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Abstract. In this paper, we introduced certain  types of stability of  the fixed points in discrete dynamical systems 
which are pre-stability, pre-c-stability, and pre-ic-stability. We studied the relationships among these types of 
stability,  also the relationships among these types of stability and certain types of stability which are stability, c-
stability, and ic-stability 

Keywords: pre-open , Fixed point, Pre-stable fixed point , Orbit , and dynamical System. 

 

1. Introduction  

A discrete dynamical system consists of a non-empty set � which is called the phase space and 
compositions ��, � ∈ � of a map f: X → X where f 	  =  f ∘  f ∘ … ∘  f (n-times). These iterates form a 
group or semi group. A dynamical system could be a measure space and a function that preserves 
measure; a metric space with an isometry;  or a topological space and a continuous function, etc. In  this 
paper, we considered phase spaces which are topological spaces [3]. A strong concept of stability for 
dynamical system was first formulated by N.E. Zhukovskii [10] . He introduced in 1882 a strong orbital 
stability concept which is basisd on a reparametrisation of the time variable [11]. On the 12 October 
1892 (by modern calendar) Alexander Mikhailoich Lyapunov defined his doctoral thesis the general 
problem of the stability of motion (at Moscow university ) [13].  Lyapunov defined a fixed point ��  to 
be stable if for every neighborhood  
 of ��, there is a neighborhood � ⊆ 
 such that every solution �(�) starting in � (�(�)) remains in 
 for all � ≥ 0. Otherwise, �� is unstable [12]. In 2014 Mohammed 
F. Al-Ali and A.M. Hamza introduced and studied new types of stability which are c-stability  and ic-
stability of the  fixed points [9]. 

   In this paper,  ��, R, Z , N, 
∘ and 
∘
 will denote the family of (p-o) sets, the set of real numbers, the 

set of integer numbers, the set of non-negative integers, the closure of the interior of 
 and  the interior 
of the closure of 
, respectively. For any non-empty set �, we denote by  ��, ��, ���� and ��, the usual 
topology on �,the discrete topology, the indiscrete topology and the cofinite topology respectively. 
Finally we denote by �� ��� �(�), the complement of the set � and the orbit of  .  We used space, map, 
and DDS to refer to a topological space, continuous function and discrete dynamical system, 
respectively. 

 

2. Preliminaries 
 2.1 Definition [3] 

A DDS consists of a phase space  X and iterates ��,  where � belong to � of a map �: X → X , the nth 
iterate of � is the t-fold composition ��  =  � ∘  � ∘ … ∘ �;  we define  �� to be the identity map. If � 
satisfy the invertible properties  then ��	  =  ��� ∘   ��� ∘ … ∘ ��� (n times). Since �	!"  =  �	 ∘  �", these iterates form a group if � is invertible, and semi group otherwise. 
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Although we have defined DDS in a completely abstract setting, where � is simply a set, in practice � usually has additional structure that is preserved by the map �. For example, (�, �) could be a 
measure space and a measure-preserving map; a space and a continuous map; a metric space and an 
isometry; or a smooth manifold and a differentiable map. 
 

  2.2 Definition [1] 
Let (�, �) be a space, and �: � → � be a function. A point � ∈ � is said to be fixed point of � if �(�) = �. 
 

  2.3 Definition [1] 
Let (�, �) be a space, and �: � → � be a map. For all � ∈ �, the orbit of � under � is the set {�, �(�), �#(�), … , ��(�), … }, and it is denoted by �(�), where �(�) ⊆ �. 

 
 2.4 Definition [5] 

         A subset $ of a space X is called a pre-open (p-o) set  if and only if Α ⊆ Α∘
 .  $ is called 

a pre-closed if and only if  $�  is (p-o)  and it's easy to see that $ is pre-closed if and only if Å ⊆ $. 
 

2.5  Remark  [6] 
   If Α is a dense subset in X, Then it is a (p-o)  set. 

 
2.6 Theorem [7] 

         Let X be a space. If A is a (p-o)  set in X, Then � = 
 ∩  ', where 
   is an open set in X and ' is a    
dense set in X. 

 
 2.7 Theorem  [8] 

   The arbitrary union of (p-o)  set is also (p-o) . 

 
2.8  Definition [1] 

       Let  (X, τ) be a space, �: X → X be a map ,  �� ∈ � is called stable if for every open set U ⊆X containing ��, there exists an open set V ⊆ U containing x� such that O(x)  ⊆ U, ∀ � ∈ V  . 
Otherwise , �� is called unstable fixed point. 

2.9 Theorem [9] 

  Let (X, τ) be a space, B- is a basis for τ, �: X → X be a map, and �� be a fixed point of � If �� is stable 
point with respect to B-,  then  �� is stable point with respect to τ. 

 

2.10  Definition [9]  

 Let (�, �) be a space, �: � → � be a map. A fixed point �� of � is called c-stable if for any open set 
 
containing ��,  there exists an open set � ⊆ 
 containing �� such that, �(�) ⊆ 
., ∀� ∈ �. 

  Otherwise, we say that �� is not c-stable fixed point. 
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  2.11 Theorem [9] 

       Let (X, τ) be a space, B- is a basis for τ, �: X → X be a map and x� is a fixed point of f. If �� is c-
stable with respect to B-, then �� is c-stable with respect to τ. 

 
2.12 Example 

 Consider the space (R, τ/), and �: R → R be a function defined by f(x) = �1 �.  The DDS is 23�145 �65∈7, 

and 0 is the fixed point of �. '89 = { (�, ;);  �, ; ∈ �} is a basis for ��. 

     Let U = (��, ��) ∈ B-> , where 0 ∈ U. Choose V = (−a, a) ∈ B->, where 0 ∈ V ⊆ U,               

a = min {|��|, ��}. Note that O(x) ⊆ V ⊆ U,. ∀x ∈ V. Then, 0 is c-stable. 

 
2.13  Example 

Consider the space (�, ��) and � ∶  � →  �  is the  function defined by �(�) =  −5�.           

   B-9  = { (�, ;);  �, ; ∈ �} is a basis for ��.. The DDS is{(−5)��}� ∈ �,  and 0 is the fixed point of  �.  

Let  
 = (−1, 1)  ∈  '89 .  Note that, for any open subset �of 
 containing 0 , and for any � ∈ �,  �(�) ⊈  
. 

 Hence, 0 is not c-stable fixed point.  

 
2.14 Theorem  [9] 

Let (�, � ) be a space, � ∶  � →  �  be a map and ��  is a fixed point of f.  If �� is stable, then it is c-
stable. 

 
 2.15 Definition [9] 

  Let (X, τ) be a space, �: X → X be a map. x� ∈ X is called ic-stable if for every open set U ⊆ X 

containing ��,  there exists an open set V ⊆ U containing �� such that, O(x) ⊆ U∘, ∀x ∈ V. 

  Otherwise, we say that �� is not ic-stable fixed point. 

 
2.16 Theorem [9] 

 Let (X, τ) be a space, B- is a basis for τ, �: X → X be a map and �� is a fixed point of f. If �� is ic-stable 
with respect to B-, then  �� is ic-stable with respect to τ. 

 
2.17 Theorem  [9] 

Let (�, � ) be a space,  � ∶  � →  � be a map and �� is a fixed point of f. If 

i- �� is stable, then it is ic-stable. 

ii- �� is ic-stable,  then it is c-stable. 
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3. Main Results 

3.1 Definition 

Let (�, � ) be a space in a DDS {��}�∈ D, and let �� be a fixed point of �. We say that �� is pre-stable if 
for any (p-o)  set 
 ⊆  � containing ��,  there exists a (p-o)  set � ⊆ 
 containing �� such that  �(�)  ⊆ 
; ∀� ∈  �. 

      Otherwise, �� is called not pre-stable fixed point. 

 
3.2 Example 

Consider the space (�, � ), � = {�, ∅, F, �\F} and � ∶  � → � is the function defined by  

�(�) = G �#,      � ∈ F� + 1,  I. K  . 

The fixed points of �  are 0 and 1. 

0 is pre-stable: 

Let 
 be any (p-o)  set containing 0. Choose  � = {0} ⊆ 
 .  � is (p-o)  subset  of  
 containing 0 with  �(0) ⊆ 
. 

So, 0 is pre-stable . 

Similarly, 1 is pre-stable. 

 
3.3 Example 

     Consider the space(�, ��), and � ∶  � → � is the function defined by     � (�) = �L �. The fixed point of 

f is 0, and the DDS is {3�L4� �}�∈D. 

  
 = {0} ∪  [10,15] is a (p-o)  set in (�, ��) containing 0.  Let  V be any (p-o)  subsets of U containing 0.  �(�) ⊈ 
, ∀ � ∈ �. 

Hence, 0 is not pre-stable fixed point. 

 

3.4 Remark 

  A stable fixed point needs not be pre-stable.(Example 3.5) 

 
3.5 Example 

Let (�, �) be a space, � = {�, ;, N }, � = {�, ∅, {�, N}} and  �: � → � is the function defined by,  �(�) =N, �(;) = ; and  �(N) = � .  

The fixed point of � is ; and the DDS is given by the following table. 
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� �(�) �#(�) �1(�) … ��(�) … 

� N � N … ��(�) … 

; ; ; ; … ; … 

N � N � … ��(N) … �P = � ∪ {{�}, {N}, {�, ;}, {;, N}} 

; is stable fixed point but not pre-stable: 

The only open set containing ; is    
 = � ∈ �. 

The only open subset of 
 that containing ; is 
 itself , i.e.  � = 
. 
�(�) ⊆ 
, ∀� ∈ �.  So, ; is stable fixed point. 


 = {�, ;} is a (p-o)  set and ; ∈ 
. 

The only (p-o)  subset of 
 that containing ; is 
 it self, i.e. � = 
. 

�(�) = { �, N, �, N, … } ⊈ U. 

So, ; is not pre-stable. 

Hence, stability ⇏ pre-stability. 

In the following theorem, we shall give a condition that make stability implies pre-stability and pre-
stability implies stability.   

 
3.6  Theorem 

Let (�, � ) be a space, {��}�∈D be a DDS with a fixed point  �� such that every open set containing ��. 
Then ��  is pre-stable if and only if it is stable. 

 ⇒⇒ Proof: Let  �� be a pre-stable fixed point and 
 be any open set containing ��. Then 
 is (p-o)  set 
and ��  ∈ 
, so there exists (p-o)  set �; ��  ∈  � ⊆ 
, and �(�) ⊆ 
, ∀ � ∈ � . 
�∘ is open set containing �� and �∘  ⊆ � ⊆ 
  with  �(�)  ⊆ 
; ∀� ∈  �∘. 

Hence, �� is stable . 

⟸ Proof : Let 
 be any (p-o)  set containing��. Note that 
∘  is open set. Since �� is stable, then there 
exists an open set � , � ⊆  
∘ such that �(�) ⊆  
∘, ∀� ∈  �.  Now, � is (p-o)  set with   �(�) ⊆  
∘ ⊆
,   ∀� ∈  �. 

Hence, ��  is pre-stable fixed point. □ 

 
3.7  Theorem 

 Let (�, � ) be a space. In any DDS with the topology � = {�, ∅, 
, 
�} , 
 ⊂ �, every fixed point is a 
pre-stable . 

 Proof : In such space, every non-empty subset � of � is (p-o) : 
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� = Z 
, ^� � ⊆ 
                                                         
�, ^� � ⊆ 
�                                                        �, ^� � = �� ∪ �#, �� ⊆ 
 ��� �# ⊆ 
�  . 

So,  

�∘ = Z 
, ^� � ⊆ 
                                                         
�, ^� � ⊆ 
�                                                        �, ^� � = �� ∪ �#, �� ⊆ 
 ��� �# ⊆ 
� . 

So, in such DDS, every fixed point �� is pre-stable, for � = {��} is a (p-o)  subset of any (p-o)  set 
 
containing �� and  �(��) ⊆ 
. Hence, �� is pre-stable. 

 
3.8 Theorem 

If the phase space  � of a DDS has a basis of pairwise disjoint basic open sets, then every fixed point is 
pre-stable. 

Proof: Let ' =  {�_}_∈` be a basis for the topology of the phase space � in a DDS with �� ∩  �b =∅, ∀ ^ ≠ d.   
Let �� ∈ � be a fixed point. Then �� ∈ �_e  , �_e  ∈ '. 

Now, let  
 be any (p-o)  set containing ��. Put � = {��}. Then �∘ ⊆ �_e , so � is (p-o)  set. We have, �� ∈ � ⊆ 
  with  �(��) ⊆ 
. 

So, �� is pre-stable fixed point. □ 

 
3.9 Theorem  

If  {��}�∈D is a   DDS with  � = {�, ∅, �}, � ⊆ �, then any fixed point in � is pre-stable. 

Proof: Let  �� ∈ � be a fixed point and 
 be any (p-o)  set containing  �� . Then  � = {��} is (p-o)  set 
containing  �� and  � ⊆ 
 with  �(��) ⊆ 
. 

Hence, �� is pre-stable fixed point. □ 

 
3.10 Definition 

Let (�, � ) be a space in a DDS {��}�∈D, and let �� be a fixed point of �.  �� is called  pre-c-
stable if for any (p-o)  set 
 ⊆  � containing ��,  there exists a (p-o)  set � ⊆ 
 containing  ��  
such that �(�)  ⊆ 
; ∀� ∈  �. 

Otherwise, �� is called not pre-c-stable fixed point. 

3.11  Example 

Consider the space (�, ����),and � ∶  � → � is the function defined by � (�) = 4� − 1. The fixed point of f  is 
�1, and the DDS is {4�� − (4��� + 4��# + ⋯ + 1}�∈D. 

 Let 
  be any (p-o)  sets in (�, ����)  contains  
�1 .  � = {�1}, is a (p-o)  subset of 
;  

�1 ∈ �. Note that,  �(�) ⊆ 
 = �, ∀ � ∈ �.  



The First International Conference of Pure and Engineering Sciences (ICPES2020)

IOP Conf. Series: Materials Science and Engineering 871 (2020) 012039

IOP Publishing

doi:10.1088/1757-899X/871/1/012039

7

Hence, 
�1 is pre-c-stable 

 
3.12 Example 

Let (�, �) be a space and = {1, 2, 3, 4 } ,  � = {�, ∅, {4}, {1,3}, {2,4}, {1,3,4}} and  �: � → � is the 
function defined by, �(1) = �(3) = 4 and  �(2) = �(4) = 2.  

The fixed point of � is 2 and the DDS is given by the following table. 

 

 

� �(�) �#(�) … ��(�) … 1 4 2 … 2 … 2 2 2 … 2 … 3 4 2 … 2 … 4 2 2 … 2 … �P = � ∪ {{1}, {3}, {4}, {1,2}, {1, 4}, {3, 4}, {1, 2, 3}, {2, 3 , 4}} 

The (p-o)  set 
 = {1,2} is containing 2 . The only (p-o)  subset of  
 containing 2  is  � = 
.  �(1) ⊈ 
.  

Hence, 2  is not pre-c-stable fixed point. 

 
3.13  Theorem 

 Let (�, � ) be a space , {��}�∈D be a DDS with a fixed  point  �∘ such that every open set containing �∘. 
Then �∘  is pre-c-stable if and only if it is c-stable. 

 ⇒⇒Proof:  Let  �∘ be a pre-c-stable fixed point and 
 be any open set containing �∘. Then 
 is (p-o)  set 
and �∘  ∈ 
.  So, there exists (p-o)  set �; �∘ ∈  � ⊆ 
, and 

 �(�) ⊆ 
, ∀ � ∈ � . 
�∘ is open set containing �� with  �∘  ⊆ � ⊆ 
. 

So, �(�) ⊆ 
 , ∀� ∈  �∘. 

Hence, �∘ is c-stable . 

 ⟸ proof  :  Let 
 be any (p-o)  set containing ��.  Note that,  
∘  is open set containing ��. Since �� is c-
stable,  then there exists an open set � , � ⊆  
∘ such that �(�) ⊆  
∘lll, ∀� ∈  �.  Now , � is (p-o)  set 
with   �(�) ⊆  
∘lll ⊆ 
.,   ∀� ∈  �. 
Hence, �� is pre-c-stable fixed point. 

 □ 
3.14  Theorem  

Let (�, � ) be a space, {��}�∈D  be a DDS with a fixed point ��.  If  �� pre-stable, then it is pre-c-stable. 

Proof:  Let 
 be a (p-o)  set; �� ∈ 
. Since  �� is pre-stable, then there exists (p-o)  set  � ; �� ∈ � ⊆ 
 
such that, �(�) ⊆ 
, ∀� ∈ �. So,  �(�) ⊆ 
,.  ∀� ∈ �.  
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 Hence, �� pre-c-stable. □ 

The converse of above theorem isn't true generally . 

 
3.15   Example 

Consider the space (�, ��), and � ∶  � → � be a function define by,  

�(�) = 2 2�, � < 1� + 2, � ≥ 1 .  The fixed point of f is 0. 

0 is not pre-stable fixed point. Let 
 = (−7, 5) is a  (p-o)  set in (�, ��) containing 0 .  

Let � be any (p-o)  sub set of  
 containing 0 .Then , �(�) ⊈ 
,  for some � ∈ �. 

 Hence, 0 is not pre-stable fixed point. 

But 0 is pre-c-stable : 

Let 
 be any (p-o)  set of � containing 0  . � = (−2, 5)  is (p-o)  set and  0 ∈ � ⊆ 
, Thus, �(�) ⊆ 
. =�. Hence, 0 is pre-c-stable fixed point.  

 
3.16 Theorem 

If the phase space  � of a DDS has a basis of pairwise disjoint basic open sets, then every fixed point is 
pre-c-stable.  

Proof: it is clear [Theorem 3.8] and[Theorem 3.14].                                                                     □ 

  
3.17 Definition 

Let (�, � ) be a space in a DDS {��}�∈D, and let ��  be a fixed point of �.  �� is called  pre-ic-stable if for 
any (p-o)  set 
 ⊆  � containing ��,  there exists a (p-o)  set � ⊆ 
 containing ��,  such that �(�)  ⊆
∘; ∀� ∈  �. 

Otherwise, �� is called not pre-ic-stable fixed point. 

3.18  Example 

Let (�, �) be a space and = {1, 2, 3, 4 } ,  � = {�, ∅, {1,3}, {2,4}} and  �: � → � be a function defined by,  �(1) = �(3) = 1 and  �(2) = �(4) = 3.  

The fixed point of � is 1 and the DDS is given by the following table. 

� �(�) �#(�) … ��(�) … 1 1 1 … 1 … 2 3 1 … 1 … 3 1 1 … 1 … 4 3 1 … 1 … �P = q(�) 

Let 
 be any (p-o) set  containing 1. � = {1}  is a (p-o) set and 1 ∈  � ⊆  
  with 

�(1)  ⊆ 
. So, �(1)  ⊆ 
∘
.  



The First International Conference of Pure and Engineering Sciences (ICPES2020)

IOP Conf. Series: Materials Science and Engineering 871 (2020) 012039

IOP Publishing

doi:10.1088/1757-899X/871/1/012039

9

Hence, 1  is pre-ic-stable fixed point. 

 
3.19 Example 

Let (�, �) be a space and � = {�, ;, N }, � = {�, ∅, {�}, {N}, {�, ;}, {;, N}} and  �: � → � be a function 
defined by, �(�) = �(;) = ; , �(N) = �.  

The fixed point of � is ; and the DDS is given by the following table. 

 

� �(�) �#(�) … ��(�) … � ; ; … ; … ; ; ; … ; … N � ; … ; …  
�� = �. 

Let  U = {b, c}. U is a (p-o)  set with ; ∈  
. The only (p-o)  subset of 
 contains the fixed point ; is 
  
itself. 

�(N) = {N, �, ;, ;, … } 
So, �(N)  ⊈ 
∘. 
Hence, ; is not pre-ic-stable fixed point. 

 
3.20 Theorem 

Let (�, � ) be a space, {��}�∈D be a DDS with a fixed point  �∘ such that every open set containing �∘. 
Then �∘  is pre-ic-stable if and only if it is ic-stable. 

 ⇒  tuvvw:  Let �∘ be a pre-ic-stable fixed point and 
 be any open set containing �∘. Then 
 is a (p-o)  
set and  �∘  ∈ 
.  So, there exists (p-o) set �; �∘ ∈  � ⊆ 
, and 

 �(�) ⊆ 
∘, ∀ � ∈ � . 
�∘  is open set containing �� with  �∘  ⊆ � ⊆ 
. 

So, �(�) ⊆ 
∘, ∀� ∈  �∘. 

Hence, �∘ is ic-stable fixed point. 

⟸  yuvvw ∶  Let  
 be any (p-o)  set containing ��.  Note that,  
∘  is open set. Since �� is ic-stable,  
then there exists an open set  � NI���^�^�z �� , � ⊆ 
∘  such that �(�) ⊆  
∘lll∘, ∀� ∈  �.  Now , � is 

(p-o)  set with   �(�) ⊆  
∘lll∘ ⊆ 
∘,   ∀� ∈  �. 
Hence, �� is pre-ic-stable fixed point. □ 

  
3.21   Theorem  

Let (�, � ) be a space, {��}�∈D  be a DDS with a fixed point ��.  If  �� pre-stable, then it is pre-ic-stable. 
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tuvvw ∶  Let  
  be a (p-o)  set; �� ∈ 
. Since  �� is pre-stable, then there exists a (p-o)  set  � ; �� ∈� ⊆ 
 such that, �(�) ⊆ 
, ∀� ∈ �. Since  
 is (p-o)  set, then 
 ⊆ 
∘
, and so �(�) ⊆  
∘,   ∀� ∈  �  . 

Hence, �� pre-ic-stable.                                                                                                              □ 

 
3.22   Theorem  

Let (�, � ) be a space, {��}�∈D  be a DDS with a fixed point ��.  If  �� pre-ic-stable, then it is pre-c-
stable. 

tuvvw ∶  Let 
  be a (p-o)  set; �� ∈ 
. Since  �� is pre-ic-stable, then there exists a (p-o)  set  � ;  �� ∈ � ⊆ 
 such that, �(�) ⊆ 
∘, ∀� ∈ �. Since 
∘ ⊆ 
, then  �(�) ⊆ 
,.  ∀� ∈ �. 

 Then, �� pre-c-stable.                                                                                                              □ 

 
3.23 Theorem 

If the phase space  � of a DDS has a basis of pairwise disjoint basic open sets, then every fixed point is 
pre-ic-stable. 

tuvvw ∶ it is clear [Theorem 2.8] and [Theorem 2.21]                                                                       □ 

 
3.24  Theorem  

If  {��}�∈D is a  DDS with � = {�, ∅, �}, � ⊆ �, then any fixed point in � is pre-ic-stable, and  so it is 
pre-c-stable. 

tuvvw: Let  ��  be a fixed point.  Let  �� ∈ � , and 
 be any (p-o)  set containing  �� . Then  � = {��} is 

a (p-o)  set containing  �� and  � ⊆ 
 with  �(��) ⊆ 
 with �(��) ⊆ 
∘
. 

Hence, �� is pre-ic-stable . 

Now, if  �� ∈ A�, then any (p-o)  set containing �� is of the form U = A� ∪ B , where ∅ ≠ B ⊆ A . 

 Choose V =  A� ∪ {��}. Then V is a (p-o)  set containing ��, V ⊆ U.  

 O(�) ⊆ U∘ = X, ∀x ∈ V. Hence, �� is pre-ic-stable.                                                            □                               

 

4. Conclusion  

   Certain types of stability  which depend on the pre- open sets had been discussed. Since every open set 
is (p-o)  set, so these types of stability had been discussed the stability in phase spaces in which the 
collection of (p-o)  sets is at most finer than the collection of open sets. This means that we gave a 
stability in larger phase spaces.. 
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            Figure (1): Relationships among certain types of pre-stability of a fixed point  �� . 
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