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Abstract. A preliminary study was conducted regarding Thermoelastic Stress Analysis (TSA)
for use in monitoring stiffness degradation of multi-directional GFRP laminated specimens
during tension-tension fatigue loading. The specimens were made from a non-crimp fabric
consisting of UD fibers stitched to a layer off-axis backing fiber bundles. The thermoelastic
responses of the UD surface and backing fiber surface were compared. It was observed that
the thermoelastic response differed between two faces of the fabric and was influenced by the
presence of backing fibers on the surface.

1. Introduction
Laminated fiber-reinforced polymer composites (FRPs) have become an attractive choice for
weight critical engineering applications because their layup can be optimized for the design
loads. But this positive attribute also makes FRPs difficult to characterize, especially for fatigue
behavior. Fatigue in FRPs [1] occurs in fundamentally different mechanisms than metals, and
FRP S-N curves are limited in application to the specific laminate studied. The current FRP
design process involves extensive coupon testing to characterize a laminate’s fatigue performance
before prototype structures are created [2]. The time and cost of this process might be reduced
by better understanding the micro-mechanics of FRP damage and fatigue and by performing
more tests on FRP components and structures.

1.1. Damage in FRPs
One of the first damage mechanisms to occur in a laminate is matrix cracking [3]. While
it is not a catastrophic damage mode, matrix cracking can lead to delamination [4], fiber
breakage, and property degradation that all negatively affect a FRP structure’s performance.
Modeling and predicting the initiation, growth [5], and effects [6, 7] of matrix cracking is an
active field of research. Some models [8] use micro-mechanics to predict the degradation of
thermo-mechanical properties of a laminate containing matrix cracks. Experimental study is a
critical part of developing, calibrating, and verifying these fatigue models. While this typically
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occurs on material coupons, a multi-scale approach [2,9] is needed to evaluate the applicability of
these models on components and sub-structures. Measuring the behavior of sub-components is
more challenging than measuring coupon behavior, as the increase in both scale and complexity
require additional consideration. In the case of evaluating applied stresses, the typical coupon
method of calculating the nominal stress from the load-cell output and specimen cross sectional
area cannot be applied, so an alternative method of “measuring” stress is thermoelastic stress
analysis.

1.2. Thermoelastic Stress Analysis
Thermoelastic Stress Analysis (TSA) is a full-field non-contact measurement technique that
assesses the stress amplitude on a material surface by obtaining a temperature change during
cyclic loading using infrared imaging [10, 11]. The thermoelastic effect [12] states that the
relationship between stress and temperature for an orthotropic material experiencing cyclic
loading under adiabatic conditions is:

∆T =
T0

ρCp
(α1∆σ1 + α2∆σ2) (1)

where ρ is the density, Cp is the specific heat under constant pressure, T0 is the temporal mean
of the temperature signal, α1 and α2 are the linear coefficients of thermal expansion, σ1 and σ2

are the stresses, and the material’s principal directions are notated as subscript 1 and 2. Rather
than individually obtaining the exact values ρ, Cp, α1 and α2, it is often preferable to combine
these into a quantity known as the thermoelastic constant, K, where

Ki =
αi

ρCp
(2)

and substitute the K values into equation (1) to yield the following equation:

∆T = T0(K1σ1 +K2σ2) (3)

Procedures for calibrating K are documented in the literature [13, 14]. The calibration is
carried out experimentally because the thermal properties of FRP laminates can vary between
layups and production batches.

The application of TSA has increased in recent decades as thermal cameras have improved
and reduced in cost. Studies have expanded from coupons to composite sub-components and
structures [2,11,14–18]. To perform TSA, an infrared camera captures a series of image frames
at a high rate so that the temperature waveform can be correlated with the load signal and
extracted using a sine-fitting or lock-in algorithm. The temperature range and mean are then
used in equation (3) to determine the stress values. Temperature is a scalar quantity, therefore
it is necessary to calibrate ∆T to account for the orthotropic nature of the material by using
some additional information from other experimental techniques.

The literature sources present varying interpretations of which stresses are analyzed during
TSA. Three types of stresses considered are 1) surface resin stresses, 2) surface ply stresses,
and 3) substrate ply stresses. Pitaressi et al [19] found that the surface resin rich layer (SRRL)
acts as a strain witness and that the thermoelastic response is independent of the surface ply
stresses. Bakis and Reifsnider [20] and Sambasivam et al [21] found that laminates with different
surface ply orientations loaded to the same global strains do indeed have different thermoelastic
responses. Crump and Dulieu-Barton [14] found that the thermoelastic response of a carbon
fiber structure is influenced by the substrate plies during low frequency loading. These findings
are not contradictory, but illustrate that the methodology for TSA will differ according to the
material, surface coating, stress amplitude, and loading frequency.
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1.3. Backing fiber bundles in wind turbine blade materials
The material under investigation in this paper is a glass fiber non-crimp fabric. Non-crimp fabrics
have been used in the wind energy sector since the 1980’s [22]. While some FRP components are
made from pre-preg materials cured in an autoclave, composite structures that exceed the size
of autoclaves, like wind turbine blades, are made by infusing resin into multi-directional (MD)
or uni-directional (UD) fiber fabrics. Backing fibers are often used in UD fabrics to support the
UD tows during processing [23] and are usually a small percent of the fiber weight, offering a
minor contribution to the fabric’s mechanical strength in the UD fiber direction. While useful
for manufacturing, the backing fibers have been found as initiation sites for damage [23–27].

The objective of this work is to explore the effect of the backing fibers when using TSA to
obtain a stress metric in a multi-directional laminate made with non-crimp fabric and to observe
possible changes during fatigue loading. The work described in the paper provides initial steps
in developing a TSA methodology for use on components and sub-structures made from a similar
material under similar fatigue loadings.

2. Methodology
2.1. Specimens
Two types of specimens were made from E-glass and epoxy using UD non-crimp fabric with
backing fibers running at 90◦, 45◦, and -45◦angles relative to the UD tows. The backing fiber
bundles cover only one surface, referred to here as the backing fiber surface (BFS), which is
shown in figure 1.a. The opposite side contains only UD fibers and polyester threading, which
is referred to here as the uni-directional surface (UDS) and is shown in figure 1.b. While all
the fibers in the laminate are E-glass, the backing fibers are of a smaller diameter than the UD
fibers. The fiber components of the non-crimp fabric are detailed in Table 1. While the total
backing fiber weight is only 10% of the total, figure 1.a shows that about 60% of the fabric
surface is covered by backing fiber bundles.

For specimen production, the non-crimp fabric was arranged according to the layups listed in
Table 2, where the b indicates the location of the backing fibers surface. Vacuum assisted resin
transfer molding (VARTM) was used to infuse the fabric with epoxy, which was then cured for
19 hours at 40◦C, followed by 5 hours at 80◦C. Rectangular specimens measuring 25 x 250 mm
were made according to the ASTM guidelines [28]. The 8-ply laminates were 3.8 mm thick and
had an approximate fiber volume fraction of 51%. The two specimens are referred to by their
outer surfaces: the BFS specimen and the UDS specimen. The specimens were painted matte
black to increase the emissivity of the surface.

2.2. Experimental procedure
The tests were performed using a 100 kN hydraulic axial test machine. The specimen
temperature was monitored using an infrared camera with the specifications detailed in Table
3. An extensometer was used to measure the strain in the loading direction. Specimens were
loaded to 8.25 ± 6.75 kN at a frequency of 5.1 Hz. The tests ran for 5000 cycles with sets of

Table 1. Fibers in Non-Crimp Fabric

Fiber Fiber % by % of
Type Diameter Weight Surface Area

UD 17 µm 90.5 % 40 %
90◦ 9 µm 5.5 %

60 %± 45◦ 9 µm 4 %

Table 2. Laminate layup configurations

Laminate Layup

BFS [b0
◦/b60◦/b0

◦/b-60◦]s
UDS [0◦b/b60◦/b0

◦/b-60◦]s
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(a) (b)

Figure 1. Two surfaces of the UD non-crimp fabric with backing fibers: (a) BFS, (b) UDS

infrared images captured at intervals throughout the test.

Table 3. Thermal Camera Specifications

Make Model Resolution Sample Rate Sample Size

FLIR SC6540 0.172 mm/pix 250 Hz 1500 frames

A motion compensation program was applied to the captured infrared image series. The
motion compensated images were analyzed pixel by pixel using a least-squares algorithm
developed at the University of Southampton. A sinusoid was fit to the data to compute the
temperature’s mean, amplitude, and phase as follows:

T (x, y, t) = T0(x, y) + 0.5∆T (x, y)cos(2πf0t+ φ(x, y)) (4)

where x and y are the pixel coordinates, t is time, f0 is the loading frequency, and φ is the phase
angle.

3. Results and Discussion
The plots in figure 2 show the thermo-mechanical responses of the specimens as they undergo
fatigue loading. Both the BFS specimen and the UDS specimen show similarly shaped stiffness
degradation curves in figure 2.a, though the UDS specimen has a slightly higher initial modulus
in the longitudinal direction. Consequentially, the UDS specimen experiences a slightly lower
longitudinal strain in figure 2.b. The bulk heating of the laminates during the fatigue tests are
similar in figure 2.c, with the temperature difference between the specimens remaining below
1◦C throughout the test. Large changes in temperature affect the specific heat of GFRP, which
is estimated to increase by about 3% over the duration of this test according to the equations
provided in [29]. However, the temperature difference between the two specimens at a given
cycle count is small enough that the specific heat can be assumed to be the same and the ∆T

T0

terms can be directly compared.

3.1. Thermoelastic response evolution
Although the nominal stress remains the same throughout the loading, the stress on the 0◦plies
is expected to increase as the ±60◦plies degrade. Using the rough assumption that matrix
damage occurs only in the ±60◦plies and that no fiber breakage occurs in the 0◦laminate,
classical laminate theory [30], CLT, suggests that the observed 7% drop in global stiffness would
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(a) (b)

(c) (d)

Figure 2. Evolution of the thermo-mechanical responses of the Backing Fiber Surface laminates
and UD Surface laminates

correspond with an increase in the UD ply stresses by 7% in the longitudinal direction, while
the transverse stresses remain close to 0. According to equation (3), these stress increases would
result in a 7% increase in the thermoelastic response of the surface, assuming that the K values
are unchanged.

Figure 2.d shows the mean ∆T
T0

term taken over the central region of the specimen. The

average thermoelastic response of the UDS specimen increases by about 2% over the 5000 cycles,
but the BFS specimen exhibits a decrease in thermoelastic response. This discrepancy suggests
that the CLT approach might not fully account for the thermoelastic response.

Considering the surface resin rich layer (SRRL) approach [19], the SRRL should have a stress
that increases proportionally with the laminate strains, assuming that laminate strains are fully
transferred into the SRRL. Because the longitudinal strain increased by about 7% over the
duration of the test, the thermoelastic response is also expected increase.

3.2. Surface texture thermoelastic response
The thermoelastic responses (∆T

T ) from both specimens are shown in figure 3. As shown in
figures 3.b and 3.d, the UDS specimen does not have clearly recognizable regions, but shows
variation in thermoelastic response that is suspected to be caused by the surface roughness.
In contrast, figures 3.a and 3.c show clear patterns on the BFS specimen that match with the
regions of the surface. The most clear features are the horizontal lines corresponding to the
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(a) (b)

(c) (d)

Figure 3. Thermoelastic responses of the specimen surfaces: (a) Test start - BFS, (b) Test
start - UDS, (c) Test end - BFS, and (d) Test end - UDS. The horizontal lines are resin rich
regions and the vertical lines are backing fibers.

matrix rich regions between the tows. The vertical lines correspond to the 90◦backing fibers
and become darker as the number of cycles increase. The thermoelastic response field from the
BFS specimen shows agreement with Sambasivam [21] in that the texture of the surface ply is
detectable through the surface resin layer. This, in addition to the mean thermoelastic response
decreasing as the global strain increases, suggests that SRRL cannot account for the entirety
of the thermoelastic response in these specimens. The possible lack of conformity to either the
SRRL or CLT predictions could be attributed to many factors. First, the material properties of
the laminate can change during the test: the specific heat of GFRP could be changing around
3% and the CTE can change during matrix cracking. Also, the surface resin layer may have
uneven thickness across the fabric texture. The influence of the sub-surface layers and other
non-adiabatic effects could also influence the thermoelastic response.

To further investigate the BFS’s mean ∆T
T evolution in figure 2.d, the response of smaller

regions are shown in figure 4. The backing fiber region shows a large decrease in ∆T
T over the

first 500 cycles and then a downward trend afterwards, while the UD region stays relatively flat
initially before exhibiting a slight downward trend. As the backing fibers were covering about
60% the surface, it appears that it was their stress changes that were responsible for the decrease
in the mean thermoelastic response. Initially, the stiffness in the loading direction of the backing
fibers was an order of magnitude lower than the UD tows, so a large stress difference between
the features was expected. By the end of the test, cracks were observed in the backing fiber
bundles, but not in the UD fiber tows. This may have caused an increase in the stress difference
between the backing fibers and UD tows, resulting in a larger contrast in thermoelastic response
between the regions.
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Figure 4. Evolution of thermoelastic response in different regions of the BFS specimen. The
black, green, and blue sub-regions on the left correspond with the plot colors on the right.

3.3. Effect of cracks in BFS specimens
After 5000 cycles, many more matrix cracks were observed in the 90◦backing than the 0◦UD
fibers. A transilluminated white light image is presented in figure 5 where the surface cracks are
clear at 90◦and ±45◦, along with the 60◦cracks of the sub-surface ply, while there are little to no
cracks in the 0◦tows on the surface ply. Matrix cracking occurs under transverse [8] and shear
loads because of mode I and mode II crack opening [5], so the global longitudinal load acted
normal to the 90◦backing fiber bundles and facilitated matrix crack growth. In contrast, the
longitudinal stress that dominated in the UD tows did not cause crack growth. Any cracking
in the UD tows under this longitudinal load would have been caused by the transverse stress
developed by the mismatch in Poisson’s ratio between the surface ply and the laminate. When
matrix cracking occurs, the effective thermoelastic properties decay [8], including the stiffness
and the coefficient of thermal expansion α, which are specifically important to TSA. Because
the different orientations of fibers had different crack densities, the stresses and thermoelastic
response of the BFS specimen surface diverged across the features.

4. Conclusion

Figure 5. Photograph of a back-lit
specimen after 5000 cycles, with surface
cracks in 90◦and ±45◦backing fibers, and
sub-surface cracks in ±60◦plies.

Two mechanically similar specimens were tested,
with one having it’s backing fibers layer exposed
and the other having the surface layer flipped so
that the UD fibers were exposed. The two spec-
imens exhibited similar stiffness degradation be-
haviors, but had different thermoelastic responses.
The response of neither laminate matched the
expectations from the simplified Classical Lami-
nate Theory or Surface Resin Rich Layer meth-
ods, which suggests that further work is needed
to account for additional effects. The presence
of backing fibers on the BFS specimen influ-
enced its thermoelastic response evolution in a
non-homogeneous manner as the damage level in-
creased. This was caused by the different levels
of stress induced in the UD and backing fibers
of different angles. This non-homogeneous nature
changed during fatigue loading, likely due to ma-
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trix crack development in the backing fiber bundles. Therefore, the UDS configuration appears
to be preferable for use in future structural tests, as it avoids the potential influence of backing
fibers on the TSA results.

The results presented in this paper encourage future work to both better understand the
effects of backing fibers on TSA and how fatigue damage affects the material properties that
influence the thermoelastic response. Examples of future work include:

• Testing specimens without paint on the surface so that the matrix crack density evolution
can be recorded and compared with the TSA results

• Measuring full-field strains with Digital Image Correlation

• Testing uni-directional specimens with the layups [b0/b0]s and [0b/b0]s so the influence of
the ±60◦plies will be removed

• Testing specimens at different loading amplitudes and frequencies to observe possible non-
adiabatic effects
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