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Abstract. The martensitic transformation in quenching and partitioning (Q&P) steels is greatly 

influenced by loading conditions such as environmental temperature and loading speed, and thus 

impacts the macroscopic mechanical properties during the deformation process. Within this work, 

an elastic-visco-plastic self-consistent (EVPSC) framework coupling with phase transformation 

model is used to simulate the stress strain responses as well as the microstructure evolution of 

the multi-phases Q&P980 steel under uniaxial tension process. A temperature and strain rate 

dependent transformation kinetics is incorporated into the model and phase transformation 

behaviors of the Q&P980 steel under different temperatures (25℃~100℃) and strain rates 

(0.0002s-1~2s-1) are successfully characterized. The corresponding stress strain responses under 

different loading conditions are predicted and compared with the experimental data. 

1. Introduction 

As a representative of the 3rd generation advanced high strength steels (3G-AHSS), Q&P steels possess 

good combination of strength and ductility and offers great potential in forming light-weight vehicle 

structures [1]. The Q&P concept was originally proposed by Speer et al. [2] and has been explored for 

years [3]. The Q&P980 steel has been commercialized for fabrication of automotive structural and safety 

parts such as cross members, longitudinal beams, B-pillar reinforcements, sills, and bumper 

reinforcements [4]. 
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There are three phases in Q&P980 steel at the initial state: retained austenite (RA), ferrite (F) and 

tempered martensite (TM). During deformation, phase transformation occurs from RA to newly formed 

martensite (NM), enhancing the ductility and strength. Under press forming process of sheet metal, the 

strain rate is in the range of 0.1~10 s-1 and the temperature rising due to plastic work is below 100 ℃. 

These variant environmental conditions affect the transformation behaviors and impact the mechanical 

behaviors. 

An EVPSC framework coupling with phase transformation model is used to study phase 

transformation behaviors of the Q&P980 steel under different temperatures and strain rates, and predict 

the macroscopic flow stress behaviors. The microstructure evolution is also characterized by the model 

and compared with experimental results. 

2. Experiment 

Experimental results from Hu et al. [5] and Zou et al. [6] were used in this study. The lattice strain 

evolution of each phase during tension is from Hu et al. [5]. Phase transformation behaviors and stress 

strain responses under different temperatures and strain rates are from Zou et al. [6]. Both of the Q&P980 

steels in the literature are from BAOSTEEL. The chemical composition, microstructure characterization 

and quasi-static uniaxial tension stress strain curves of the two steels were compared and little difference 

was found. Therefore, the experimental data could be used together. 

3. Model description 

A crystallographic phase transformation model was implemented into an EVPSC [7, 8] framework, 

which can be summarized as follows: 

For each crystal, the total strain rate is divided by elastic strain ( eε ) and plastic strain. The plastic 

strain consists of crystal slip ( pε ) and transformation strain ( ptε ). 

0

1
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m
p α

α
cr cr

 

 
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 
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where 0  is the reference value for the slip rate; m  the rate sensitivity, αP  the Schmid tensor.   

and α
cr  are the resolved shear stress (RSS), and the critical resolved shear stress (CRSS), respectively. 

α
cr  is characterized in the form of modified Voce hardening law [9]: 
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where α

α

  is the accumulated shear in the grain, α
0  the initial CRSS, α

0  the initial hardening 

rate, α
1  the asymptotic hardening rate, and ( )α α

0 1   the back-extrapolated CRSS, respectively. 

For the ferrite and martensite grains, there is no transformation strain ( ptε =0). For the austenite 
grains, strain-induced martensitic transformation (SIMT) can occur and induce transformation strain 
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when the accumulated shear exceeds a critical value. 

The phase transformation model can be summarized as follows: 

(1) For an austenite grain that has not experienced phase transformation, if the accumulated shear of the 

grain reaches a critical value c , then the transformation of the grain will initiate. 

(2) There are 24 possibly formed martensite variants, according to the K-S orientation relationship, but 

only the one with the maximum transformation energy potential ( : , 1, ..., 24pt
i iU i   ) is chosen 

as the nucleation of NM. 

(3) If a transformation martensite grain is nucleated, its initial stress state is set to be equal to the current 

parent austenite grain considering the stress balance, and its initial shape is set to be a plate-like with 

axis ratio of 10:10:1, based on the experimental observation [10]. 

(4) If one variant is selected, other variants will be restricted. This assumption is not only based on 

experimental results [11] but also on common sense that growing up on an existing nucleus is much 

easier than nucleation again.  

(5) A modified phenomenological transformation kinetics equation is used to describe the volumetric 

evolution of an austenite grain. 

 21 exp{ [1 exp( )] }f                              (3) 

where ( , )T   and ( , )T   are transformation parameters.  

(6) The transformation associated dilatational and shear strains are about 3.7% and 22%, respectively. 

The Eigen transformation strain tensor PT  of the variant with (011)α//(111)γ and [111]α//[101] γ is 

given by (referred to austenitic axes) 

-0.0061       0         -0.0242
( )

      0       0.131          0
2

-0.0242       0         -0.0958

T
PT F F I

 
     

  

                (4) 

The transformation strain tensors of other variants are calculated by multiplication of PT  with 
associated crystal symmetry operation matrices.  

A uniform macroscopic strain is imposed on a material point. An aggregate of 10000 grains is 

considered for the Q&P980 alloy, and consists of four phases: RA, F, TM and NM. According to Zou et 

al. [6], the volume fractions of the RA, F, TM and NM are taken to be respectively 10.6% (1060 grains), 

37.5% (3750 grains), 51.9% (5190 grains) and zero at the initial state. The initial texture measured by 

electron backscatter diffraction (EBSD) is used as input for each phase. For the RA, 12 {111}<110> slip 

systems are used without considering the twinning mechanism. For the F, TM and NM, the 12 

{110}<111> and 12 {112}<111> slip systems are used in this study. The single-crystal elastic constants 

for the γ (RA) and α (F, TM and NM) phases are set to be: 11 209GPaC    , 12 133GPaC    ,
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44 121GPaC     [12] and 11 222GPaC   , 12 143GPaC   , 44 114GPaC    [13], respectively. The 

calibrated model parameters of each phase are listed in Table 1. 

Table 1 Model parameters 

phase Slip mode 𝜏଴ 𝜏ଵ 𝜃଴ 𝜃ଵ 

RA {111}<110> 380 1 800 20 

F 
{110}<111> 190 150 1200 150 

{112}<111> 190 150 1200 150 

TM 
{110}<111> 380 50 600 50 

{112}<111> 380 50 600 50 

NM 
{110}<111> 450 40 2500 2200 

{112}<111> 450 40 2500 2200 

4. Results 

The stress strain responses as well as the volumetric evolution of RA is shown in Figure 1a. The volume 

fraction of RA continues decreasing to 6% at ε=0.15. The lattice strain of each phase during deformation 

is shown in Figure 1b. After yielding, the F and NM show obvious hardening behavior, while the lattice 

strains of RA and TM almost do not change. The texture of each phase after 15% tension is shown in 

Figure 2. After deformation, the <111> fiber texture of RA and the <110> fiber texture of F and TM 

enhanced. The current model is able to reproduce the macroscopic mechanical properties as well as 

microstructure evolutions of the multi-phase Q&P980 steel.  

   

Figure 1. (a) experimental and simulated flow stress and volumetric evolution of RA, (b) experimental 

and simulated lattice strain evolution of each phase 

 Experiment Simulation 

(a) (b) 
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RA 
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TM 

  

Figure 2. experimental and simulated texture at 15% strain 

The relationship between transformation parameters (α, β) and loading conditions (T, 𝜀ሶ) is given 

by: 

1 2 1 2=2.2 12.7956( ) 80.0012f f f f                      (5) 

where 1 0.005 6.36f T   , 

4 3 2
2 0.0003(ln ) 0.0035(ln ) 0.17(ln ) 1.31ln 8.8f              

1 2 1 20.81 -0.8132( ) 0.4585g g g g                       (6) 

where 1 0.0047 0.65g T   ,  

4 3 2
2 0.000546(ln ) 0.0107(ln ) 0.0757(ln ) 0.1988ln 0.52222g             

The phase transformation behaviors and stress strain responses under different temperatures (where 

𝜀ሶ=0.0002s-1) are shown in Figure 3a and Figure 3b, respectively. With temperature increasing, phase 

transformation is constrained and the strength is weakened. The phase transformation behaviors and 

stress strain responses under different strain rates (where 𝑇=25℃) are shown in Figure 4a and Figure 

4b, respectively. With strain rate increasing, phase transformation is constrained firstly but enhanced 

after 𝜀ሶ>0.1s-1. Therefore, the strength is not enhanced with strain rate monotonously and the flow stress 

crosses with each other at low strain rate (𝜀ሶ<0.1s-1). 
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Figure 3. (a) measured and simulated volume fraction of RA under different temperatures, (b) measured 

and simulated stress strain responses under different temperatures 

 

Figure 4. (a) measured and simulated volume fraction of RA under different strain rates, (b) measured 

and simulated stress strain responses under different strain rates 

5. Conclusions 

An EVPSC framework was combined with crystallographic phase transformation model to capture the 

macroscopic mechanical behavior as well as microstructure evolutions of the Q&P980 steel. The 

developed model was able to characterize the phase transformation behaviors and predict the stress 

strain responses under different temperatures and strain rates. 
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