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Abstract. Roman best practices concerning construction technology were well consolidated and 

implemented in ancient times. These are traditionally belonging to Vitruvius, who coded the 

classic rules on architecture. Amongst these, the destination of use of the different rooms is 

paramount, especially in respect to the orientation of the building. Dynamic energy simulation 

software is a tool of proven effectiveness and of widespread diffusion in the field of building 

engineering. It is primarily used to evaluate and foreseen the effects that building stratigraphy, 

thermal loads and HVAC systems have on the indoor thermo-hygrometric conditions. In this 

study, such tool has been used to investigate ancient buildings, basing the analysis on reliable 

hypothesis about the original construction, partially assumed if the upper structures were 

missing, on the actual stratigraphy obtained from archaeological remains, and on the supposed 

ancient climate condition estimated from literature on ancient climate and archaeological 

evidences. The analyzed case study is a Roman domus that dates back to 3rd century AD, located 

in Piazza Nogara (Verona, Italy). The proposed method allows evaluating the indoor comfort 

conditions that occurred when the building was inhabited. Furthermore, simulating different 

building orientations, it is possible to verify if the actual destination of use of the rooms is the 

very best from an indoor microclimate standpoint. 

1. Introduction 

Dynamic energy simulation consists in a software which can replicate the building geometry 

and the physical characteristics of the construction itself, in order to model its energy and 

thermal behaviors under imposed external conditions. It is capable to evaluate the effects that a 

building stratigraphy has on the indoor thermal conditions, the thermal loads, and assisting the 

design of the HVAC systems. Recent researches have used such tool for evaluating the 

microclimate conditions for conservation purposes of historical buildings [1,2,3]. For this 

reason, it could be of great interest to use it in studying ancient buildings that do not exist 

anymore, e.g. for archeological research in validating a few of the many unanswered questions 

and the use of buildings by the original inhabitants. On the other hand, it is paramount to consider 

that the outcomes of the dynamic energy simulation are strictly dependent on the reliability of the 

input data of the building and of the considered boundary conditions. Moreover, the vast 

majority of the software functions and libraries were made specifically for modern buildings, so 

an adaptation has to be made whenever the dynamic energy simulation tool is used for different 

purposes. 
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1.1. Roman house in Vitruvius and in Northern Italy 

In the VI book of the De architectura Vitruvius (end of the 1st cen. BC) describes the theoretical model 

of the élites’s atrium house (first examples in Rome, 6th cen. BC). After the entrance (vestibulum and 

fauces), was the atrium, expanding laterally into the alae and then the tablinum; next to the exedras, 

there were the closed rooms, used mainly for the rest (cubicula) and the banquets (triclinia); at the 

bottom of the house or laterally there was a vegetable garden (hortus), then monumentalized as 

peristylium. Since the 2nd cen. BC, deep changes affected this architecture: the house become wider, 

more articulated and separated. Triclinia multiplied in number. The distinction of areas for the different 

seasons, according to the criterion of convenience, was set. Vitruvius suggests the most suitable 

orientation for the different season of use: open towards the north the summer triclinium, to the west the 

winter one, to the east the spring and autumn one. In Northern Italy, the domus shows a singular weaving 

of typically Roman solutions associated with other choices due to local traditions and climatic factors. 

For example, the uncovered areas present, on average, a smaller size and a paved floor instead of a 

garden; in some houses, direct internal communications among the rooms existed. A characteristic 

aspect is the inclusion of heated rooms in the residential area, which also radiated heat to adjacent rooms; 

widespread in the 2nd cen. AD, in addition to simpler heating systems consisting of mobile braziers 

[4]. 

2. Case study: the Domus of Piazza Nogara in Verona 

The ancient residential building is known in literature as "Domus di piazza Nogara" due to its 

location in the modern Nogara Square in Verona, Italy. The house has been almost totally 

excavated starting from 1976. The floors, the foundations, the threshold of the doors, and a variable 

elevation of the walls still exist and are now visible under a building hosting a Bank. The domus 

was erected during the Augustan age, over an area of 20 m x 19.60 m [5]. Its use lasted until the 6th 

cen. AD, of course with architectural changes. Here, we consider the situation of the 3rd cen. AD, 

period during which some main imporovements were realised. As shown in figure 1, the entrance is 

likely in room 1. Contiguous at the entrance are two small rooms (2 and 3), passing to the court (4). 

Around the court, rooms 5-17 are built in paratactic sequence, covered with cement floors. 

Figure 1. Planimetry of the domus in 3rd century AD 

The two central rooms on the north (8 and 9) have two large openings on the court. A small heating 

system is present in room 14, perhaps a small sauna or a bathroom; 14 was close to the kitchen (15), as 

suggested by Vitruvius and frequently found in archaeological evidences. The rooms 5, 6, 11 and 12 in 

this period are covered with mosaics, the colonnaded porch is enriched by a new mosaic, and the court 
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equipped with a marble fountain. It should be pointed out the raising of the floor level of the rooms 11 

and 12, probably in order to facilitate the passage to the heated room. 

2.1. The hypocaust room with praefurnium: ancient sauna, radiant heating system or both? 
During the 4th or 3rd cen. BC the kitchen appeared in the Roman architecture, giving the fire a more 

specific function [4]. Other devices were used for the heating in the winter period, i.e. braziers. A 

technical innovation took place between the end of the 2nd and the beginning of the 1st cen. BC, when 

an indirect heating system was introduced: the hot air circulated under the floors and inside the walls, 

keeping the rooms at a constant level of heat. An oven was used to radiate hot air (praefurnium): this 

worked underground in a ventilated area designed to receive a certain amount of fuel. There was a simple 

opening in the wall, with a metal door with a ventilation opening, preceded by an area where the ashes 

were collected. The praefurnium was fed with charcoal, whose heat expanded into the underside of the 

floor, the hypocaustum (fig. 2 and 3), and then propagated through vertical conduits. The hypocaustum 

was an empty space, covered by a suspended floor generally lying on brick pillars, formed by square 

bricks of 20 cm per side, at a regular distance of 60 cm each other. Above these were large bipedal 

bricks, on which the actual floor rested. The suspended floor had a similar structure to all the floors 

(lower layer in coarse cocciopesto 15/20 cm thick, upper in finer mortar covered by a marble paving or 

a mosaic). The total thickness of the floor was 30/40 cm which, added to the height of 50 cm of the 

pillars, gave a total height of about 80/90 cm. The hot air was also used to heat the rooms through the 

walls, provided for this purpose with an interspace (empty space between the bearing wall and the wall), 

reaching the ceiling; it was very useful even when the heating system was not operating, as the layer 

created between the walls kept the temperature high. In the second half of the 1st cen. BC the hypocaust 

system is found in domestic baths, always in prestigious houses [6]. This solution was used also in 

residential rooms and had a significant role in Northern Italy, because of the latitude [7]. The examples 

spread out throughout the entire area, although they are more frequent in the eastern region. 

Figure 2. Isometric view of the domus, 

depicting the reconstructed architecture of 

the 3rd century AD building phase. 

Figure 3. Remains of the praefurnium (room 13). The 

pilae in room 14 are barely visible beyond the fireplace 

location and partially covered under the foundations of 

the modern building. 

3. Methodology 

Archaeological hypothesis have been investigated using an energetic model of the building, as close as 

possible to its configuration during the 3rd cen. AD. Specifically, has been evaluated if the air 

temperature in room 14 was high enough for sauna-related uses, and if the thermal effect was enough 

to advance reliable hypothesis of a double-use as heating system for the adjacent rooms. Furthermore, 

the assessment of the thermal comfort for each master’s room during the whole year could validate the 

Virtuvian hypothesis about seasonal changing of the rooms for triclinium. The archaeological 

reconstruction helped in assessing the building geometry and the missing parts of the domus, such as 

windows, doors, ceilings and roof cover. Wherever possible, the direct measurement of the ruins was 

carried out on site, e.g. the wall thicknesses.  

ROOM 13 
(praefurnium) 

ROOM 14 
(hypocaust) 
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4. Dynamic energy simulation 

The Domus of Piazza Nogara was studied using the software TRNSYS® [8]. Building elements and 

geometry have been taken from architectural reconstructions. When data could not be obtained directly, 

typical values from the literature were used. The weather come from standard weather libraries [9] 

considered similar to the weather data of that period and place. The boundary condition for this 

evaluation are: Climate data, internal loads (a fireplace as praefurnium, considering an amount of 5 kg 

of common hardwood with a wood heat value of almost 15 MJ/kg burned at 70% efficiency [10], 

considering a 50% of convective fraction), and air infiltration (1.0-2.0 vol/hr). 

4.1. Evaluation of the envelope stratigraphy and thermophysical properties of construction 

materials 

The definition of the domus within the software takes into account the geometry and the thermophysical 

properties of each building element. If reliable databases of construction materials are not available, thus 

measurements on site [11,12,13,14] or on samples [15] are usually performed. The special nature of the 

case study implies the impossibility to carry out direct measurements, an indirect approach based on 

some existing remains based on the ratio between the building components of the walls was used. The 

external wall of the domus is 0.40 to 0.60 m thick and it is made of pebbles and mortar, brick fragments 

are very rare. Concerning the internal partitions, with a variable thickness ranges from 0.50 to 0.35m. 

In such walls, the presence of salvaged brick material is relatively greater compared to the external ones. 

Both wall types were covered with a layer (5 cm thick) of mortar on both sides. In order to evaluate the 

main thermophysical properties of the walls, an evaluation of the equivalent heat capacity ceff, thermal 

conductivity λeff and volumic mass ρeff have been carried out considering the ratio between pebble stones 

and mortar and amongst pebbles-mortar-bricks respectively. For each of the three materials, reference 

values were taken from literature (table 1), while the thermophysical properties of the whole walls were 

approximated [16,17] as function of the ratio between the volume of pebbles, mortar and bricks in 

respect to the total volume of the walls.  

Table 1. Thermophysical properties of construction materials of the walls of the domus. 

Building material λ [W m–1K–1] ρ [kg m–3] c [J kg–1K–1] 

Clay brick 0.5 1800 840 

Pebble stone (porfid) 2.9 2200 700 

Mortar (lime plaster) 0.8 1600 1000 

The ratio values have been obtained starting from geometrically registered photographs of wall sections 

acquired on site. An iterative thresholding approach has been applied, tuned by a quantitative 

comparison between the thresholded luminance values versus a binary golden standard, in order to 

clustering each material (figure 4 and 5). Finally, the ratio between peaks of the images histograms 

allowed retrieving the ratios between the materials. 

Figure 4. Photograph of an external wall 

section. 

 Figure 5. Geometrically corrected and 

binarized image of an external wall section. 

The stratigraphy of the walls was computed in terms of thermal transmittance (U) (table 2), one of the 

main parameters describing the thermal insulation performance according to current standard of 

calculation of building envelope components [18]. 
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Table 2. Heat transfer properties of typical walls of the domus. 

Wall type Outer layer 

Thickness [m] 

Middle layer 

Thickness [m] 

Inner layer 

Thickness [m] 

U 

[W/m2 K] 

External 0.05 (mortar) 0.6 (pebbles and mortar) 0.05 (mortar) 2.2 

Partition 0.05 (mortar) 0.4 (pebbles, mortar and brick fragments) 0.05 (mortar) 2.7 

Long lost building elements (wooden ceilings, clay tiles roof covering, single glazing/wooden frame 

windows, and wooden doors) were considered solely on an archeological basis, thus the properties were 

based on literature. 

4.2. Estimation of the climatic conditions of north-eastern Italy in 3rd century A.D. 
Roman Age climate reconstruction is possible, for the mean temperatures, through multi-proxies data 

analysis, e.g. historical literary and iconographical sources, palinology, analysis of tree rings, ice cores, 

etc. [19]. According to Charpentier Ljungqvist [20], the temperature history of that period is 

characterized by a Roman Warm Period (c. AD 1-300) and a Dark Age Cold Period (c. AD 300-800), 

as already suggested by Lamb [21] (figure 6). The 2nd cen. seems to have been the warmest in the last 

two millennia, with mean temperatures similar to ones of the 20th cen.; the subsequent cooling was not 

severe as the one occurred during the Little Ice Age. Ljungqvist [20] substantially agrees with the 

previous ones [21,23,24,25]. Following McCormick [19], an exceptional climate stability characterizes 

the first two centuries AD; Alpine glaciers were retreating and were relatively small, comparable 

probably to their20th cen. extent. This situation begins to change during the second half of the 3rd cen. 

AD, when alpine glaciers slowly grows again [26,19]. Chen [27] substantially agrees with the above 

reconstructions, finding high stable temperatures until 90 AD, followed by a decreasing trend starting 

from the end of the 1st cen. AD, and suggests that the air temperature during the whole period was 

warmer than that of the 20th cen.. Esper et al. [28] agree with the general overview of the period as a 

succession of warm and cold episodes, including a peak warmth during the Roman times alternated with 

a severe cool condition during the 4th cen., with a difference during AD 21-50 of +1.05oC with respect 

to the 1951-1980 average: the warmest reconstructed 30-year period. Generally speaking, the historical 

sources seem to outline a situation of wetter climate, during the considered period, in South Europe and 

North Africa [29]; this could coincide with the detected hydrological trends in Spain’s lakes as studied 

by Curràs et al.[30], were a period of enhanced moisture is reported during AD 160-370. 

Figure 6. Estimations of extra-tropical Northern Hemisphere (90-30°N) decadal mean temperature 

variations (dark grey line) AD 1-1999 relative to the 1961-1990 mean instrumental temperature from 

the variance adjusted CRUTEM3+HadSST2 90-30°N record (black dotted line showing decadal mean 

values AD 1850-1999) with 2 standard deviation error bars (light grey). (From Ljungqvist [20]) 

5. Thermal comfort  

The thermal comfort index PPD (Predicted Percentage Dissatisfied) is the percentage that quantifies the 
expected dissatisfied people in a given thermal environment. It has been calculated by Fanger’s method 
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[31] taking into account quantitative values such as: metabolic rate (equal to 1 met=58.2 W/m², 
corresponding to the energy produced per m2 by an average person while at rest. The surface area of an 
average person is 1.8 m².), Clothing insulation (clothes have a substantial impact on thermal comfort. In 
order to consider that clothing changes during the year, this value has been adjusted daily from 1 
Clo=0.155 m²·K/W down to 0.5 Clo, linearly dependent on the average outdoor temperature. These 
values correspond to linen tunic and woolen surcoats and knee-length and short-sleeved linen tunic to 
replicate winter and summer indoor clothing), the Rate of mechanical work (0 W in order to simulate 
triclinium activity), and air velocity (<0.1 m/s, representative of indoor conditions without any 
mechanical ventilation by embrasures such as windows, vents or significant air leakages).

5.1. Estimation of clothing insulation with regards to 3rd century AD Roman fashion 

The value of the clothing insulation as worn by occupants plays a key role in predicting the human 

thermal comfort [31]. In despite of that, the most common standard of calculation [32,33] only provide 

limited contexts of application because they are dealing with Western-style clothing ensemble only [34]. 

Therefore, a reliable supposition based on what clothing arguably were in use in the considered period 

and place was done, mainly based on literature sources on Roman fashion [35,36] and considering the 

ancient climate conditions. More specific information could be assessed through experimental methods, 

such as the ones carried out to evaluate non-Western clothing.  

6. Results 

6.1. Dynamic simulation outcomes 

As expected, air temperature trend in room 14 (with the radiant floor heating system) is greatly higher 

than the unheated rooms (figure 9), especially the ones far from room 13 (praefurnium). The air 

temperature of room 14 is ranging from about 29°C in winter to over 50 °C in summer, which is a 

possible indicator of its usage as balneus or sauna. The adjacent rooms (12 and 15) are indeed affected 

by the heating during the whole year, with an average temperature difference of 7°C higher than the 

other unheated rooms (10 and 12). The heating is no longer affecting the air temperature at more than 

one room distance. 

Figure 7. Yearly trends of air temperature inside rooms 10, 11, 12, 14 (heated) and 15. 

6.2. Thermal comfort evaluation outcomes 

With the exception of room 12 (indirectly heated by rooms 13 and 14), during winter all the rooms are 

considered very uncomfortable according to modern standards of evaluation. In fact, the average winter 

values for rooms 6-11 are almost 100% PPD, with minor advantages of rooms 8 and 9. During spring 

and summer (figure 8) the PPD values of rooms 6-11 are quite low, thus indicating optimal comfort 

conditions. Moving from room 6 to adjacent rooms 7, 8, 9, 10 and 11 seems to be an improving factor 

on the perceived thermo-hygrometric comfort, with the optimum in room 11. Room 12 has the best 

microclimate condition in spring, but during summer it is not comfortable due to the over-heating effect 

of sauna and preafurnium. Considering the combined results of the simulations, the most preferable 

comfort conditions are in room 12 during winter and spring (brown line in figure 8), and in room 11 
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during summer (black line in figure 8). These results have a very partial correspondence with Vitruvius' 

suggestions regarding the optimal orientation of the triclinium according to the seasons of use, but it 

should be borne in mind that his experience was linked to the central Italy. 

Figure 8. PPD trends during spring-summer period in rooms 6, 7, 8, 9, 10, 11 and 12. The lower PPD 

values represent the best microclimate in terms of perceived comfort according to modern standard.          

Conclusions 

Dynamic energy simulation software has been used to investigate an ancient heating system in a 3rd cen. 

AD building, basing the building model on archaeological hypothesis and direct measurements of the 

remains. Ancient climate conditions have been considered for energy calculation, and clothing index 

estimation was necessary to evaluate the comfort conditions. The aim of this work was proposing a new 

methodology for archaeometry investigation but, regardless of the difficulties in assessing a reliable 

energy model, this preliminary study allowed to advance more reliable hypothesis on the destination of 

use of rooms in Roman domus, and on the evaluation of the effect of the hypocaust as heating system. 
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