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Abstract. Steel reinforcement in reinforced concrete structure is prone to corrosion. It has been 

found that a sustainable building material that can be used to replace steel from the construction 

industry is textile reinforcement.  Textiles of high strength and fine-grained mortar are used to 

make a composite material termed as Textile Reinforced Concrete (TRC). This review paper 

presents an evaluation of different textiles that can be used as reinforcement in TRC, their 

bonding behaviour, durability characteristics and applications. A comprehensive overview on 

TRC reveals that TRC has excellent mechanical properties and durability characteristics. TRC 

is applicable for constructing lightweight, thin structural elements and for strengthening or repair 

of damaged structural elements. 

1. Introduction 

Steel has been used in concrete as reinforcement for over 100 years. But steel reinforcement is prone to 

corrosion reducing the effective cross-sectional area of bar resulting in spalling of the concrete leading 

to structural failure in extreme cases. Gries T et al., 2015 [1] have shown that “durability and reliability 

of structures can be increased by replacing steel reinforcement by textile reinforcement”. Textile 

Reinforced Concrete (TRC) consist of fine-grained mortar and high strength textile fabrics. Textiles are 

multifilament yarns having high tensile strength usually made of carbon (Figure 1 a), basalt, alkali- 

resistant (AR) glass or polymer materials. Maximum size of aggregate used in TRC depends on the yarn 

distance and dimensions of the structural elements. Usually, aggregate used in TRC has less than 2mm 

size. High tensile strength, pseudo ductile behaviour and corrosion resistance are the major advantages 

of TRC. Also, TRC has excellent mechanical properties and durability characteristics which make this 

composite applicable for the construction of lightweight structural elements (Figure 1 b)) and for repair 

and rehabilitation of old structural elements [2]. 

 

  
Figure 1. (a)  Carbon textile   (b) Formwork element made of TRC [3]. 
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2. Sustainability aspects of construction with TRC 

In the modern era, new technologies to provide sustainability are becoming a major driving force for 

innovation in the construction industry. The sustainability qualities offered by TRC spans over a wide 

range: 

a)  Potential for making components with considerably smaller amount of material. 

b)  Longer service life than conventional concrete. 

c)  To extend the life-span of existing structures that are undergoing deterioration or need 

upgrading of their mechanical performance to withstand higher static and dynamic loads. 

3. Fibre reinforcements  

Fibres such as carbon, AR glass, basalt or aramid are commonly used in the manufacturing of textile 

materials. These fibres have very high mechanical properties compared to metals. Properties of those 

selected fibres are given in table 1 and described below [4]. In general, textile reinforcements are 

available in woven, nonwoven or knitted forms [5]. Dimensional characteristics of these textile 

reinforcements can be given in the form of planar (2D) or spacer (3D). Spacer reinforcements withstand 

loads within a volume. 

Table 1. Fibre properties [4]. 

Fibre Tensile 

Strength in MPa 

Modulus of 

elasticity in GPa 

Ultimate 

Strain (%) 

Density 

(g/cm3) 

Glass (AR) 2500 70 3.6 2.78 

Carbon 3500-6000 230-600 1.5-2.0 1.60-1.95 

Aramid 3000 60-130 2.1-4.0 1.4 

Basalt 3000-4840 79.3-93.1 3.1 2.7 

Steel 1200 200 3-4 7.85 

3.1. Glass  

The basic ingredient is silica (SiO2), and other oxides are added to modify the three- dimensional 

network structure. Glass fibres are amorphous and isotropic. The most economical and widely used glass 

fibres are E-glass (high electrical resistivity). However, in an alkaline environment, the sensitivity of E-

glass fibres is quite higher. Alkali-resistance to glass fibre can be provided by adding 15 percentage of 

zirconia (ZrO2). Presently, AR glass filaments are widely used in TRC applications because of their 

good adhesion properties in cement matrices and are economical in nature [4]. 

3.2. Carbon  

Carbon fibres are commercially available as continuous tow and chopped (6–50 mm long) fibres. 

Continuous carbon yarns contain numerous (∼10,000) filaments with diameters of 7–15 μm. These 

filaments exhibit high resistance to acid and alkaline environments and to organic solvents while their 

adhesion to cement-based material is not as good as that of AR glass [4]. 

3.3. Aramid 

Aramid fibres are highly crystalline aromatic polyamide fibres. In contrast to glass and carbon, aramid 

filaments fracture in a ductile manner with considerable necking and fibrillation. This property is 

considered beneficial for impact or dynamic loading applications [6]. Aramid fibres are unaffected by 

temperature up to 160°C, but the filament is likely to lose most of its strength above 300°C. Aramid 

fibres absorb moisture and exhibit internal cracking and longitudinal splitting at increased moisture 

content, but the effect of moisture on fibre tensile properties are minimum. Also, aramid fibres are 

sensitive to ultraviolet light. Thousands of filaments bundled together comprise an aramid yarn, each 

10–15 μm in diameter. 

 
 



International Conference on Materials, Mechanics and Structures 2020 (ICMMS2020)

IOP Conf. Series: Materials Science and Engineering 936 (2020) 012006

IOP Publishing

doi:10.1088/1757-899X/936/1/012006

3

3.4. Basalt 

Basalt fibres exhibit increased modulus of elasticity and strength, high temperature (1,100°C–1,200°C)  

and corrosion resistance [7][8]. Basalt fibres have strength higher than that of glass fibre and cost almost 

similar to glass fibre. It has good resistance to the alkaline environment (pH 13 or 14) but relatively less 

stable in strong acid. 

4. Matrix composition 

Considering the necessities of workability, durability and adequate bonding, a cement-based matrix for 

the TRC production have been developed. High binder content (40–50% by volume) of the matrix helps 

to achieve sufficient bonding with the filaments of the textile reinforcement. The maximum aggregate 

size is determined based on yarn distance, the spacing between textile layers and the dimensions of the 

structural elements. Typically, the aggregate size used ranges between 1 and 2 mm [9]. The advantage 

of using cement-based matrix in TRC is that it prevents a catastrophic failure because the cement matrix 

cracks much before the full potential of fabric is utilised [5].  

Protecting RC structures against corrosion are achieved to an extent by the alkaline matrix of 

concrete, but in case of fibres, it will result in a very aggressive environment [10][11][12][13].  Hence, 

to develop a new matrix with improved energy, lower CO2 emission, high durability and optimal 

bonding to reinforcement are essential for sustainability. This can be achieved either by using 

a) Mineral Additives - lower energy consumption and CO2 emission. 

b) Alternative Cements- evaluating the use of alternative cements like High-alumina cements, 

Calcium aluminate cement, Inorganic phosphate cements or Geopolymers. 

c) Polymer-modified cement-based systems- adding polymers help in modifying the properties of 

the fine-grained concrete [14]. 

5. Bonding in TRC 

Strength, ductility and toughness of the composite are largely influenced by the textile-matrix bond [15]. 

Strong bonding results in a composite with high strength and low ductility, which may lead to brittle 

failure; whereas weak bonding shows a more ductile behaviour causing fibre pull-out. The bond between 

the cement matrix and fibre is strongly influenced by the elastic nature of fibre [5][16]. By increasing 

modulus of elasticity of fibre the clamping stresses that develop around the fibre increases, which in 

turn increases the bond strength of fibre [17] as shown in figure 2. Fabric geometries and anchoring of 

fabrics play an important role in increasing bonding with the cement matrix in TRC composites [18]. 

 
Figure 2. Graph showing variation of modulus 

of elasticity on the bond strength of yarn. 

5.1. Bonding mechanism: Telescopic pull-out 

In TRC, hundreds or thousands of multifilament yarns (rovings) bundle together to form a fabric. But 

using this fabric in the cementitious matrix is challenging, as large cement particles of about 5-70 μm 

cannot completely penetrate the gaps between the internal filaments of fabric (<5 μm). As a result, 

external filaments of yarns have direct contact with the cementitious matrix whereas the inner filaments 
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(core) have no contact with the hydration product resulting in a unique microstructure as shown in figure 

3 (a & b). Thus, external filaments have better bonding with matrix [15][19][20][21][22].  

 
Figure 3. (a) Cross-section of cementitious matrix comprising of yarn           

(b) its actual view [15][22]. 

During loading, these external filaments become fractured. After they fail, the internal filaments slip 

against the external filaments resulting in a telescopic pull-out form as in figure 4 [21]. So, these core 

filaments are considered as wasted. When the tensile behaviour of carbon fabric in the cement matrix 

and fabric itself is compared, effective use of the internal filament is not achieved due to low cement 

penetration as depicted in figure 5 [22]. 

 

 

 

 
Figure 4. Pull-out behaviour of a 

fabric yarn [21]. 

 Figure 5. Tensile behaviour of carbon 

fabric in cement matrix and fabric itself 

[22]. 

5.2. Bond improvement 

Filling the spaces between bundles inner filament can improve the stress transfer between them. Several 

researchers have examined the effect of polymer coating and bundle gaps filling. Xu et al. (2004) [23] 

observed that fabrics coated with epoxy exhibit enhanced bond strength and stiffness when compared 

to uncoated bundle filaments. This was observed for AR glass, carbon and aramid textiles and also for 

epoxy impregnated prestressed yarns. Good mechanical performance and penetrability were seen for 

polymer fillers in carbon fabrics. But they are affected at high temperature. To overcome these 

limitations, the use of nanoparticles to fill these gaps have been studied by few researchers. Bentur et 

al., 2010 [4] and Cohen and Peled, 2010 [21] compared mineral nanoparticles and polymer-based 

coating to evaluate the performance of AR glass and carbon fabric. Improved tensile strength, strong 

bonding and good filling were shown by mineral filler composites. 

6. Durability 

6.1. Durability of matrix 

Durability of the TRC matrix may get affected by frost action, chemical attack or by abrasion. 

Deterioration of the composite can be hindered to some extent by adding short fibres in TRC [24]. 
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6.2. Durability of textile fibre 

In the manufacture of TRC, carbon, AR glass and basalt textiles are commonly used. Carbon fibre has 

high resistance to chemical attack. Compared to conventional glass fibre, AR glass fibre shows increased 

resistance to alkaline environments. But with increasing temperature and pH value of matrix, corrosion 

damage of AR-glass fibre occurs (Yilmaz and Glasser, 1991). But to a large extent such damages can 

be delayed by applying organic polymer size to the glass filament surfaces during its production. Butler 

et al. (2009) [12] concluded that if the organic polymer size is removed largely at some areas of filament 

then due to stress concentration, this nanoscopic defect becomes an important cause for damage. 

However, this failure of individual filament will be compensated in case of multifilament yarns in TRC 

due to redistribution of the load to the neighbouring filaments. Basalt fibres have low cost, temperature 

resistance and are available locally but it has reduced load-bearing capacity due to corrosive nature of 

fibre in an alkaline environment [25][10]. Generally, basalt fibre has low resistance to the alkaline 

environment compared to AR-glass fibre, however much better compared to E-glass fibre. Moreover, 

by adding zirconia to basalt fibre, its alkali resistance can be improved [26]. 

7. Fire resistance 

Tanano et al., 1999 [27] stated that “Material used for building construction should have resistance to 

initial fire (flammability) and smoke and gas-generating properties”. 

7.1. Fibre response 

At high temperature, the thermomechanical properties of commonly used fibres differ. Above 400–

500°C temperature, carbon fibres start to oxidise while aramid fibres tend to oxidise above 150°C, 

limiting their use. In the case of glass fibres, oxidation will not happen but when reaching 600-800°C 

they start softening [4]. Carbon-fibre textiles, compared to AR-glass textiles shows superior 

performance at high temperature [28][29][30]. 

7.2. Fire resistance of TRC 

Antons et al. (2012) [31] conducted flexural tests on heated prisms loaded with 30, 50 and 80 percent of 

its ultimate flexural capacity. They concluded that below 300°C, the temperature has no clear impact on 

the load levels considered; between 300°C and 600°C, as load is increased there is a negative influence 

of temperature; and beyond 620°C for any load level, melting of AR glass fibre was observed causing 

sudden failure. 

8. Applications of TRC 

Highly-finished surface, minimised product thickness, possibilities of freeform architecture, increased 

mechanical and durability characteristics are the advantages of TRC technology. TRC finds applications 

in making precast structural elements and in repair and rehabilitation of reinforced structures. 

8.1. TRC in precast industry 

Prefabricated TRC products are used for both architectural and structural elements due to less concrete 

consumption; minimised production, transportation and erection costs; and less wastage. Hegger et al., 

2015 [32] reported the use of textiles like AR glass or carbon for facade construction. Engberts, 2006 

[33] also reported the usage of a combination of continuous AR-glass yarns and fibre meshes embedded 

in a self-compacting fibre-reinforced micro concrete for the construction of larger ventilated facade 

elements (4–7 m2). TRC was used in precast pedestrian bridges. The bridge built in Oschatz, Germany 

was the first TRC Bridge having a span of 8.6 m. AR glass yarns woven into mats was used as 

reinforcement inserted in four layers in fine concrete. The textile reinforcement helped to reduce the 

crack width as it served as minimum reinforcement. Then, a 17-m long TRC bridge in Kempten, 

Germany, was built. Vehicles weighing 3.5 t were allowed on it. To account for this load to the 

superstructure, additional crossbeams have been added. In 2010, the longest TRC Bridge in the world 

was constructed in Albstadt, Germany with 97 m length. Alkali resistant glass textile was used as 

reinforcement [34]. Prefabricated garages composed of a ceiling of TRC was widely used as 

transportation costs for the lighter TRC parts are very low. AR glass fibres impregnated with epoxy 

resin have been used as textile reinforcement. Freeform structural members are becoming the most 
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remarkable trends in modern architecture. Pavilion building is an example for freeform construction, 

RWTH Aachen University [35]. Hybrid pipes consisting of an outer TRC ring enveloping an inner 

polymer tube have been developed to meet the water supply and sewage disposal needs [36]. Another 

application of TRC is in noise barrier parapets production. Further TRC can be used in the manufacture 

of handmade furniture, sculptures, ornaments and small boats. 

8.2. TRC in repair and rehabilitation of reinforced concrete structures 

Textile reinforced mortar (TRM) was used for flexural strengthening and shear strengthening of 

damaged RC beams and slabs[37][38]. TRM jackets also help in bridging shear cracks. When TRM 

jackets are provided by fully wrapping the cross-section of RC members, they give maximum shear 

enhancement (Figure 6 a). Open TRM systems are also effective but proper anchorage should be 

provided (Figure 6 b). 

 

Figure 6. Shear strengthening of RC 

elements (a) Fully wrapped, (b) three-side 

wrapped [4]. 

9. Further scope of the research 

Future research directions could be related to the following 

 Bonding of various types of textile fibres at high temperature to the cementitious matrix are not 

studied. 

 Application of TRC in thin structural elements is mentioned in most of the literature. But its 

behaviour in large structural elements is not presented. 

 The behaviour of TRC in various types of high strength inorganic matrix such as ultra-high 

performance concrete, self-compacting concrete are not studied. 

10. Conclusions 

In this review paper, fibres such as glass, carbon, aramid, and basalt are examined for their applicability 

in TRC. Carbon fibres are inert and compared to other fibres has superior characteristics in terms of 

tensile strength and modulus of elasticity. But carbon has high cost. Alkali Resistant glass is found to 

be the most cost-effective and gives satisfactory results in terms of tensile strength. Improved tensile 

properties, good filling in between bundles and strong bonding are observed for matrix with mineral 

filler composite.  

As TRC has advantages like thin size, good load-bearing capacity, resistance to corrosion, excellent 

ductility, no magnetic disturbances and lightweight of components, it is now widely used for various 

applications including precast constructions, repair, rehabilitation and structural strengthening of 

existing structures. With TRC it possible to produce lightweight members which save up to 80 % of 

concrete thereby reducing 80% of transportation costs and hence a sustainable material for the 

construction industry. 
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