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Abstract. Steel skeleton supported membrane structure is the major structural form of 
membrane structure, accounting for more than 50%. The structural characteristics of membrane 
structure itself determine that the analysis of its self-vibration characteristics is very important 
in the design process. According to the von Karman's large deflection theory and the 
D'Alembert's principle, the governing equations of nonlinear viscous damping vibration of the 
skeleton supported orthotropic membrane structure were proposed. By applying the Galerkin 
method and the KBM perturbation means of obtaining the analytical solutions of frequency 
function, displacement function and mode function of damped nonlinear and linear free 
vibration of simply supported orthotropic membrane structures on four sides were obtained. In 
addition, it can be known by example analysis that the transverse stiffness of membrane 
structure can be improved by increasing prestress and rise span ratio in the practical 
engineering, and while the influence of geometrically nonlinear, orthotropic, damping and 
prestress on the dynamic feature of membrane structure must be fully considered. This paper 
provides some theoretical references for the wind-induced dynamic stability calculation and 
wind-resistant design of the steel skeleton supported membrane structure. 
Keywords: Membrane structure; Orthotropic; Geometric nonlinearity; Linear; Free vibration. 

1. Introduction 
Matched with the traditional rigid structure, the structural characteristics of the membrane structure 
determine that it is essential to analyze the shape-finding and self-vibration characteristics during the 
design process[1]. A.H.Sofiyev[2], Li[3]and other scholars have studied the nonlinear vibration of 
membrane. However, in the vibration analysis of steel skeleton supported membrane structure, there 
are few studies that consider both the geometric nonlinearity of membrane surface deformation and the 
orthotropic characteristics of material. L.V.Swpanova[4], Ali.A.Yazdi[5] and other scholars proved 
the effectiveness of the perturbation method and the Galerkin method in solving nonlinear problems. 
In this paper, the KBM perturbation method and the Galerkin method were used to solve the partial 
differential governing equations of nonlinear free vibration of supported membrane structures. The 
nonlinear and linear vibration frequencies of skeleton supported membrane structure under different 
parameter variables are analyzed and calculated through calculation examples. The results of this 
paper provide a handy analytical way for calculating the natural frequency and transverse 
displacement of the skeleton supported orthotropic membrane structure with viscous damping. 
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2. Structural Models and Governing Equations 
The structural model studied in this paper is cylindrical shell-shaped steel framework supported 
membrane structure, it’s shown in figure 1. The membrane material is orthotropic, and the boundary 
condition is four edges clamped, x and y are two orthogonal directions. a and b denote the lengths of 
the membranes in the x and y directions; Nox and Noy represent the pretension in x and y directions; f2 is 
the rise span ratio in x direction. The coordinate system is xyz, point C is the center of the horizontal 
projection of the membrane surface to the plane xoy.  

 

Figure 1. Skeleton supported membrane structural model. 

2.1. Governing Equations and Boundary Conditions 
According to the governing equation derived by Liu[6]et al., and introduce stress function

 , ,x y t  [7]. The motion equation and compatible equation of the skeleton supported membrane 

structure can be derived as follows: 
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Where: 0  represents the membrane material surface density; c represents the damping coefficient;  w 

represents deflection w(x,y,t); h represents the membrane material thickness; 1E  and 2E represent 

Young's modulus in x and y direction; 1 and 2 denote Poisson's ratio in x and y directions; G 

represents shear modulus; 0 xk  denotes initial principal curvature in the x direction. 
The corresponding displacement and stress boundary conditions are shown as follows: 
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2.2. Solution of Governing Equation 
The functions satisfying the boundary condition equation (3) are separated as follows[8,9]: 

       , , , = sin sinmn mn

m x n y
w x y t T t W x y T t

a b
  

 
                                     (4) 

Where,  ,mnW x y  is the given deformation function;  mnT t is a function of time; m and n represent the 

order of vibration mode in x and y directions respectively. 
The substitution of equation (4) into equation (3) yields, assuming that the stress  , ,x y t satisfying 

the stress boundary condition equation (3) is: 
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Equation (3) and equation (5) are substituted into Equation (1), and the Bubnov-Galerkin method [10] 
is used to transform it into homogeneous differential equation. Then, by using KBM perturbation 
method[11] to solve the equation, the approximate expression of nonlinear free vibration frequency 
can be obtained: 
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Where, F represents the initial displacement. 
It can be seen from the above equation that the frequency of nonlinear free vibration is about the 
amplitude. In the case that only linear vibration is considered, the high-order trace are omitted. The 
approximate expression of linear free vibration frequency can be obtained as follows: 
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The analytic expressions of nonlinear and linear  T t  functions can be obtained and substituted into 
equation (3) respectively, the displacement functions of damped nonlinear and linear free vibration of 
the skeleton supported prestressed membrane structure are obtained:  
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By superposing the initial surface function of the skeleton supported membrane with its displacement 
equation (8) and equation (9), the modes Sn and Sl of the skeleton supported membrane can be obtained: 
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3. Analysis of Example 
Take the orthotropic membrane materials commonly used in engineering practice as an case: 
E1=1.4×106kN/m2, E2=0.9×106kN/m2[6], the membrane density ρ0 =1.7kg/m2, the damping c=120Ns/m, 
the thickness of the membrane h=1.0m, the length a=1m and width b=1m, the prestress N0x=N0y =1000 
N/m. According to equation (6) and (7), assuming that F=0.05m and t=0.01s. The first three 
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frequencies of different parameters (initial displacement, prestress, damping, aspect span ratio, etc.) of 
nonlinear and linear free vibration at the rise span ratio 1/10 and 1/12 were respectively calculated, the 
calculation results are shown in figures 2-6 and table 1 (1NR10 represents f2=1/10, 1NR12 represents 
f2=1/12 . According to equation (10), the first three modes of the first three orders are plotted at t=0s 
and t=0.0035s, as shown in figure 7. 

 

Figure 2. Nonlinear vibration frequencies of each order under different initial displcements. 
 

 

 

 

Figure 3. Linear vibration frequencies of each 
order . 

Figure 4. Nonlinear vibration frequencies of each 
order under different damping. 

According to equation (7), it can be seen that the value of linear vibration frequency is independent of 
the initial displacement and time. Analysis of figures 2-4 and figure 6 show that: When considering 
the damping and geometric nonlinearity of membrane vibration, the frequency of free vibration 
increases as initial displacement and order increases, decreases as damping enhances.  The frequency 
of nonlinear and linear vibration increase with the increase of f2, prestress and order. As can be seen 
from figure 5: When E1>E2 and value of E2 is fixed, the frequencies of nonlinear and linear free 
vibration decrease as the elastic modulus ratio decreases, and increases with the order aggrandize. 
When E1<E2 and value of E1 is fixed, the law is opposite.  As can be seen from table 1: If the a and b 
values of the two orthogonal directions is interchanged or the rise span ratio is changed, the frequency 
of linear free vibration is smaller than that of nonlinear free vibration. From the results of figure 7: It 
can be seen that equation (10) can be used to calculate the vibration modal equation of each order 
conveniently. 
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Figure 5. Nonlinear and linear free vibration 
frequencies under different E1:E2. 

Figure 6. Nonlinear and linear free vibration 
frequencies under different prestress. 

 

Figure 7. The first three modes of nonlinear free vibration.(m). 
Table 1. The nonlinear and linear free vibration frequency(rad/s) of each order with different aspect 

span ratios under different rise span ratios. 

 2f  a,b (m) 1,1 1,2 2,1 1,3 3,1 1,4 4,1 1,5 5,1 

 

1/10 

1st order 491.25 209.75 218.51 171.11 153.55 167.18 140.31 167.02 137.03

 2nd order 823.79 491.25 540.25 290.47 585.64 209.75 607.44 180.83 615.30

 3nd order 866.69 743.56 566.30 821.74 586.17 853.79 604.16 866.67 612.14

Nonlinear 

1/12 

1st order 422.55 195.77 196.94 169.24 148.05 167.08 138.80 167.10 136.51

 2nd order 732.64 422.55 548.58 257.99 594.00 195.77 611.05 175.41 616.92

 3nd order 855.67 765.40 575.11 832.22 593.57 857.97 607.48 868.53 613.67

 

1/10 

1st order 466.75 166.18 193.08 102.96 113.29 86.54 90.64 81.11 82.94

 2nd order 502.68 222.23 243.00 173.07 179.41 161.23 163.46 157.14 158.09

Linear 3nd order 713.71 466.75 239.62 260.33 174.26 166.18 160.14 123.56 155.88

 

1/12 

1st order 393.49 146.27 167.65 96.61 104.33 84.17 87.12 80.09 81.38

 2nd order 435.51 207.77 223.33 169.37 173.89 159.97 161.54 156.61 157.28

 3nd order 602.17 393.49 217.74 222.77 168.47 146.27 158.16 112.52 155.05
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4. Conclusion 
(1) The rise span ratio, prestress and aspect span ratio have an effect on the linear and nonlinear free 
vibration of membrane, while the nonlinear free vibration of membrane is also affected by the initial 
displacement and damping parameters. (2) With the same initial displacement, the frequency of 
nonlinear free vibration decreases with the aggrandize of time and viscous damping, and increases 
with the aggrandize of prestress. The frequency of linear free vibration increases with the aggrandize 
of prestress and order. In the practical engineering, the transverse stiffness of membrane structure can 
be improved by increasing prestress. (3) In consideration of the geometrical nonlinearity and linearity 
of the membrane, the values of nonlinear and linear vibration frequencies increase as the f2 increase. 
Therefore, the transverse stiffness of membrane structure can be improved by increasing the rise span 
ratio. (4) When the aspect span ratio of the orthogonal direction changes, the frequency values of the 
nonlinear and linear free oscillations will change. (5) The research results of this paper provide a 
theoretical reference for the subsequent research on the wind and rain resistance dynamic response of 
the skeleton supported membrane structure. 
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