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Abstract. Autonomous ships rely on sensory data to perceive objects of interest in their
environment. Deep Learning based object detection in the image domain commonly used to
solve this issue. The robustness of such approaches in non-ideal conditions is, however, still to
be proven. In this work state of the art methods are applied on the RetinaNet architecture
attempting to create a more robust object detection network given noisy input data. The
GroupSort activation function and Spectral Normalization is used and the results are compared
to the standard RetinaNet network. Our findings show that these modifications perform better
and ensure robustness under moderate noise levels, than the standard RetinaNet network.

1. Introduction
Traversing the ocean can present many challenges to an autonomous vessel. A diverse set of
weather conditions, equipment malfunctioning, continuous movement all need to be taken into
account. The task of classifying boats and buoys at sea, as depicted in figure 1, might work
reliably under normal conditions [13] harnessing the descriptive power of neural networks [12].
However, uncontrolled changes of the input—as they are to be expected in an autonomous
marine system–can result in radically different outcomes. Some of the inherent weaknesses of
neural networks come from their internal workings. A neural network is a data driven, directed
non cyclical graph where each level in the graph is a layer. Each graph node has a weight
and bias followed by a nonlinear activation function, such as a rectified linear unit (ReLU),
hyperbolic tangent, or sigmoid function. Weights and biases are updated with the gradient of

Figure 1. Example image (cropped for better visibility) of annotated data used in this paper.
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a distance function, given the network output and the correct target. Thus, given a neural
network, very slight changes to the input can have compounding effects on each layer and result
in very different output. Exposing the pipeline to noisy input, such as rain, snow, adversarial
noise, and varying lighting conditions, can all have detrimental effects on the outcome of neural
networks [14] and computer vision systems in general [11].

The goal of this paper is to explore architectures that add robustness to object detection
against noisy input in marine environments. Lipschitz constrained neural networks [4] have
been shown to alleviate a lot of these issues [1]. As a result, in this work, we apply Lipschitz
constrained architectures to confirm their applicability and robustness in the autonomous marine
domain.

2. Related Work
This work focuses on the use of deep neural networks to achieve robust object detection at sea.
Previous approaches has been along the lines of [5] where detection of small surface vessels was
achieved by using Scale Invariant Feature Transform (SIFT) in concert with bag-of-features.
In [13], a comparison of using RGB, long wave infrared (LWIR), and near infrared (NIR) data
within the Resnet-50 RetinaNet [9] architecture is provided, followed by a thorough evaluation
of the networks. The RetinaNet architecture, as introduced in [9], is a one stage detector. This
means that an input only needs to be inferred once due to a novel loss function, thus increasing
the speed. The need for robustness of neural networks is addressed in [14], where the authors
constrain the Lipschitz constant of a network to be lower than 1 by constraining each layer’s
weight matrices to be orthonormal. Furthermore, [1] explains how training neural networks
under a strict Lipschitz constraint is useful for provable adversarial robustness, generalization
bounds, and interpretable gradients. The paper, introduces a Lipschitz constrained activation
function and the Björck convolution, a convolution that ensures layer-wise orthonormality and
thereby being 1-Lipschitz. Spectral Norm introduced in [10] introduces another tool to maintain
the Lipschitz continuity. The paper describes a layer-wise regularization step that normalizes
the largest singular value of each weight matrix to be less than one. In the works of [4], a
method of constraining the Lipschitz constant is explored, the authors apply an orothonormality
constraint on all weights of the neural network and can thereby regularize the total network to
be 1-Lipschitz.

3. Background
In this section, the possible architecture modifications will be presented. This analysis will
constitute the base for defining the proposed approach in the following section.

Lipschitz continuity. Given two real values x and y a function is Lipschitz continuous if and
only if the norm of the functions subtracted is less or equal norm of the inputs multiplied by
some λ see figure 2.

|f(x)− f(y)| ≤ λ|x− y| (1)

λ is the Lipschitz constant, which is also what is constrained in a Lipschitz constrained network.
For a network to be Lipschitz continuous it suffices to compose 1-Lipschitz layers and activations.

GroupSort. GroupSort, as introduced in [1], is a Lipschitz continuous activation function, it
sorts the pre-activated weights into some selected grouping. For example a GroupSort with a
grouping size of 2, will split the weights into groups of 2, sort the weights in the groups, as can
be seen done in figure 3. This operation is a nonlinear operation which is differentiable as the
Jacobian is a permutation matrix which also preserve every p-norm [1]. Selecting a group of 2
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Figure 2. Lipschitz continuous function. Figure from 1

is equivalent to the Orthogonal Permutation Linear Unit [3] also called MaxMin [1]. Whereas
only using 1 group, e.g. sorting the entire slice, the operation is called FullSort.

Figure 3. GroupSort with grouping size of 2, weights are sliced, sorted and replaced.

Spectral Norm. Spectral norm is a layer-wise normalization scheme introduced in [10] that
enforces the largest singular value of the weight matrix to be less than 1 at each layer. This is
achieved by estimating the singular vectors using power iteration and normalizing with respect
to the found singular values:

σ(W ) := max
h:h6=0

‖Wh‖2
‖h‖2

= max
‖h‖2≤1

‖Wh‖2 (2)

Where W are the weights and h is the largest singular value found by power iteration.

Björck convolution. The Björck convolution [2] is an iterative layer that lets us approximate a
orthonormal weight matrix which ensures that singular values are exactly 1, which is achieved
by iteratively applying the Taylor expansion of the polar decomposition.

Parseval Network. The Parseval regularization requires orthogonal weight matrices, this can
be achieved with optimizing on the Stiefel manifold which is too expensive and can therefore be
approximated with the layer-wise regularizer to ensure Parseval Tightness given by:

Rβ(W ) =
β

2

∥∥∥W TW − I
∥∥∥2
2

(3)

1 https://en.wikipedia.org/wiki/Lipschitz_continuity#/media/File:Lipschitz_Visualisierung.gif

https://en.wikipedia.org/wiki/Lipschitz_continuity#/media/File:Lipschitz_Visualisierung.gif
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Optimizing Rβ(W ) to convergence is too expensive, therefore the authors recommend only
taking one step of descent, where the gradient is used to update the weight matrices by
W ←W (1 + β)− βWW TW Where β is the gradient step size.

4. Proposed Approach
The base architecture used is RetinaNet [9] with a ResNet-50 [6], Feature Pyramid Network
[8] (FPN) backbone, as shown in figure 4. As discussed earlier, such networks can suffer from
instability when exposed to noisy input. To combat the instability of the chosen neural networks,
the architecture is modified to be 1-Lipschitz, as explored in [4] and [1]. As discussed above,
the work of [4] proposes a regularization of the weights applied to each training loop given
orthonormal weight matrices for each layer. On the other hand, [1] introduces the activation
GroupSort (a sorting activation) and the Björck [2] convolution.

Figure 4. RetinaNet architecture.

The work done in [1] identified GroupSort activation and the Björck Convolution to be the
most promising approach. However, using the Björck convolution on the full RetinaNet in its
current form, is not feasible. Björck convolution can be applied to the classification/regression
networks and use Spectral Normalization on the ResNet base.

Spectral Normalization is used as the regularization of the convolutions. Thus the selected
modifications are GroupSort and spectral Normalization to ensure the Lipschitz constraint and
thereby improving network robustness. These are selected as they are the least computationally
expensive and the fastest to implement. The architectural modifications will be evaluated using
similar methods as described by [13]. Several networks will be trained with differing GroupSort
group sizes and will be compared to an equivalent network without any modification.

5. Experimental Setup
5.1. Dataset
The effectiveness of the selected networks architectures are evaluated on the dataset, consisting
of a total of 9229 images with 20150 annotations divided into two classes namely; boat (6256)
and buoy (13894). Each image was captured as a 2560×2048 pixels RGB image and subsequently
downsized to 1440×1080 pixels. Data was acquired on-board ferries operating in the Southern
Funen Archipelago. Images were captured every second from midday till dusk, ensuring a
broad range of scene illumination(s). This yielded a training set containing 8306 images and
a validation set containing 923 images. The image in figure 1 shows a cropped section of an
annotated image from the dataset.



The 3rd International Conference on Maritime Autonomous Surface Ship (ICMASS 2020)

IOP Conf. Series: Materials Science and Engineering 929 (2020) 012023

IOP Publishing

doi:10.1088/1757-899X/929/1/012023

5

5.2. Training of the Neural Networks
The RetinaNet is trained with the ADAM optimizer [7], with an initial learning rate of 10−5 with
a plateau scheduler. Each model is trained for approximately 110 epoch using early stopping,
with a batch size of 2. There is a big difference in training time as the operations for 1-Lipschitz
networks are computationally demanding.

6. Experimental Evaluation
The mean Average Precision metric (mAP) will be used as the method for comparing the
selected networks. Average Precision is the area under the Precision-Recall curve shown in
figure 5. Precision is found by TP

FP+TP and recall with TP
FN+TP where TP is true positive, FP

is false positive and FN is false negative. Precision and Recall both change with the certainty
threshold set for the network, which in these experiments is set to 0.5; this threshold can range
from 0 (where everything is accepted) to 1 (where the network has to be extremely certain).
The mAP is then found by the mean of the AP of each class in the system.

Figure 5. Precision-Recall curves for Boat and Buoy.

The selected networks will be tested on 3 different image corruption techniques; Gaussian
noise, Gaussian Blur, and Salt and Pepper noise with increasing levels of intensity. The
techniques were chosen as they loosely resemble the outcome of certain problems that could
be expected during long-term operation of imaging sensors in harsh marine environments.
Furthermore, to gather a deeper insight the precision and recall with respect to the area of
each bounding box will be explored; this will provide insight on the size of objects the network
has difficulty detecting.

6.1. Gaussian Noise
Corrupting an image with Gaussian noise is achieved by varying the intensities values of each
color channel (R,G,B) for each pixel by some value drawn from a normal distribution. An
example image, corrupted with various levels of Gaussian noise is shown in figure 6.

Table 1 summarizes the mean Average Precision (mAP) results for various levels of corruption
of the images using Gaussian noise, in the following tables, GS is GroupSort and SN is Spectral
Normalization. For each RetinaNet model the activation function is indicated, where ReLU
corresponds to the implementation of [13], while the 3 remaining entries are our considerations.

Finally, figure 7 and figure 8 show the detection histograms, precision and recall as a function
of the bounding box area for boats and buoys respectively. These figures compare the standard
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Figure 6. Images corrupted with different levels of Gaussian noise. From left to right: no noise,
N (0, 0.05) , N (0, 0.075).

Table 1. mAP Results for various levels of Gaussian Noise. All results are ±0.02

RetinaNet Model No Noise N (0, 0.025) N (0, 0.05) N (0, 0.075)
ReLU 0.76 0.65 0.47 0.32
MaxMin, SN 0.75 0.68 0.49 0.29
GS 4, SN 0.76 0.71 0.54 0.32
GS 8, SN 0.77 0.70 0.50 0.35

ReLU network (figures on the left) versus the proposed “GroupSort 8, SN” network (figures on
the right) for increasing levels of induced Gaussian noise (increasing from top to bottom).

6.2. Gaussian Blur
Corrupting an image with Gaussian blur is achieved by convolving the input images with a 2D
Gaussian kernel. Increasing standard deviation of the used kernel results in a stronger blurring
effect. An example image, corrupted with various levels of Gaussian noise is shown in figure 9.

Table 2 summarizes the mean Average Precision (mAP) results for various levels of corruption
of the images using Gaussian Blur.

Table 2. mAP Results for various levels of Gaussian Blur. All results are ±0.02

RetinaNet Model No Noise σ = 1 σ = 1.5 σ = 2
ReLU 0.76 0.69 0.66 0.58
MaxMin SN 0.75 0.71 0.66 0.52
GS 4, SN 0.76 0.73 0.69 0.56
GS 8, SN 0.77 0.74 0.700 0.55

6.3. Salt and Pepper Noise
Corrupting an image with Salt and Pepper noise is achieved by randomly selecting a percentage
of pixels and assigning the minimum or maximum intensity value to them. An example image,
corrupted with various percentages of pixels affected by Salt and Pepper noise is shown in
figure 10.

Table 3 summarizes the mean Average Precision (mAP) results for various levels of corruption
of the images using Salt and Pepper noise.
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Figure 7. Detection histograms, precision and recall curves as a function of area of boat
bounding boxes. The blue histogram is the detected objects where the orange is the objects not
detected, dark green curve is the precision and light green is the recall. Comparison of standard
ReLU network (figures on the left) versus the “GroupSort 8, SN” network (figures on the right)
with no Gaussian noise (top), with N (0, 0.05) noise (middle) and N (0, 0.075) (bottom). The
left vertical axis show the density of objects of this size in the dataset; the right vertical axis
show the percentage of recall/precision and horizontal axis show the bounding box area of each
object.
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Figure 8. Detection histograms, precision and recall curves as a function of area of buoy
bounding boxes. The blue histogram is the detected objects where the orange is the objects not
detected, dark green curve is the precision and light green is the recall. Comparison of standard
ReLU network (figures on the left) versus the “GroupSort 8, SN” network (figures on the right)
with no Gaussian noise (top), with N (0, 0.025) noise (middle) and N (0, 0.05) (bottom). The
left vertical axis show the density of objects of this size in the dataset; the right vertical axis
show the percentage of recall/precision and horizontal axis show the bounding box area of each
object.
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Figure 9. Images corrupted with different levels of Gaussian blur. From left to right: no noise,
σ = 1.5, σ = 2.

Figure 10. Images corrupted with different levels of Salt and Pepper noise. From left to right:
no noise, 0.5%, 1%.

Table 3. mAP Results for various levels of Salt and Pepper Filter. All results are ±0.02

RetinaNet Model No Noise 0.1% 0.5% 1%
ReLU 0.76 0.70 0.58 0.50
MaxMin SN 0.75 0.67 0.54 0.48
GS 4, SN 0.76 0.68 0.55 0.50
GS 8, SN 0.77 0.69 0.56 0.49

7. Discussion

In this work, Lipschitz constrained network architectures were explored in order to improve
general robustness of an object detection network. The architecture used was identical to the
one explored in [13], the aforementioned modifications were applied to explore if out of the box
modifications could help improve robustness. To get a wider comparison of the modifications
early stopping was used and all models were approximately trained to 110 epochs. Training the
network to convergence took up to 10 days on a Tesla V100 with 16 GB of memory. In this
work, the optimization was not explored to its full extent, as the focus was not the most optimal
network but rather how these modifications improve the networks’ relative to one another. Given
this, it is to be expected that the networks will perform better when trained to convergence.

Most of the tested architecture modifications do not have any negative effect on the zero-
noise, uncorrupted data. This fact is very positive, as inferior performance on this base test
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scenario, would pose questions about the usefulness of the propose modifications.
Furthermore, as shown in table 1 for the case of Gaussian noise corruption, a noticeable

improvement appears once noisy data is used for testing. The standard ReLU network shows a
fall in mAP as the level of noise increases, whereas each of the Lipschitz constrained networks do
better. Similarly, with Gaussian blur, as shown in table 2, the Lipschitz constrained networks
performed better overall.

However, applying Salt and Pepper noise to the input seems to cause a decrease in
performance for the GroupSort networks see table 3. A reason for this drop in performance
can be the proposed Lipschitz constrained networks. They were conceived to be robust against
small specific augmentations of the input which is often the case in adversarial attacks. When the
induced noise level is radical, e.g. in Salt and Pepper noise pixel values abruptly change to the
highest or lowest possible level of the intensity value range–this type of networks cannot handle
the change, resulting in inferior results. The same reasoning can explain the worse performance
for the highest tested noise level of Gaussian blur.

For boats, in figure 7, the area of the precision curve of the GroupSort networks is larger as
noise is introduced. In the recall curve of the same figure, there is a sharp downward trend with
smaller vessels which reduces the total area under the curve, which is not as extreme with the
GroupSort networks. With respect to Buoys, see figure 8, as noise is introduced the precision
curve is slightly higher on larger vessels, but on smaller vessels it shows that the GroupSort
network does better. The area under the recall curve in this figure is also noticeably larger for
the GroupSort networks, which translates to a higher percentage of detected buoys.

8. Conclusion & Future Work
In this work, Lipschitz constrained neural networks were explored with the hope of increasing
the robustness of object detection at sea. Several Lipschitz constrained modifications were
explored with the intent of making a pre-selected network architecture, RetinaNet as used in
[13], more robust to noisy input data. The selected modifications, e.g. the GroupSort activation
function and Spectral Normalization, ensure the network is Lipschitz continuous. These modified
networks have an advantage in the case of Gaussian noise and Gaussian blur and provide only
slightly worse results for salt and pepper noise. In all cases though, if the noise extends beyond
a certain point the Lipschitz constrained networks break down, whereas the standard ReLU
network will still function to some degree.

The obtained results are encouraging, even though not entirely conclusive. For future work,
an interesting direction is introducing the explored noise as augmentations of the input for
the training of the network. The Lipschitz constrained networks break down when the input
is too different from what they have been trained on. If adding augmentations to the input
of the network allows the Lipschitz constrained networks to handle bigger variation while
still maintaining the higher recall/precision, with respect to small changes it would be very
positive. Furthermore some of the Lipschitz modifications were not used due to them being
computationally inefficient, such as the Björck convolution. Given additional computational
resources, these can be explored as it is only demanding in training time and not in inference
time.
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