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Abstract. In this study, the environmental influence that blade materials have on the entire wind 

turbine lifecycle is considered. In order to quantify and compare the effects that a specific 

material’s choice has with respect to one another, Life-Cycle Assessment (LCA) tools are used. 

Specific focus is addressed on aspects related to the wind turbine rotor-blade and how that affects 

the whole turbine. The blade lifecycle is divided into five main stages: (1) raw material sourcing, 

(2) blade manufacturing, (3) blade installation, (4) Operation and Maintenance (O&M) and (5) 

End-of-Life (EoL). Materials sourcing is found responsible for the largest contribution in Green 

House Gas (GHG) emission in the turbine and blade lifecycle. Particularly, a case study on a 

representative blade production in Siemens Gamesa Renewable Energy (SGRE) is disclosed and 

compared to a hypothetical blade production where a recyclable resin system is being used. The 

lifecycle assessment shows a 28% reduced amount of GHG emissions when the recyclable resin 

system is employed. By employing such resin system most of blade materials could be separated 

and re-used at the blade EoL, enabling a 90% blade recycling rate. An even greater advantage of 

achieving blade circularity is therefore envisioned. 

1. Introduction 

Compared to fossil-fuel power plants, renewable-energy power plants are considerably less impactful 

in terms of the environmental footprint and the equivalent CO2 released into the environment. During 

its lifetime, a wind power plant emits less than 1% of the CO2 emitted per kWh by an average power 

plant using fossil fuels [1]. This in itself represents a strong reason to transition from non-renewable to 

renewable energy sources. Renewable energy sources are often also considered sustainable energy 

sources, because their intrinsic ability to replenish (or renew) themselves naturally, allows for an endless 

supply of energy that can meet the needs of the present demand without compromising the ability of 

future generations to meet even an higher demand [2]. However, this definition does not consider the 

energy conversion technology (i.e. the wind turbine generator) that is used to transform the renewable 

energy source into the final product, being the electricity. For instance, aspects like the consumption of 

resources used to produce and deploy the wind turbine, the disposal of the wind turbine and its induced 

environmental impact should also be considered. To evaluate the relative burden of energy systems 

within the environment, full energy supply chains need to be considered on a lifecycle basis, including 

all system components, and across all impact categories [3]. To properly account for all these aspects, 

Life-Cycle Assessment (LCA) tools are used to quantify the footprint that a conversion technology has 

on the environment [4]. The most used quantity in LCA to define the environmental footprint of a 
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conversion technology is the equivalent CO2 (CO2eq) which is directly related to Green House Gas 

(GHG) emissions [3]. Additionally, such assessments need to address a wide range of issues, such as 

land and water use, as well as air, water, and soil pollution, which are often location specific. To have a 

holistic view on the environmental footprint of a conversion technology, all stages in its lifecycle need 

to be identified and properly accounted, using a “cradle-to-grave” so to say approach. To fully prove 

that a new conversion technology has a lower footprint with respect to a more traditional technology 

(e.g. offshore wind turbine technology vs. coal power plant technology) all implications that come with 

the new technology should be addressed. This can often be a complicated task and a certain amount of 

assumptions needs to be made.  

When analysing the lifecycle of a wind power plant, raw materials sourcing is considered responsible 

for most of the total CO2eq emissions [4]. This accounts for the extractions of raw constituents such as 

minerals, wood and oils, the processing to produce the raw materials (i.e. concrete, copper, steel, glass 

fibres, resin, lubricants), the transportation of those materials to the production site and the waste 

production associated with them. These emissions can, to a large extent, be re-gained by recycling and 

indeed the current practice for wind turbine materials is to recycle as many of the components as 

possible. To date, up to 85-90% of the turbine components can be recycled [5]. However, not all the 

turbine components can be recycled. The rotor blade and part of the nacelle canopy are produced out of 

thermoset based composite materials. To date, no well-established best-practice for recycling of 

thermoset composites materials exists on industrial scale [6]. This is due on the one hand because no 

clear legislation is yet in place on circularity for composite applications and on the other hand because 

the volumes of composite waste coming from different applications are still relatively small and 

discontinuous, making it difficult to create a solid business around recycling. Most of the composite 

blade waste is sent to landfill, or in some cases the blades are shredded into pieces and incinerated. In 

the latter case, an energy recovery from burning the composite organic fraction is obtained and the 

remaining glass fibres are used as fillers in cement production or other secondary applications [1].  
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Figure 1. Recycling processes for composites. 

 

Figure 1 shows the currently existing methods for recycling of thermosets composite materials. Two 

major classes of recycling methods exist: (i) mechanical recycling where composites are shredded into 

pieces and either used as fillers or short fibres for other applications and (ii) chemical recycling where 

the fibre fraction is recovered, or an energy recovery is obtained through combustion of the organic 

composite fraction [7].  
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The European Composites Industry Association (EuCIA) agreed with the European Commission that 

co-processing of composite material in cement kilns is compliant with the European Waste Framework 

Directive 2008/98/EC and is considered both recycling and energy recovery [8]. However, this 

recycling/recovering method cannot be categorized as re-use and therefore it fails to fulfil the 

requirements for circularity. Other technological methods exist to recycle thermosets composites. The 

two major ones that rely on thermal processing of the material are pyrolysis and solvolysis. Pyrolysis   

is the thermal decomposition of materials at elevated temperatures in an inert atmosphere. It involves a 

change of chemical composition. The main drawbacks of this process are that it is intensively energy 

demanding and due to its high temperatures, it can only be used for glass fibres reinforced composites 

and not for carbon fibres that would undergo combustion. Solvolysis is a chemical depolymerisation 

that involves using a reagent to decompose the polymer matrix. This process largely depends on the type 

of polymer that is dissolved and generally it does not involve too high temperature (e.g. 200°C) to 

deteriorate the fibre fraction in the composite. The recovery process allows for reuse of the fibre 

reinforcement fraction usually in lower composite applications, whereas the resin fraction is degraded 

with the solvent and therefore lost. As a drawback, this process creates a certain amount of hazardous 

waste that still need to be dissolved or disposed.   

Some research projects investigated the possibility of using blade sections as roofing for affordable 

housing but this will only be possible for limited applications and cannot be considered as a valuable 

option for circularity [9]. Because of the decarbonization and energy transition plans ongoing 

worldwide, the forecast for blade waste production are expected to increase exponentially in the decades 

to come to reach in the lowest case scenario a 43 Mt of cumulative blade waste by 2050 [10]. Therefore, 

blade circularity will be a strategic area of development within the industry in the next decade [5]. It 

becomes clear to the authors that a technological method to create circularity in the wind energy 

composite sector is necessary. 

2. LCA study on SG 8.0-167 DD turbine lifecycle  

To first understand where the most environmental values lies in the whole turbine lifecycle a reference 

LCA study was performed on one of the SGRE product the 8MW offshore wind turbine with 167m rotor 

diameter and 81m composite blade length [11]. This study will then be used as baseline when the LCA 

impact of a new technology needs to be assessed.  

2.1. LCA Assumptions 

The blade lifecycle is been divided into five main stages: (i) raw material sourcing, (ii) blade 

manufacturing, (iii) blade installation, (iv) Operation and Maintenance (O&M) and (v) End-of-Life 

(EoL) [1]. (i) Main types and quantities of materials and energy that had to be extracted and consumed 

to produce the turbine components and the elements needed to connect the wind power plant to the grid, 

i.e. substations and connecting cables were considered. (ii) For the manufacturing, data from Siemens 

Gamesa Renewable Energy’s (SGRE) own production sites and from main suppliers were collected. 

Consumption data for manufacturing as well as waste and subsequent treatment are based primarily on 

annual manufacturing data from European production sites. (iii) Transport of materials to the 

manufacturing site is included in the data. Components, auxiliary resources, and workers are transported 

to the wind turbine site during the turbine installation. On-site installation includes preparing the site, 

erecting the turbines and connecting the turbines to the grid. These installation activities result in the 

consumption of resources and production of waste. Associated data has been collected from actual on-

site installations. (iv) The SG 8.0-167 DD turbine is designed to a 25 years lifetime. Actual site data, 

including manpower, materials, and energy required for service and maintenance over the turbine’s 

lifetime were collected. Wake, availability, and electrical losses have been included in the assessment 

to define a realistic estimate of annual energy production delivered to the grid.  (v) At the wind power 

plant’s EoL the components will be disassembled and the materials transported and treated according to 

different waste handling methods. For the turbine components, recycling was assumed to all recyclable 

material e.g. metals. Recycling leads to the recovery of materials, which subsequently reduces primary 

material extraction. The rest of the materials are either thermally treated or disposed in landfills. The 

EoL stage described here represents the current status of waste management options in Northern Europe.  
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Planning a new wind power plant includes assessing the environmental impact of the installation and 

operation phases to minimize negative impacts. Often these assessments focus on birds, marine wildlife 

and visual impacts. How a wind power plant impacts its surroundings varies depending on its location. 

Being this site-specific, it was decided not to consider it in the LCA assessment. 

2.2. Breakdown of CO2eq per turbine lifecycle stage 

When breaking down the CO2 emissions at each stage of the turbine lifecycle, it results immediately 

evident that the raw materials sourcing is responsible for more than 70% of the total CO2eq. This is 

understandable as most of the emissions are embodied within the materials that constitutes the turbine. 

The CO2eq/kWh breakdown per turbine lifecycle stage is depicted in Figure 2.  

 

 
Figure 2. Breakdown of CO2eq/kWh per turbine lifecycle stage. Environmental 

Product Declaration SG 8.0-167 DD [1]. 

 

When a turbine is dismantled, it has not necessarily reached its EoL. Turbines are often replaced by 

larger turbines, allowing the dismantled turbines to be refurbished and sold for installation elsewhere. 

When disposing of wind turbines, recycling is usually the preferred solution. This not only prevents the 

materials from being sent to landfills, but also reduces the need for the extraction of primary materials. 

Therefore, a negative CO2eq impact is seen at the turbine EoL and dismantling stage in Figure 2. As 

already discussed in the introduction, metallic materials in the wind power plant components are to a 

great extent recycled at their EoL. Magnets from the direct drive turbines can be demagnetized, 

remagnetized and used or reused for new magnet production. Blades may be shredded and incinerated 

for energy recovery. The residues from fiberglass incineration can be used in other secondary 

applications e. g. for cement production. This process would not be allowed for carbon fibres composite 

blades and in both cases this process doesn’t allow to reuse the materials. A better recycling strategy for 

blade materials seems therefore necessary.  

2.3. Blade materials influence on turbine LCA  

To better understand where the major CO2 contribution on blade materials lies and therefore decide 

which recycling strategy to favour, a blade materials LCA study limited to the CO2 equivalent emissions 

was performed. A normalized CO2eq. profile for each of the most common blade materials is presented 

in Figure 3. The carbon fibres impact profile is very significant compared to the remaining materials, 

underpinning the need for defining a suitable recycling strategy that would enable its reuse. This 

becomes even more relevant as the design drivers for larger offshore rotor blades will require employing 

an increased amount of carbon fibres in the blade bill of materials [12]. 
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Figure 3. Wind turbine blade materials breakdown for a SG 8.0-167 DD turbine. 

 

Figure 3 alone cannot give the full overview on why not only carbon fibres, but also glass fibres and 

Epoxy resin materials are important element to consider when defining an appropriate recycling strategy. 

In fact, the two materials combined still represent more than 80% in weight of the blade bill of materials. 

Glass fibres make use of large amounts of sand, that is becoming a lack of resources and represents a 

growing environment damage with future direct impact on landscapes. Rare-earth as trace components 

are also used in fibre reinforcements. Even though these are small amounts (<1% in glass reinforcement 

weight), future sourcing demand for the forecasted business growth will result in a considerable amount. 

Epoxy resin materials are also to be seen in terms of their large share in future offshore rotor blades bills 

of materials, therefore their recycling/reuse would be the favourable scenario. All combined, it can be 

concluded that a recycling strategy that enables separation and reuse of carbon/glass reinforcement and 

resin without needing any major mechanical shredding of the composite material would be preferred. 

This should be somehow represented by a solvolysis process, where the process chemicals would allow 

to precipitate the resin material and reuse it for either the same or other composite applications. In 

addition to this, the process chemicals should also be recovered and reused in a closed loop process.  

3. LCA case study on different blade resin system 

In this section, the environmental impacts of substituting a conventional Epoxy resin system with a 

recyclable alternative for large offshore wind turbine blade manufacturing was investigated. It is out of 

the scope of this paper to discuss in detail the resin system considered, but it is worth to mention that 

this would enable blade material recycling at the turbine blade EoL. This will lead to a scenario, where 

the baseline model of landfilling used for the majority of blade LCA studies is no longer the most likely 

scenario, but rather a recycling of the resin (in the form of a thermoplastic), fibres, core materials and 

metals is considered. The earlier developed SG 8.0-167 DD turbine LCA assumptions are being 

compared to the new scenario using the recyclable resin system allowing for recycling of the main parts 

of the wind turbine blade and a new turbine LCA derived. 

3.1. Methodology 

Data were collected for each phase of the lifecycle. Primary, data derives directly from SGRE internal 

data (i.e. material composition), whereas manufacturing, installation and operations and maintenance 

data is directly taken from previous SGRE internal LCA assessments. As for this study, the main 

differentiator is at the EoL scenario, the analysis will focus on the impact from going from 90% landfill 

and 10% incineration to recycling of the main parts of the blade such as resin and fibres. Figure 4 below 

is to illustrate the interchanges between the ecosphere and technosphere evaluated in this study [13]. For 

the impact assessment, the software used is SimaPro using the EcoInvent Data using the Impact2002 

methodology to evaluate environmental impacts. 



41st Risø International Symposium on Materials Science

IOP Conf. Series: Materials Science and Engineering 942 (2020) 012011

IOP Publishing

doi:10.1088/1757-899X/942/1/012011

6

 
 
 
 
 
 

 

 

 
Figure 4. System boundaries – illustrative figure based on Bonou et al. 2016 [13]. 

 

Table 1 outlines the main assumptions used for the baseline study of the wind turbine blade and the 

comparison with its recyclable alternative. From the table, it is quite clear that the difference is within 

the end-of-service-life phase, where landfilling and incineration are replaced by recycling of the resin 

system (in the form of thermoplastic, or substitute to PA or PC), the fibres (assuming 90% recycling 

rate), metals and incineration of the remaining parts of the blade. 

 

Table 1. LCA comparison study assumptions. 

 Baseline assumptions Recyclable alternative 

Materials Net weight per blade ~34t 

 

• Fibres ~60% 

• Resin ~28% 

• Wood ~8% 

• Plastics ~2% 

• Paint ~1% 

 

Main difference is in the hardener, so 

the resin system is modelled as similar 

to baseline with the exception that 

production waste is being recycled 

instead of incinerated. 

Transportation Modelled from suppliers to 

Aalborg and from Aalborg to 

Esbjerg pre-assembly site- 

Similar to baseline 

Manufacturing Manufacturing in Aalborg, use of 

real production data for  

Similar to baseline, however, waste can 

be recycled 

Installation Use of installation data from 

recent project 

Similar to baseline 

Operations & 

Maintenance 

Use of O&M data from installed 

base regarding maintenance need, 

change of component, etc. 

 

Similar to baseline 
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End-of-life Non-recyclable 

• 90% landfilling, 10% 

incineration 

Recyclable  

• Resin can be recovered and used 

as replacement for Polyamide or 

Polycarbonate thermoplastics 

• Glass fibres can be recovered, 

with expected 10% lower 

properties (due to sizing 

removal, fibre misalignment etc) 

and recycled 

• Carbon fibres can be recovered 

with expected 10% lower 

properties (due to sizing 

removal, fibre misalignment etc) 

and recycled 

• Metals can be recycled 

• Paint, coating and core materials 

will be incinerated 

 

3.2. CO2eq LCA comparison 

When analysing the full lifecycle of a set of wind turbine blades, it is evident that the recyclable solution 

is favourable from a CO2eq perspective as the overall lifecycle emissions will be reduced by 28% 

through recycling of resin, fibres and metals and feed this back into the material cycles. Another 

interesting observation is that from the EcoInvent data, polycarbonate has a CO2eq. profile that is much 

higher than epoxy resin, so the recycling of the resin in a fairly light process (i.e. acidic solution with 

90°C process temperature) will result in a favourable situation as high impact plastic is being substituted 

by the recycled material. 

 

 
Figure 5. Estimated tons of CO2eq saved per turbine (SG 8.0-167 DD) by using a recyclable resin 

system as opposed to a conventional epoxy resin system. 

4. Conclusions 

To summarise, the current study showed that raw materials are responsible for 71% of the CO2eq 

emission on a representative 8MW offshore wind turbine lifetime and due to the non-recyclable nature 
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of blade materials, their CO2eq emissions impact is remarkable. Therefore, investing efforts in research 

and innovation to diversify and scale-up composite recycling technologies, to develop new, high-

performance materials with enhanced circularity and to design methodologies to enhance circularity and 

recycling abilities of blades are required. At the same time, existing treatment routes like cement co-

processing must be deployed more widely to deal with the current waste streams. Finally, the scientific 

understanding of the environmental impacts associated with the choice of materials and with the 

different waste treatment methods should also be improved by extensive use of LCA tools. 

An LCA comparative study employing an innovative recyclable resin system has proven to cut on 

CO2eq emissions by 28% with respect to a conventional epoxy resin system. This under the assumptions 

that the blade materials can be recycled with a 90% rate. Only CO2eq impact has been calculated using 

the data available based on assumptions, extrapolation of recent installations as well as using the 

EcoInvent database for material emission profiles. This study can therefore only be considered a 

screening study, and a full study must be carried out to validate these preliminary findings. Nonetheless, 

the indicators show that recyclable resin systems are environmentally superior to the baseline alternative 

under the assumptions used. 
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