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Abstract. Nowadays, the cerebral aneurysm is an abnormal focal dilation of a brain artery 
which is considered as a serious and potentially life-threatening condition. The rupture of 

an aneurysm causes subarachnoid hemorrhage (SAH) and is associated with high rates of 

morbidity and mortality. A better understanding of the mechanisms underlying aneurysm 

pathophysiology is crucial for the development of new preventive procedures and 

therapeutic strategies. This study focuses on the modeling and simulation of the blood flow 

analysis using simplified aneurysm models to perform early prediction on the geometrical 

effects of hemodynamics. The investigation involves three simplified models of aneurysms 

reconstructed using Solidworks 2019, in which the aneurysms are developed at the 

bifurcation. The qualitative comparison of the hemodynamics between three models was 

obtained and the geometrical effects were evaluated. The results show that the differences 

in shape and geometry on aneurysms affect the hemodynamics trend and are capable to 
apply for further understanding of problems regarding hemodynamics in the patient. 

 

 

1. Introduction 

 

 An aneurysm is an illness that influences the blood vessels and makes the artery walls turn out 
to be exposed. It causes thinning and swelling in the blood vessel walls. The majority of aneurysms 

are not dangerous. However, some can break up in their most serious stage leading to life-threatening 

internal bleeding. Cerebral aneurysms that occur in the head normally can be divided into two 
symptoms which are ruptured and unruptured aneurysms [1]. Most of the patients did not realize they 

suffer from the cerebral aneurysms because there is no sign shown until the aneurysms either become 

bigger or burst. Small aneurysms that produce in the brain normally will not give any effect to the 
person as well. Besides, the rupture of cerebral aneurysm is one of the main causes of stroke [2]. Due 

to these issues, many researchers involved their studies with modeling and simulation methods to 

indeed understand the aneurysm rupture.  
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 Computational fluid dynamics (CFD) is one of the methods uses to simulate and analyze the 
aneurysm flow because it can combine the result from the medical imaginary methods and give almost 

specific hemodynamic conditions for the patients. The CFD is turning into a standard tool for the 

study of hemodynamics in cerebral aneurysms [3]. The advanced CFD as a result of improvements in 
computer software first used in fluid engineering and applied to biomechanics has revolutionized 

studies in the last two decades. The use of CFD explains the increasing number of investigations in 

this field. The CFD studies apply mathematical models to simulate blood flow conditions based on the 
shapes of vessels and aneurysms, velocity, and forces such as tension or shear stress [4]. It can assist 

physicians to quantify in the greater element for some phenomena that are difficult to capture within 

vivo imaging techniques through the use of CFD to simulate the flow via patient-particular 

geometries. Image-primarily based CFD can offer specific data at the flow fields and hemodynamic 
elements affecting blood vessels with temporal and spatial resolutions exceeding the ones of the in 

vivo techniques. A better understanding of hemodynamics can improve diagnosis and treatment. In the 

last decade, the CFD simulations have been employed to observe the connection between 
hemodynamics [2], [5], rupture, and the hemodynamic impact of endovascular treatment. 

Hemodynamics modeling in the CFD relies upon the accuracy and underlying assumptions of 

the tool, for instance, treating blood as a Newtonian fluid with constant viscosity which is a 

simplification of blood rheology. Generally, blood consists of a way of red and white cells, and 
platelets floating in plasma that make it a non-Newtonian fluid with a shear-thinning behavior [6]. 

Hemodynamic factors such as wall shear stress (WSS) elicited by the flow, intra-aneurysmal pressure 

is spotted because of the jet impingement and blood residence times are recognized to play a serious 
role in aneurysm rupture [1]. The aneurysm rupture will cause subarachnoid hemorrhage (SAH) with 

presumably extreme medical specialty complications. The WSS, pressure, molecule home time and 

stream impingement play imperative elements at intervals in the event of aneurysm rupture. Regarding 
these, this paper tends to develop the simplified models of aneurysms and extend the investigation to 

the effect of geometry on the hemodynamics factor. 

 

2. Method 

2.1 Design and Modelling 

 The design and modeling of aneurysm models were developed by using SolidWorks 2019. Each 
model of the aneurysms has been drawn with precise dimensions as the actual size. The 3-dimensional 

(3D) aneurysms models, models A, B, and C with full dimensions in millimeters are shown in Error! 

Reference source not found.. Some details of the geometry on simplified aneurysm models are listed 

in Table 1.  

 

Table 1. Details of geometry on simplified aneurysm models. 

 

No. Types Model A Model B Model C 

1. Number of inlets 1 1 1 

2. Number of outlets 1 2 2 

3. Number of aneurysms 1 1 1 

4. Size of aneurysm 1.6 3.7 1.3 

5. Size of artery 2.1 2.4 1.0 

Notes: Size of the aneurysms and arteries is indicated in the unit millimeter (mm)  



International Conference on Technology, Engineering and Sciences (ICTES) 2020

IOP Conf. Series: Materials Science and Engineering 917 (2020) 012067

IOP Publishing

doi:10.1088/1757-899X/917/1/012067

3

 
 
 
 
 
 

 

  Figure 1. 3D simplified aneurysm models with full dimension [unit: mm]. 
 

 

2.2 Meshing 

 
The meshing process of the geometry was conducted purposely to build a grid system and 

calculate the flow domain for the whole model. The mesh edge function is used to manage the mesh 
density of a particular part, while mesh face is intended to display the mesh edge effect. The details 

and information about the number of elements and nodes for all three aneurysm models are shown in 

Table 2 and Figure 2.    

Table 2. Total number of nodes and elements 

 

No. Properties Model A Model B Model C 

1. Nodes 16427 26751 31978 
2. Elements 149342 205778 293344 

 

 

 
 

Figure 2. Representation of tetrahedral mesh for three aneurysm models. 
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2.3 Computational Fluid Dynamics (CFD) 

 
The function of CFD is to analyze the blood flow inside the aneurysm. The CFD gives a very 

important part of this analysis and will be used to calculate the maximum WSS, velocity profile, inlet 
area, and pressure distribution. The CFD provides numerous information on blood vessel 

hemodynamics after convergence. The CFD analysis was performed by solving steady Navier-Stokes 

equations (1) and continuity equation (2) using fluid analysis software, ANSYS 15.0. The following 
governing equations were discretized using the finite volume method.  

 

 u . ) u = - p +  2 u      (1) 

          
. u = 0       (2) 

 

where u is the velocity vector, p is the pressure,  is the density. The blood was assumed to be 
incompressible Newtonian fluids with a density of 1050 kg/m

3
 and viscosity of 3.5 x 10

-3 
Pa.s [3]. 

Arterial walls were expected to be rigid with no-slip. The inlet boundary condition was set to 0.348m/s 
in systole condition. In the outlet boundary condition, the P-fixed approach [7] was performed. 

 

2.4 Pressure-fixed (P-fixed) approach [7] 

We defined the outlet i[1,I], where I is the total number of outlets and corresponding outlet 

pressures, p
(i)

. In the P-fixed approach, we set all the outlet pressures to zero, i.e., p
(i)

 = 0 for i[1,I].  

 

3.  Results and Discussion 

 
In this section, the results of the blood flow analysis are shown and compared. The effect of 

three different simplified models on hemodynamics was first investigated. Second, we studied the 

effect of flow velocity on the aneurysm region, and then finally as additional, the trend of velocity 
fields on the cutting region was observed.   

 

3.1  Effect of different shape on hemodynamics 
 

 Based on the simulation results of the aneurysm models as shown in Figure 3, the WSS 

distributions along the blood vessels or arteries are varied with locations. The maximum WSS was 

found at the edge of the artery outlet, the neck of the aneurysm and parent artery for Model A, Model 
B, and Model C, respectively. The values of maximum WSS at the mentioned locations for Model A, 

Model B, and Model C are 28.7 Pa, 29.5 Pa, and 15.8 Pa, respectively. However, in the aneurysm 

region, the dome showed the least WSS distribution for all the models. Some researchers have 
reported that 45% of the maximum WSS has been found at the neck of the aneurysm, followed by 

40% at the bifurcation, 10% at the aneurysm dome, and 5% at the parent artery [8]–[10]. Besides, the 

researchers claimed that the indication of different maximum WSS location would be due to the 
aneurysm models which were constructed under unspecified and non-systematic conditions. The 

aneurysm models were replicated without compromising the realistic aneurysm models which would 

affect the mesh quality [11]. Furthermore, the shape of aneurysm models strongly depends on the 

reconstruction technique especially through medical images and this technology affects the WSS 
distribution and hemodynamics at the aneurysm models [12], [13]. Therefore, a systematic procedure 

is vital for the building and reconstruction of aneurysm models. 
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Figure 3. Distribution of WSS for a) Model A, b) Model B; and c) Model C. Red circle represented 

the location of maximum WSS of the simplified aneurysm models. 
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3.2 Wall Shear Stress versus Velocity 
  

There is a close relationship between WSS and velocity. The present simulation results are 

illustrated in Figure 5. As for this simulation, the blood was assumed as a laminar and Newtonian 
fluid. The WSS is directly proportional to the velocity profile which adheres to the fluid mechanics' 

behavior [14]. The WSS equation (3) is shown below  

 

   
  

  
     (3) 

 

where   is the dynamic viscosity,   is the velocity of the fluid along the boundary, and   is the 

distance above the boundary. The WSS acting along the boundary is shown in Figure 4. As the 

velocity across the boundary or the blood artery increases, the WSS acting towards the wall also 

increases in which the maximum WSS is obtained between the boundary or blood artery. However, 
the WSS distribution would be different in shape and beyond fluid behavior. It was reported that the 

velocity profile showed an inversed relationship with the WSS distribution [15], [16] due to the 

boundary condition setup and physical model construction [12].    
 

 
Figure 4. Illustration of WSS acting along the boundary 

 

 
Figure 5. Maximum WSS versus inlet velocity 
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3.3 Effect of flow velocity on the aneurysm region 
  

The aneurysm regions for all three models have shown the least WSS distribution except for the 

artery parts with varying WSS distribution and high possibility of rupture. This condition same goes to 
the velocity vector. It can be observed in Figure 6 that the velocity vector appeared to be less dense in 

the aneurysm region but high dense along the artery. The simulated blood flew towards the aneurysm 

region (less dense) and exited along both sides of the aneurysm neck (high dense) towards the artery. 
Furthermore, there is research reported that the application of a high volume of mesh density has 

contributed to an underestimation of WSS distribution and affected the velocity vector. The high 

volume of mesh density, tetrahedral mesh might have shown accurate estimation for certain cases but 

somehow the application of low volume of mesh density, the polyhedral mesh has shown better 
convergence and good agreement towards WSS distribution and velocity vector with less computing 

time [17], [18].  

 

 
Figure 6. Comparison of WSS between three models of aneurysms region. The red circle illustrated 

the details of the velocity vector in aneurysm occurred in real condition.  

 

 

3.4 Effect of velocity field distribution on cutting edge 

 

The different cutting edge has shown to affect velocity field distribution. Figure 7 shows that 

there is an increase of velocity field distribution at the cutting region with a cutting angle of 90° 
followed by 45° and 30°. This might be due to the cutting assumption along the artery. When the 

simulation was performed on the artery cut at 90° with slight alignment to the artery, the velocity field 

distribution was stable, but when the simulation was performed on the artery cut at 30° with oblique 
corner to the artery, the velocity field distribution was dense. This might be due to the oblique corner 

which has created high force and stress concentration towards the area, causing the blood flow to 

move towards the area with high velocity. It was reported that the rupture of the aneurysm has a close 
relation to the WSS distribution and velocity flow field, but somehow the rupture at the parent artery is 

seldom to be occurred [8]–[10], [19]. However, there is an argument on the effect of cutting edge 

towards the velocity field distribution as there is less research study concerning the cutting effect on 

aneurysm rupture. Therefore, more studies have to be conducted to progress proper velocity field 
distribution with different cutting angles.  
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Figure 7. Illustration of velocity field distribution based on different cutting shapes. 

 

4. Conclusion 

 The advancement in CFD study has contributed to a better understanding of the mechanisms 
underlying aneurysm pathophysiology which is crucial for the development of new preventive 

procedures and therapeutic strategies in the medical industry. This paper performs an early prediction 

of the geometrical effects on hemodynamics. It is found that the difference in shape for model 
construction has affected the simulation results such as the WSS distribution and velocity flow field 

due to physical technique in building the aneurysm models. Moreover, the relationship between WSS 

and velocity is found to adhere to fluid mechanics behavior. The mesh quality is also found to have an 
effect on the hemodynamics at aneurysm models as well. On the other hand, the effect on cutting edge 

on velocity field distribution has to be further explored. The differences in shape and geometry on 

aneurysms can be considered for further understanding of problems regarding hemodynamics in 

patients. 
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