B2. The instantaneous behavior of the pusher is exactly opposite—it has a higher

Figure 3. Normalised translational (U U U U,x y0 0) and angular (Ωa/U0) velocities of
the squirmer in a channel as a function of orientation of the squirmer (θ) at various α (y-
locations). (a)–(c) B1 squirmer (d)–(f) B2 squirmer. The insets of (a) schematically
show three orientations of the squirmer θ=0°, 90° and 180° close to the upper wall of
the channel. Legends for all graphs are same as that given in (a).

Figure 4. Schematic representation of diversity in the swimming velocity along the
channel direction (Ux) of a microswimmer (puller) near the upper channel wall. Green
and blue arrows respectively represent the induced velocity by B1 and B2 modes and the
red arrow gives the resultant velocity in channel direction.
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velocity along the channel when it is oriented away from the wall compared to when it is
oriented towards the wall.

4.3. Role of wall repulsion in hydrodynamic collision with a wall

In this section we study the dynamic behavior of a squirmer, again near a single wall but
when the wall is exerting a repulsive potential. Since analytical results are available for a
single squirmer near a wall, we use these expressions to analyze the role of wall potential.

Wall potentials are common, for example with charged surfaces or polymer coated
surfaces and it has already been shown that a repulsive potential can affect the behavior of
swimmers near a no-slip wall (Lintuvuori et al 2016). We implement a hard wall potential in
our calculations. There is only one parameter to be tuned to change the hard wall potential,
namely the cut-off distance from the wall, δc within which the infinite repulsive force acts. We
have varied both δc and β2 and observe a variety of hydrodynamic collision behaviors. It turns
out that, in presence of wall repulsion both 2D and 3D squirmers behave in a qualitatively
similar fashion as discussed below.

Figure 5(a) shows the collision behaviors observed for various values of β2 and
δc=0.25a. A strong pusher (large, negative β2) gets attracted to the wall and remains trapped
and slides near the wall. A weak pusher (intermediate β2) may show oscillations while
trapped near a wall. If ∣ ∣b2 is very small then pushers, pullers and neutral swimmers bounce
back from the wall. As β2 increases, a weak puller shows oscillatory behavior and a strong
puller gets trapped and slides near a wall.

This diverse collision behavior with a wall is illustrated in figure 5(b) in a phase space of
δc and β2. As seen, the collision behavior is strongly dependent upon the range of repulsion
chosen. A neutral squirmer always exhibits bounce back irrespective of the range of wall
potential, whereas pusher and puller dynamics depend on the range of repulsion potential.
The five types of collision behavior mentioned above has also been seen for a 3D squirmer
(Shen et al 2018), except that (i) the range of β2 in which each behavior observed is different
and (ii) the absence of decaying oscillatory behavior before being trapped. The probable
reason for the latter is the different form of repulsive potential chosen here. However, the
order in which the different collision behavior occurs is similar for both 2D and 3D squirmers.

In order to reveal the importance of wall potential and hence to put things into per-
spective, we compare our results with previous analysis available in the literature both in two
and three dimensions. Analysis using lubrication approximation of spherical squirmers shows
that pullers have a stable trajectory near the wall (Ishimoto and Gaffney 2013, Lintuvuori et al
2016) while pushers have no stable or stable oscillatory trajectories. On the other hand disk-
squirmers, whether pushers or pullers have no stable trajectories due to the underlying
Hamiltonian structure involved (Ishimoto and Crowdy 2017). Hence, 2D and 3D hydro-
dynamics of squirmers near the wall are different in the absence of wall potential. The long
range nature of two dimensional hydrodynamics is well known and thus it is not surprising to
see qualitatively different results in two and three dimensions. However, as shown above, our
analysis shows that, in presence of a wall repulsion force, which is most usual the case, both
disk and spherical squirmers behave in a similar fashion near a wall.

Wall repulsion playing a crucial role in determining the collision behavior has been
discussed in literature before. Ishimoto and Gaffney (2013) showed that fixed points can
emerge when wall repulsion is considered for disk squirmers. However a systematic analysis
was not performed in their work. The investigations on the effects of wall repulsion by
Lintuvuori et al (2016) were also not complete since analytical calculations were restricted to
an approximate solution. The approximate solution was obtained from a match of far field and
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lubrication solutions. Moreover this comparison was only for the rotational motion of the
squirmer as the solution to the leading order translational problems in lubrication approx-
imation were unavailable. On the other hand, here, since exact solutions are available in two
dimensions we have been able to clearly demonstrate the effect of wall repulsion in the
hydrodynamic collision behavior of squirmers.

Figure 5. (a) Distance between the wall and the squirmer as a function of time for
various β2 during a hydrodynamic collision process. At t= 0, squirmer is located at
h=7.5a and θ=−120°. As the swimming mode is changed from a strong pusher
(large but negative β2) to a strong puller, we find five different types of behaviors in the
following order (i) trapped and sliding near the wall (ii) periodic oscillations (iii)
bouncing back from the wall (iv) periodic oscillations and (v) sliding along the wall. (b)
Phase diagram in β2–δc plane showing different hydrodynamic collision behavior.
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Therefore, if the effects of hydrodynamics and wall repulsion are considered together, the
generic behavior of a squirmer near a wall may be described as follows. Starting from most
negative β2, squirmers get trapped and slide near a wall and then, as β2 increases squirmers
exhibit oscillations, finally resulting in scattering from the wall as β2→0. Periodic oscil-
lations may re-emerge as β2 increases further, and finally strong pullers with large β2 remain
trapped and slide near the wall.

With the above analysis we proceed further with 2D simulations as they will give insights
into the qualitative behavior of swimmers in channels. In our simulations described below we
have choosen d = a0.25c .

4.4. Trajectory of a channel confined squirmer

The variety in the response of B1 and B2 squirmers during their hydrodynamic collision with
confining walls and the role of wall potential show that it is difficult to gauge their long time
behavior in a channel from an instantaneous picture (as in figure 3). Therefore, we proceed to
construct the trajectory of different classes of swimmers.

Figure 6 shows the trajectories of squirmers for six different values of β2, namely (i) a
shaker (b = ¥2 ), (ii) a strong puller (β2=+1), (iii) a weak puller (β2=+0.1), (iv) a neutral
swimmer (β2=0), (v) a weak pusher (β2=−1), and (vi) a strong pusher (β2�−3). All of
them are initially located at α= 0.27, slightly displaced upwards from the channel centerline
and oriented at an angle θ= 60° as shown in the inset of figure 6. Consequently, all of them
move towards the left (negative x-axis). (The choice of initial conditions is completely
arbitrary.) Two different types of trajectories can be seen, a straight line trajectory either close
to the wall or at the center of the channel and an oscillatory trajectory spanning the channel
width.

Figure 6. Trajectories of different squirmers in a channel. Initially (marked with green
rectangle) they are located slightly displaced from the center at a = 0.27 and oriented
at θ=60° (as shown in the schematic in the inset). Weak puller (β2=0.1) takes much
longer distance to stabilize its trajectory compared to other squirmers.
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A shaker has B1=0. Irrespective of the initial conditions, it goes towards the wall and
gets trapped near the wall. The wall induced Ux continues to propel it, but it does not move
away from the wall and maintains a constant orientation. A similar behavior is observed for a
strong puller but with the difference that it gets trapped at an α slightly smaller than that of a
shaker. The weak puller also has a straight line trajectory, however, it stays at the center of the
channel and not close to the wall. Qualitatively different behavior is observed for a neutral
swimmer and a pusher. They make oscillatory trajectories between the two walls of the
channel. Compared to a neutral squirmer, a pusher spends more time in contact with the wall
during the hydrodynamic collisions. Slowly, these oscillations get restricted to regions near
the walls and strong pushers (β2�−3) get trapped near the wall and slide along the wall.

We now contrast the oscillatory trajectories reported in figure 6 with those found in
literature. Using a numerical methodology similar to that used in this work, Lintuvuori et al
(2016) found hydrodynamic trapping of pullers and oscillations of pushers near a plane wall.
They showed that the competition between near field hydrodynamics and the wall replusion
potential results in such effects. However the hydrodynamic oscillations reported in their
work is restricted to a single wall. In other words the amplitude of oscillations are close to
channel width (>squirmer size) in figure 6 while it is smaller than channel size in the study by
Lintuvuori et al (2016). Oscillations of swimmers are also observed by de Graaf et al (2016)
but near the center line of the channel. We also observe these oscillations during the onset of
swimming, which is resulting from the presence of two confining walls. In de Graaf et al
(2016) the authors investigated the onset of swimming while figure 6 describes the long time
behavior of the squirmer. The helical trajectories of pushers and neutral swimmers reported in
Zhu et al (2013) are also different from the trajectories reported here. In the former, the helical
trajectories are along the channel walls that resulted from the three dimensionality and cur-
vature of the confining cylinder while figure 6 shows the two dimensional trajectories
between planar walls.

Since the trajectory is invariant or periodic in x-direction, such trajectories can be con-
veniently represented in a –q a plane where θ represents the instantaneous squirmer orien-
tation and α represents the instantaneous scaled lateral position. The trajectories of pullers on
this reduced space are shown in figure 7(a). Pullers traveling on a straight trajectory have
constant orientation and thus they reach a fixed point on this phase diagram. Started from the
same initial conditions, they follow different paths depending upon the value of β2. Pullers
with β2�1 finally slide along the wall (α≈1, θ<90°) and others move at the center of the
channel (α=0, θ=90° thus oriented parallel to the channel). It may be noticed that weak
pullers (β2�0.1) show oscillations before finding their fixed point at the channel center,
consistent with the observations by de Graaf et al (2016). Thus, leaving out the transient path
the trajectory of a puller can be represented by a fixed point on θ–α plane.

We now turn our attention to the origin of this fixed point. This is a point where the
squirmer (i) experiences no net attraction or repulsion towards the wall (ii) does not
experience an angular velocity. Mathematically, if (θf, αf) represents a fixed point then,

( ) ( ) ( )q a b q a+ =U U, , 0 19y
B

f f y
B

f f2
1 2

( ) ( ) ( )q a b q aW + W =, , 0. 20B
f f

B
f f21 2

These two equations can be simultaneously solved with the help of data in figure 7(a) to
determine all fixed points for any b2. The solutions so obtained are shown in figure 7(b).
Three clusters of solutions can be identified in this figure. (i) α=0, θ=90° always emerges
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as a solution from the symmetry of system for which ( ) ( )a q a q= W =U , 0, , 0y
B B

f f
B B

f f
, ,1 2 1 2 .

In addition, (ii) a cluster near the wall but with θf<90° and (iii) a cluster representing
squirmers oriented away from the wall (θf=180°) at all α, emerge when the wall response of
the two modes cancel each other as per the above equations (19) and (20).

However, it may be noted that it is not sufficient for a fixed point to satisfy equations (19)
and (20) to represent a trajectory, it must be stable as well. In order to determine the stability,
we define a coefficient matrix A (Strogatz 1994),

Figure 7. (a) Trajectories of pullers initially located at α=0.27 and θ=50° (marked
with green square) for different β2. (b) Fixed points of puller for different β2. Solid
circles represent stable nodes and solid triangles represent saddle points. Symbol *

shows that stability depends on the value of β2. (c) Trajectories of pushers initially
located at α=0.27 and θ=50° for different β2 (d) Escape angle of pusher plotted as a
function of β2.
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for the fixed point. Elements of matrix A are calculated using a finite difference method from
the known values of Uy and Ω at any location and orientation. Let Δ=λ1λ2 and
τ=λ1+λ2 are the determinant and trace of matrix A respectively where λ1 and λ2 are the
eigenvalues of the matrix A. If Δ<0, the fixed point is a saddle point. If Δ>0 and
τ2−4Δ>0 then the fixed point is a node. The node is stable when τ<0 and unstable
when τ>0.

Based on this criteria, three families of fixed points identified in figure 7(b) are classified.
The first family at θ=90°, α=0 is a stable fixed point if β2<1 and a saddle point
otherwise. The second family of fixed points that exist close to the wall are stable. They act to
trap a puller near the wall. As β2 increases, the fixed point gets closer to the wall and squirmer
gets oriented more towards the wall. The third family of fixed points at θ=180° are all
saddle points. Thus equations (19) and (20) and the stability criteria mentioned above
explains the origin of fixed points noted in figure 7(a).

The oscillatory trajectories of neutral squirmers and pushers in figure 6 transform to
closed trajectories called limit cycles on θ–α plane as shown in figure 7(c). Unlike pullers,
these have no stable fixed points, they continuously reorient and escape from the channel
wall. Subsequently, they cross the centerline and reach the other wall, only to repeat the
process. As ∣ ∣b2 increases the angle at which they escape from the wall, called escape angle,
increases. The increase in escape angle yields wider limit cycles.

Escape angle can be used as a sole measure to characterize a limit cycle corresponding to
each β2. It may be calculated as the angle θe, at which wall interaction changes from attraction
to repulsion at the location closest to the wall (αe). Mathematically,

( ) ( ) ( )q a b q a+ =U U, , 0. 22y
B

e e y
B

e e2
1 2

Using the data in figure 3 and choosing αe=0.972 (the closest point to the wall in
simulations) the above equation was solved to determine θe as a function of β2. The result is
shown in figure 7(d). θe increases with increase in ∣ ∣b2 . This suggests that dominant B2 mode
results in wider limit cycles as concluded earlier.

Very large β2 or strong pushers will have the width of the limit cycle going to 2π. In
other words, limit cycle disappears, and fixed point emerges in the phase plot, representing
their trapping on the wall.

It is also interesting to analyze the swimmer behavior by reversing the order, namely as
β2 is increased from large negative value, to large positive value. Then the change in collision
behavior can be interpreted in terms of the reorientation dynamics of the swimmer. Strong
pushers do not escape from the wall. Weak pushers undergo reorientation dynamics near the
wall over a large range of θ before eventually escaping from the wall. On the other hand, for a
neutral squirmer (β2=0) the escape angle is 90◦. Further increase in β2 (namely for pullers)
would change the escape angle to θe<90°. This implies that pullers are drawn towards the
wall but not escaped from the wall which had resulted in their fixed points.

4.5. Effect of higher squirming modes

Squirmer is just a model for micro-swimmers, no real micro-organisms is strictly a squirmer.
Usually only the first two modes of squirming (B1 and B2) are considered in modeling a
micro-swimmer, which is a good approximation in an unbounded fluid. Recent experiments
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(Gilpin et al 2016) showed the relevance of higher modes in the natural behavior of micro-
organisms, and therefore it is interesting to investigate the effect of these higher modes.

Figure 8 shows the instantaneous translational and rotational velocities of the squirmer
due to B3 and B4 modes. As in the case of first two modes the wall induced velocities are
larger as the squirmer approaches the wall. Moreover, both translational and rotational
velocities change sign more often, every 60◦ in θ for B3 and every 45◦ in θ for B4 squirmer.
This sign change is important because, mathematically, it is this sign change in Uy and Ω that
resulted in fixed points of pullers and limit cycles of pushers in the previous analysis.
Therefore, the presence of either of these higher modes can potentially change the qualitative
behavior of hydrodynamic collisions with the wall.

Using the procedure mentioned in section 4.4 the effect of the presence of B3 and B4

modes on the puller and pusher dynamics is analyzed and described next. The phase plots are
shown in figures 9(a) and (b) for a fixed value of β2 (−1 for pusher and 1 for puller). Having
±B3, ±B4 do not change the fixed point of the puller substantially till ∣ ∣b  13 or ∣ ∣b  0.254 .
The stable fixed point which represents the trapping of the puller shifts close to the wall as ∣ ∣b3

increases but this set disappears for β3>1. This set shifts away from the wall as β4 increases
and disappears for β4>0.25. However, the stable fixed point at the channel center when the
squirmer is oriented parallel to the wall (θf=90°, αf=0) exists for all values of β3 and β4.
The family of saddle points at θ=180° are relatively unaffected by B3 or B4 mode and does
not have any consequences.

The escape angle which characterizes the limit cycle of a pusher is plotted as a function
of β3 and β4 in figure 9(c) and (d). Unlike previous cases, we observe two sets of escape
angles: θe>90° and θe<90°. The escape angle which is larger than 90◦ is found to increase

Figure 8. Normalized translational (Ux, Uy) and angular (Ω) velocities of (a)–(c) a B3

and (d)–(f) a B4 squirmer in confinement as a function of orientation of the squirmer at
various α. Legend for all graphs are same as that shown in (a). The insets of (a) show
three orientations of the squirmer schematically θ=0°, 90° and 180° near the upper
channel wall.

Fluid Dyn. Res. 51 (2019) 065504 P Ahana and S P Thampi

18



Figure 9. Fixed points and escape angles for squirmers with higher order squirming
modes, B3 and B4. Shift in the location of fixed points with addition of (a) B3 mode and
(b) B4 mode for a puller (β2=1). Solid circles represent stable nodes and solid
triangles represents saddle points. Different legends correspond to different
characteristic behaviors: (i) a set of stable fixed points representing the trapping of
puller near the wall and that slightly change with change in ∣ ∣ ∣ ∣b b,3 4 (ii) a second set,
namely a stable fixed point at the channel center representing the squirmer oriented
parallel to the wall (θf=90°, αf=0) and (iii) a third set of saddle points at θ=180°.
Change in the escape angle with addition of (c) B3 mode and (d) B4 mode for a
pusher (β2=−1).
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with an increase in β3 (figure 9(c)), and decrease with increase in β4 (figure 9(d)). The
additional set of θe<90° is observed only for β3<0, β4<0. However, these escape angles
less than 90◦ are found to be corresponding to unstable limit cycles. Thus the presence of
moderately strong B3 or B4 modes does not change the fixed points of pullers and escape
angles of pushers substantially.

4.6. Effect of confinement on squirmer trajectories

In this section we discuss the effect of channel width on the squirmer dynamics. To inves-
tigate the same, we varied a/R, the ratio of size of the squirmer to the channel width and the
results are shown in figure 10. For pullers, the stable fixed point moves away from the wall
towards the channel center as the channel size is reduced. Thus ‘trapping’ is no more at the
confining walls. Moreover, when the channel width is smaller than 5 times the radius of the
squirmer (2R<5a) this set of stable nodes disappears. Instead a set of stable fixed points at
the channel center (θ=90°, α=0) appears which represent a straight line trajectory at the
center of the channel. The escape angle characterizing the limit cycles for pushers also change
with change in a/R. However, as shown in figure 7(d) this change is weak; decreasing a/R
increases the escape angle slightly and consequently the width of the limit cycles.

The difference in the effect of confinement on the behavior of pullers and pushers as seen
in figure 10 is mainly due to the wall interactions of B2 mode. When the confinement ratio a/
R is large, the angular velocity induced by the B2 mode changes its direction close to the wall
(not shown). For a puller, this change results in larger angular velocity (W + WB B1 2) near the
wall. It also results in zero angular velocity occurring much closer to the channel center and
consequently the fixed point of pullers shift towards the center. However, Uy velocity is
relatively unaffected by the changes in a/R. Therefore, the escape angle which is determined

Figure 10. Fixed points and escape angles of squirmers for different confinement
widths: (a) fixed points of puller (β2=1) (b) escape angle of pusher (β2=−1) as a
function of a/R. Different legends in (a) correspond to different characteristic behavior:
(i) a set of stable fixed point near the wall that move towards the channel center for
stronger confinements upto a/R=2/5, (ii) a new set of fixed points that appears near
the channel center for a/R>2/5 and (iii) a third set always present at the channel
center.
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as the angle at which Uy changes sign does not change significantly with changes in a/R for
pushers.

A summary of the effect of confinement on the squirmer trajectories in a channel is
shown in figure 11. As in the case of a single wall, both strong pushers and pullers are trapped
near the wall and they slide along the wall. However the symmetry between pushers and
pullers is lost if their dipole strength is weak (small β2). Weak pushers generate trajectories
that span across the channel width while weak pullers swim along the channel centerline. The
range of β2 in which this channel width spanning oscillations of pushers and centerline
swimming of pullers is observed increases with increased confinements (reducing a/R). Thus
the symmetry in the behavior of a weak puller and a pusher that was observed in the case of a
swimmer near a single wall (figure 5(b)) is absent for a channel confined squirmer. However,
the strong pullers and pushers maintain the symmetry in behavior even in the channel.

5. Conclusions

In this work, we have presented a full-scale simulation study of hydrodynamics of a squirmer
—a model micro-swimmer for ciliated organisms—confined in a channel. LBM was used to
solve for fluid flows. Through the coupled dynamics of the squirmer and the fluid, we
determined the instantaneous translational and rotational velocities of the confined squirmer
that arise from the hydrodynamic interaction with the channel walls. Swimming velocities
corresponding to different modes of squirming were determined separately to understand the
role of each mode. Trajectories of different classes of squirmers such as pullers, neutral
swimmers and pushers were then determined. It was shown that strong pullers and strong

Figure 11. Four types of swimming behavior in a channel as a function of β2 and ratio
of the squirmer radius to channel width, a/R—(i) sliding along the wall, (ii) swimming
along the channel centerline, (iii) periodic swimming near the wall and (iv) periodic
swimming spanning the channel width.
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pushers are always trapped and slide near one of the channel walls and thus their trajectory
can be completely represented by a fixed point in a phase space spanned by the squirmer
orientation and the height from the centerline. Neutral swimmers, and weak pushers which
show an oscillatory trajectory spanning the entire channel width are represented as limit
cycles, which can be solely characterized by the escape angle from the wall.

Presence of a repulsive potential on the channel wall can be decisive in the hydrodynamic
collision process of a swimmer. Depending upon the range of the potential and the strength
and swimming modes of the swimmer, diverse behavior can be observed near a wall. It is
interesting to note that 2D disk squirmers behave qualitatively similar to 3D spherical
squimers near a repulsive, planar wall. Effects of higher modes of squirming were also
analyzed to find that the instantaneous velocities change mildly, and these changes have a
relatively weaker effect on the trajectory of a squirmer in the channel. On the other hand, it
was found that stronger confinements resulted in fixed points of pullers moving towards the
channel center—a feature that is absent in the highest order singularity representation of
squirmers. Thus, we systematically analyzed different factors that govern the trajectory
dynamics of swimmers in confinement. The trajectories are found to be robust to squirmer
model and fluid flow parameters.

Compared to the behavior of a pusher in a channel, fixed points of pullers are found to be
more sensitive to variation in parameters. This generic behavior originates from the fact that a
fixed point is determined by two constraints, namely (1) a zero attraction or repulsion with the
channel walls and (2) a zero channel wall induced angular velocity. On the other hand,
pushers and neutral swimmers which exhibit a limit cycle, and thus represented by an escape
angle is less sensitive to changes in parameters. This is because, escape angle of a swimmer is
determined by only one constraint, namely the Uy velocity (attraction/repulsion) of the
squirmer near the wall.

Our work illustrates the role of complex hydrodynamic collision process of a swimmer in
determining its trajectory in a microchannel. Having established the ground works with a
single squirmer, future investigations may be done to analyze effect of the curvature of the
walls, presence of multiple swimmers and non-Newtonian characteristics of the fluid. Such a
comprehensive picture further advances the understanding of the dynamic behavior of micro-
swimmers in complex and crowded environments.
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