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Abstract 

          Let ℝ be a ring with identity and let T be a unitary left Module over ℝ. In this 

paper, we give some cases when a direct sum of hollow Modules is semihollow-lifting, 

Also; we give a condition under which a direct sum of two Modules is semihollow-lifting, 

 

Keywords:  Semhollow lifting Modules, projective Modules. 

 

1. Introduction 

 

          A Submodule S of an ℝ-Module T is small Submodule of T (S ≪ T) if for every 

Submodule D of T such that T = S + D implies D = T[1]. A Submodule H of an ℝ-

Module T is semismall of T (H ≪S T) if H = 0 or H/F ≪ T/F for all nonzero Submodule F 

of H[2]. Let T be an ℝ-Module and H, F be Submodules of T such that F ⊂ H ⊂ T. F is 

called semicoessential Submodule of H in T ( F ⊆sce H in T) if 
H

F
≪S

T

F
[3]. An ℝ-Module 

T is semihollow-lifting if for every Submodule H of T with 
T

H
 hollow, there exists                                   

a Submodule F of T such that  T = F⨁F*
 and  F ⊆sce H in  T[4]. 

 

         Let T1 and T2 be ℝ-Modules, recall that T1 is said to be T2-projective if for every 

Submodule F of T2, any homomorphism g: T1 → 
T2

F
  can be lifted to a homomorphism w: 

T1 → T2. i.e. if  π: T2 → 
T2

F
 is the natural epimorphism, then there exists an 

homomorphism   w: T1 → T2  such that π ∘ w = g[5]. 

 

T1 and T2 are relatively projective if T1 is T2-projective and T2 is T1-projective. 

𝑇2

𝐹
 

g 
𝑤 

𝜋 

𝑇1 

 0 
𝑇2 
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Example1[5] Consider T1 = Z as Z-Module and T2 = Zp∞  as Z-Module, thus T1 is 

relatively T2-projective. 

   Now, we prove the following proposition. 

Proposition2 If T is a semihollow-lifting ℝ-Module and for every decomposition 

T = U⨁V, U and V are relatively projective. Then for every Submodules X and Y of T with 
T

X
 hollow and T = X+Y, there exists an idempotent e ∈ End(T), such that e(T) ⊆ X, (I-

e)(T) ⊆ Y and (I-e)(X)≪s(I-e)(T). 

Proof: Let X and Y be Submodules of T such that T = X+Y  and  
T

X
 hollow. Since T is 

semihollow-lifting, thus there exists a Submodule E of X such that T = E⨁V, for some 

V ⊆ T and X ∩ V ≪s V. By modular law, X = X ∩ T = X ∩( E⨁V) = E⨁(X ∩ V), hence 

T = X+Y = E+(X ∩ V)+Y. But X ∩ V ≪s V ⊆ T, therefore T = E+Y. By our assumption V is 

E-projective, thus by [6, Lemma 5], there exists D ⊆ Y such that T = D⨁E. Now, consider 

the projection map π: T → E and the inclusion map i: E → T with respect to 

decomposition T = D⨁E. Let p =  i ∘ π: T → T. Clearly  p ∈ End(T) is an idempotent and 

p(T)  ⊆ X. Claim that (I-p)(T) = D, let t ∈  T thus t = h + d, where h ∈ E and d ∈ D, (I-
p)(t) = I(t) - p(t) =  t - ( i ∘ π)(t) = h+d - π(h+d) = h+d-h = d ∈ D. Thus (I-p)(T) ⊆ D. Let 

d ∈ D this implies that p(d) = 0. Then, (I-p)(d) = d - p(d) = d, and hence d ∈ (I-p)(T). 

Then D ⊆ (I-p)(T). But D ⊆ Y, therefore (I-p)(T) ⊆ Y. Claim that (I-p)(X) = X ∩(I-p)(T) 

= X ∩ D. To see that. Let d ∈ (I-p)(X), thus there is m ∈ X such that d = (I-p)(m) = m -
 p(m). Then d ∈ X and d ∈ (I-p)(T). So  d ∈ X ∩(I-p)(T). Hence, (I-p)(X) ⊆ X ∩(I-p)(T). 

Let u ∈ X ∩  (I-p)(T), thus u ∈ X and  u ∈ (I-p)(T). There is q ∈ T such that u = (I -
 p)(q) = q - p(q).Then  u+p(q) = q ∈ X, thus u ∈ (I-p)(X). It is easy to show that 

X ∩ D ≅ X ∩ V. But  X ∩ V ≪s V ≅ D, therefore (I-p)(X) ≪s(I-p)(T).                                                                         

Note: Direct sum of two semihollow-lifting Modules need not be a semihollow-lifting 

Module[4,Examples3]. 

   Let T1 and T2 be ℝ-Modules,  T1 is semismall T2-projective (nearly T2-projective) if 

for every homomorphism g:T1 → 
T2

A
, where A  is a Submodule of T2 and Im g ≪s 

T2

A
 

(Im g ≠
T2

A
 ), can be lifted to a homomorphism h: T1→ T2. 

                              

     Recall that a decomposition T = ⨁i∈ITi is  complement direct summands if for 

every direct summand F of T there exists a subset J ⊆  I such that T = F⨁(⨁i∈JTi)[7, 

p.125]. 

         The following proposition gives a condition under which a direct sum of 

semihollow-lifting Modules is semihollow-lifting.  

𝑇2

𝐴
 

g 
ℎ 

𝜋 

𝑇1 

 0 
𝑇2 
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Proposition3 Let T = T1⨁T2 such that T1 and T2 are semihollow-lifting Modules. if  T1 

and T2 are relatively projective, thus T is semihollow-lifting.  

Proof:  Let S be a Submodule of T such that T/S is hollow. Thus T = T1+S or T = T2+ S. 

Assume that T = T1+S (In case T = T2+S being analogous). Thus T1/S∩ T1 is hollow. But 

T2 is T1-projective, there exists a Direct summand of T contained in S such that T = T1 ⊕ 

D[8, 41.14]. Thus S = (T1 ∩ S) ⊕ D. But T1 is semihollow-lifting, there exists a direct 

summand W of T1 such that W ≤ S ∩ T1 and S∩ T1/W≪s T1/W. Then W ⊕ D is a direct 

summand of T and W ⊕ D ≤ (S ∩ T1)⊕D. Assume U be a Submodule of T with W ⊕ D 

≤ U and (S∩ T1)⊕D/W⊕D + U/W⊕D = T/W⊕D. Thus (S ∩ T1) + D + U = T. So 

(S∩T1) + U = T. S∩ T1/W≪s T1/W thus U = T. Then W ⊕D is a semicoessential 

submodule of (S∩ T1)⊕D = S in T. 

        Now, the following propositions give some cases when a direct sum of semihollow 

Modules is semihollow-lifting. 

Proposition4 Assume T = ⨁i∈ITi, where all Ti are hollow and ⨁i∈ITi complement direct 

summands. If T is semihollow-lifting, thus ⨁i≠jTi is nearly Tj-projective. 

Proof: Let W any proper Submodule of Tj and the homomorphism g: ⨁i≠jTi →  
Tj

W
 with 

Img ≠
T2

W
 and the natural epimorphism π: Tj →  

Tj

W
. Define V ={a+b | a ∈ ⨁i≠jTi , b ∈  Tj 

and g(a) = - π(b)}. We claim that T = V+Tj. Clearly V+Tj ⊆ T. Let t ∈  T, thus t = a+b, 

where a ∈ ⨁i≠j Ti and b ∈ Tj. Therefore, g(a) ∈ 
Tj

W
. Since π is onto, there exists b*∈ Tj 

such that π(b*
) = g(a), therefore g(a) = - π(-b*

).Then t = a+b = a+ b*
- b*

+b, where 

a+b*∈ V and - b*
+b ∈ Tj, then t ∈  V+Tj and T ⊆ V+Tj. Then T = V+Tj , W ⊆ V. Now, 

T 

V
 

= 
V+Tj

V
, thus by second isomorphism theorem  

V+Tj

V
 ≅ 

Tj

V∩Tj
. Since Tj  is hollow, thus  

Tj

V∩ Tj
 

is hollow and then 
T 

V
 is hollow. Since T is semihollow-lifting, so there is a direct 

summand F of T such that F ⊆sce V  in T. Then by[3,Proposition7], 
T

F
 is hollow. But the 

decomposition of T complement direct summands, so there is a subset J ⊆ I such that 

 T = F⨁(⨁i∈JTi).Since 
T 

F
 is hollow, thus 

T

F
 is indecomposable. Hence T = F⨁ Tk , for 

some k ∈ I. Now, 
T

F
 = 

V+Tj

F
= 

B 

F
 + 

Tj+D

F
. Since F ⊆ce V  in T, thus T = Tj + F.Claim that  

k = j. If k ≠ j thus g  is an epimorphism, to see that, let xj +W  ∈ 
Tj

W
 . Since π is onto then 

there exists xj ∈ Tj such that π(xj) =  xj +W. Then xj ∈ T, and xj= d+mk,where d ∈ F, mk ∈ 

Tk.But F ⊆ V therefore  d ∈ V.Then d = a+b, where a ∈⨁i≠jTi ,  b ∈ Tj and g(a) = - π(b) 

and hence xj = a+b+mk. So xj - b = x+mk. Since k ≠ j thus  Tk ⊆ ⨁i≠jTi  and hence xj -

 b = x+mk ∈ ⨁i≠jTi ∩ Tj = 0. Then  xj = b. Since g(a) = - π(b), thus g(-a) = π(b) and hence 

g(-a) = π(xj) = xj +W. Thus g is an epimorphism, which is a contradiction. Thus we get  k 

= j and hence T = F⨁Tj . Now, let  β: F ⨁ Tj  → Tj   be the projection map, thus  π ∘ 

β|(⨁i≠jTi) = g, to see that:  
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Let z ∈ ⨁i≠jTi thus z ∈ F⨁Tj and hence z = d+mj , where d ∈ F, mj ∈TJ. Since F ⊆  V thus 

d ∈ V and hence d = a+b, where a ∈ ⨁i≠jTi, b ∈ Tj. Thus we have π ∘ β|(⨁i≠jTi)(z)= π ∘

β|(⨁i≠jTi)(d+mj) =  π(mj). But z = d+mj = a+b+mj, where a ∈ ⨁i≠jTi, y ∈ Tj and g(a) = -

 π(b), Therefore z-a = b+mj ∈ ⨁i≠jTi  ∩ Tj = 0. Then z = a  and  mj = - b. Now, π ∘ 

β|(⨁i≠jTi)(z) = π(mj) = π(-b) = - π(b) = g(a) = g(z). Hence π ∘ β|(⨁i≠jTi) = g. Then 

⨁i≠jTi  is nearly Tj-projective.                    

Proposition5 Let T = ⨁i∈IFi be a direct sum of hollow Modules Fi such that the 

decomposition ⨁i∈IFi is complement direct summands. If there is no epimorphism 

between Fi and Fj (i ≠ j) and T is semihollow-lifting, then ⨁i≠jFj is Fi-projective for each 

i ∈ I. 

Proof: Assume W be a proper Submodule of T with T = W+Fi. Now, by second 

isomorphism theorem,  
T 

W
 = 

W+Fi

W
 ≅ 

Fi

W∩Fi
. Since Fi is hollow for all  i ∈  I, thus 

T 

W
 is 

hollow. But T is semihollow-lifting, so there is a direct summand X of T such that 

X ⊆sce W in T. Then by[3,Proposition7], 
T

X
 is hollow. Now, 

T

X
 = 

W+Fi

X
 = 

N

X
 + 

Fi+X

X
 . This 

implies that T = X+Fi. Since the decomposition ⨁i∈IFi  complement direct summands, 

thus there exists a subset J of I such that T = X⨁(⨁i∈JFi ). But 
T

X
 is hollow, so  

T 

X
 is 

indecomposable. Then T = X⨁Fk , for some k ∈ I. Claim that i = k. If i ≠ k, let 

π: X⨁Fk → Fk be an epimorphism thus π|Fi: Hi → Fk is an epimorphism. To see that, let 

fk ∈ Fk, thus fk ∈ T, hence fk = x + fi, where x ∈ X and fi ∈ Fi. Thus π(fk) = π(x)+ π(fi) 

and hence π(fk) = π(fi). This implies that π(fi) = fk. Then there is an epimorphism 

between Fi and Fk with (i ≠ k) which is a contradiction. Therefore i = k, hence T =X⨁Fi. 

Then by[6, Lemma 5],  ⨁i≠jFj  is  Fi-projective  for each i ∈ I.                     

   Let T1 and T2 be ℝ-Modules, T1 is h-semismall T2-projective if every homomorphism 

g:T1→ 
T2

W
,(where W is a submodule of T2,  

T2

W
 is hollow and Im g ≪s

T2

W
) can be lifted to       

a homomorphism φ: T1  → T2. 

𝑇𝑗
𝑊

 

𝑔 

𝛽|(⨁𝑖≠𝑗𝑇𝑖) 

 𝑇j 0 
𝛽 

𝜋 𝐷⨁𝑇j 

⨁𝑖≠𝑗𝑇𝑖  
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Remark6 Let T1 and T2 be two ℝ-Modules then we have the implication:  

  

 

Proof: Clear.  

Example7 Consider T1 = Z as Z-Module and T2 = Z2 as Z-Module, then T1 is h-semismall 

T2-projective.  

        The following lemma gives a characterization of h-semismall projectivity. 

Lemma8 Let T1 and T2 be Modules and T = T1 ⨁T2. If T1 is h-semismall T2- projective 

then for every Submodule E of T such that 
T 

E
 is hollow and T ≠ T+E, there exists                  

a Submodule E*
 of E such that T = E*

 ⨁ T2. 

Proof: Clear. 

  

         The following proposition gives conditions under which a direct sum of two 

Modules is semihollow-lifting.  

Proposition9 Assume T = T1⨁T2 such that T1 is h-semismall T2-projective and T2 is 

semihollow-lifting. If for every Submodule E of T such that 
T 

E
 is hollow, T ≠ T1+E. Then 

T is semihollow-lifting.  

Proof: Let E be a Submodule of T such that 
T 

E
 is hollow. Thus by our assumption 

T≠T1+E. Now, 
T 

E
 = 

T1⨁T2 

E
 = 

T1+E

E
 + 

T2+E

E
. But  

T

E
  is hollow, therefore E ⊆sce (T1+E) in T. 

Then T = T2+E. Since T1 is h-semismall T2-projective, thus by Lemma8, there exists            

a Submodule E*
 of E such that T = E*

 ⨁T2. By second isomorphism theorem, 
T 

E
 = 

T2+E

E
 ≅ 

T2

E∩T2
. Then 

T2

E∩T2
 is hollow. But  T2 is semihollow-lifting, thus there is a direct summand U 

of T2 such that U ⊆sce (E ∩ T2) in T2. Since U ⊆ T2 and T2 is a direct summand of T, then 

U is a direct summand of T. By modular law, E = E ∩ T = E ∩(E*⨁T2) = E*⨁(E ∩ T2). 

Since U ⊆ E ∩ T2 and U ∩ E*
= 0, thus U⨁E* ⊆ (E ∩ T2)⨁E*

 and hence U⨁E*⊆ E. It is 

easy to show that U⨁E*
 is a direct summand of T. We want to show that  U⨁E*

 ⊆sce E in 

T. Let X ⊆ T and 
E

U⨁E∗
 + 

X

U⨁E∗
 = 

T

U⨁E∗
. Then E+X = T and hence E*⨁(E ∩ T2)+X = T. But 

T1 is T2 - 
projective 

T1 is nearly T2 
– projective 

T1 is semismall 
T2 - projective 

T1 is h-semismall 
T2 - projective. 

𝑇2

𝑊
 

g 
𝜑 

𝜋 
 0 𝑇2 

𝑇1 
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E*⊆ X, therefore (E ∩ T2)+X = T. Now, 
T 

U
 = 

(E∩T2)+X 

U
 =  

E∩T2 

U
 + 

X 

U
. Since U ⊆sce (E ∩ T2) 

in T2, thus U ⊆sce ( E ∩ T2) in T. Hence  
T 

U
 = 

X 

U
  This implies that T = X and hence  U⨁E*

 

⊆sce E in T. Then T is semihollow-lifting.                                           

      An ℝ-Module T is said to have the (finite) exchange property if for any(finite) index 

set I, whenever T ⨁  N =  ⨁i∈I Ai , for Modules N and Ai, then T ⨁  N = T⊕( ⨁i∈I Bi) 

for Submodules Bi ⊆  Ai[9]. 

      Now, we consider some conditions for a Module T1 to be h-semismall T2-projective, 

when T = T1⨁T2 is semihollow-lifting. 

Proposition10 Let T = T1⨁T2 be a semihollow-lifting Module. If T1 has the finite 

exchange property and T2  is hollow, thus T1 is h-semismall T2- projective. 

Proof: Let W be a Submodule of T such that 
T 

W
 is hollow and T ≠ T1 +W. Since T is 

semihollow-lifting, thus there is a direct summand E of T such that E ⊆sce W  in T. Since  
T 

W
 is hollow, thus by[3,Proposition7], 

T 

E
 hollow. Now, 

T

E
 = 

T1⨁T2 

E
 = 

T1 +K

E
 + T = T2+E. 

Assume T = E ⨁E*
, for some E* ⊆ T. Since T1 has the finite exchange property, thus 

T1⨁ T2 = T1⨁ X⨁Y, for some X ⊆ E and Y ⊆ E*
. It is Clear that  T = T1+E+Y and 

Y ∩ E = B ∩ E*∩ E = 0. So  
T 

E
 = 

T1+E

E
 + 

Y⨁E

E
. Since  E ⊆sce (T1 + E) in T, thus T = Y⨁E. 

But T = E⨁E*
 and Y ⊆ E*

 so,  E*
= Y. Since E*∩ T1 = Y ∩ T1 = 0, thus  

T

T1
 = 

E ⨁E∗
 

T1 
 =  

E+T1

T1
 + 

E∗⨁T1

T1
.  By the second isomorphism theorem, 

T

T1 
 ≅ T2  thus 

T

T1
 is hollow. But T ≠ T1+E 

therefore T1 ⊆sce (E+T1) in T and hence T = E*⨁T1. Since K*
= Y, Thus by[10, lemma3.2], 

we get E has the finite exchange property. But  T = E⨁E*= T1⨁T2, so there exists Q ⊆ T1 

and F ⊆ T2 such that T = E⨁Q⨁F. It is Clear that T = E+T1 + F. Now, 
T 

E
 = 

E+T1 

E
+ 

D⨁E 

E
. 

Since E ⊆sce (T1 +E) in T thus T = F⨁E. Also, since F ∩ T1 = 0, thus we have  
T 

T1 
 = 

F⨁E 

T1 
 = 

F⨁T1 

T1
 + 

E+T1

T1 
. Since T1 ⊆sce (E+T1 ) in T, thus T = F⨁T1. But  T = T1 ⨁ T2  and F ⊆ T2, 

therefore F = T2  and hence T = T2 ⨁ E. Then T1 is h-semismall T2- projective.                       

   Let T = ⨁i∈ITi be a direct sum of Submodules Ti. Recall that the decomposition 

T = ⨁i∈ITi is called exchange decomposition (or exchangeable) if for any direct 

summand N of T we have T = N ⨁(⨁i∈INi) with Ni ⊆ Ti[11]. 

       By [7, p.125], we have: 

Remark11 Let T = ⨁i∈ITi be a direct sum of Submodules Ti, then we have the 

implication:    

 

   We end this section by the following Proposition. 

Proposition12 If T is a semihollow-lifting Module with exchange decomposition  T = 

T1⨁T2 and T2 is a hollow Module. Then T1 is h-semismall T2- projective. 

T  is complement direct 
summands 

T  is exchangeable 
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Proof: Assume T is a semihollow-lifting Module with exchange decomposition T = 

T1⨁T2. Suppose E be a Submodule of T such that 
T 

E
  is hollow and T ≠ T1+E. Now, 

T

E
 = 

T1⨁T2 

E
 = 

T1+E

E
 + 

T2+E

E
 . Since T ≠ T1 + E and 

T 

E
  is hollow, Thus E ⊆sce (T1 +E) in T and 

hence T = T+E. But T is semihollow-lifting, so there exists a direct summand D of T such 

that D ⊆sce E  in T. Since 
T

E
 is hollow thus by[3,Proposition7],  

T

D
 is hollow. Clearly  T ≠

T1 +D. But,  
T

D
 = 

T1⨁ T2 

D
 = 

T1+D

D
 + 

T2+D

D
, therefore D ⊆sce (T1 + D) in T and hence T = T2+D. 

It is enough to prove that T = T2⨁D. Since the decomposition T = T1 ⨁ T2 is 

exchangeable and D is a direct summand of T, thus we have T = D ⨁ T1 
*⨁ T2

*
 for 

Submodules T1 
* ⊆ T1 and  T2

* ⊆ T2 . Hence T = D+T1 +T2
*
 and T2

*∩ T1 = 0. Since T 

= T1⨁T2 , thus by the second isomorphism theorem, 
T 

T1 
 ≅ T2. But  T2 is hollow, thus 

T

T1
 is 

hollow. But  
T 

T1
 = 

D+T1 +T2
∗

 

T1 
 = 

D+T1

T1
 + 

T2
∗ ⨁T1

T1
, therefore T1 ⊆sce (D+T1) in T and hence T = 

T2
*⨁ T1. Since T = T1⨁T2, thus T2 = T2

*
. But T = D ⨁ T1

*⨁ T2
*
, so T = D ⨁ T1 

*⨁ T2. 

Since T = T2+D. Thus T = D⨁ T2, Then T1 is h-semismall T2- projective.                                           
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